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ABSTRACT

Speaker modeling is essential for many related tasks, such as speaker
recognition and speaker diarization. The dominant modeling ap-
proach is fixed-dimensional vector representation, i.e., speaker em-
bedding. This paper introduces a research and production oriented
speaker embedding learning toolkit, Wespeaker. Wespeaker con-
tains the implementation of scalable data management, state-of-the-
art speaker embedding models, loss functions, and scoring back-
ends, with highly competitive results achieved by structured recipes
which were adopted in the winning systems in several speaker veri-
fication challenges. The application to other downstream tasks such
as speaker diarization is also exhibited in the related recipe. More-
over, CPU- and GPU-compatible deployment codes are integrated
for production-oriented development. The toolkit is publicly avail-
able at https://github.com/wenet-e2e/wespeaker.

Index Terms— Wespeaker, Speaker embedding, Speaker veri-
fication, Speaker diarization

1. INTRODUCTION

Deep speaker embeddings [1, 2, 3, 4] are the de facto standard
speaker identity representation for many related tasks. For speaker
recognition, they are fed to scoring back-ends such as cosine sim-
ilarity or probabilistic linear discriminant analysis (PLDA) for the
following acceptance decision making. A similar application can be
found in speaker diarization, where the scores obtained are used for
further clustering. Besides the tasks that focus on speaker modeling,
deep speaker embeddings are also utilized in other speech process-
ing tasks, such as the speaker adaptation in speech recognition,
speaker modeling in text-to-speech and voice conversion, etc.

Researchers in the speech processing community have been
quite active in the open-source field. The early general speech pro-
cessing toolkits, such as HTK [5] and Kaldi [6], had equipped many
researchers and industrial productions before deep learning toolkits
such as Pytorch [7] and Tensorflow [8], while the recently thriving
Pytorch based SpeechBrain [9], Espnet [10], are much more friendly

* Shuai Wang and Yanmin Qian are the corresponding authors. Hongji
Wang, Shuai Wang, Zhengyang Chen and Yanmin Qian were supported in
part by China NSFC projects under Grants 62122050 and 62071288, and in
part by Shanghai Municipal Science and Technology Major Project under
Grant 2021SHZDZX0102.

for new researchers and enables fast prototyping. Unlike the men-
tioned general-purpose speech processing toolkits, Wenet [11, 12]
focuses on end-to-end speech recognition and is designed to bridge
the gap between the research and deployment.

Competitions such as the VoxSRC series [13, 14, 15] and CN-
SRC 2022 significantly promote the related dataset while accord-
ingly inspiring researchers’ creativity and engineering ability, lead-
ing to new SOTA results. However, there is usually a clear gap be-
tween the results reported in the research papers and competition
system descriptions. The main reason might be that tricks and ded-
icated engineering efforts are usually neglected for the former. An-
other problem is that current speaker-related open-source implemen-
tations are research focused, without the support for potential migra-
tion for the production environment.

To this end, we would like to design a speaker embedding learn-
ing toolkit that provides clean and well-structured codes for learning
high-quality embeddings, with good portability to the production
scenarios. We name this open-source toolkit as Wespeaker, where
“We” is inspired by “WeChat”, following “Wenet”, which means
connection and share. The key features/advantages of the Wespeaker
toolkit are as follows,

• Competitive results: Compared with other open-source im-
plementations [9, 16], we achieve very competitive perfor-
mance in all the recipes, including the VoxCeleb, CNCeleb,
and VoxConverse. Many tricks used in the winning systems
of the related competitions are re-implemented in Wespeaker
to boost the system’s performance. We hope Wespeaker can
provide the researchers with a competitive starting point for
their algorithm innovation.

• Light-weight: Wespeaker is designed specifically for deep
speaker embedding learning with clean and simple codes. It
is purely built upon PyTorch and its ecosystem, and has no
dependencies on Kaldi [6].

• Unified IO (UIO): A unified IO system similar to the one
used in Wenet [12] is introduced, providing a unified inter-
face that can elastically support training with a few hours to
millions of hours of data.

• On-the-fly feature preparation: Unlike the traditional fea-
ture preparation procedure, which performs utterance seg-
mentation, data augmentation and feature extraction in an
offline manner, Wespeaker performs all the above stepsIC
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in an on-the-fly manner. Different augmentation methods,
including signal-level ones such as noise corruption, rever-
beration, resampling, speed perturbation, and feature-level
SpecAug [17], are supported.

• Distributed training: Wespeaker supports distributed train-
ing to speed up, where “DistributedDataParallel” in Pytorch
is adopted for multi-node multi-GPU scalability.

• Production ready: All models in Wespeaker can be easily
exported by torch Just In Time (JIT) or as the ONNX format,
which can be easily adopted in the deployment environment.
Sample deployment codes are also provided.

2. WESPEAKER

2.1. Deep speaker embedding learning

For a standard deep speaker embedding learning system, the input
is frame-level features (e.g., filter banks) and the expected output
is segment-level embeddings. Such systems usually consist of sev-
eral frame-level layers to process the input features, followed by a
pooling layer to aggregate the encoded frame-level information into
segment-level representations, and then several (commonly one or
two) segment-level transform layers that map these representations
to speaker labels. Moreover, a class-based or metric-based loss is
adopted to provide a speaker-discriminative supervision signal.

2.2. Overall structure

Figure 1 shows the overall structure and pipeline of Wespeaker. A
standard procedure contains data preparation on the disk, online fea-
ture preparation, and model training. Once the model has converged,
it can be easily exported to a run-time format and ready for further
deployment. The extracted speaker embeddings can then be applied
to downstream tasks, such as speaker verification and diarization.

Fig. 1. The overall structure of Wespeaker

2.3. Data management

2.3.1. Unified IO

Production-scale corpus usually contains tens of thousands of hours
of speech, which are comprised of massive small files. To avoid the
possible consequent out-of-memory (OOM) and slow-training prob-
lems, we introduce the unified IO (UIO) mechanism in Wenet1 to
the data management in Wespeaker. This mechanism was inspired
by the TFRecord format used in Tensorflow [8] and AIStore [18],
which packs each set of small files into a bigger shard via the GNU
tar. As shown in Figure 2, for the large dataset, on-the-fly decom-
pression will be performed to sequentially read the shard files into

1https://wenet.org.cn/wenet/UIO.html

the memory during the training stage. On the other hand, for the
small dataset, Wespeaker supports the traditional data loading func-
tions to load the raw files from the disk directly.

Fig. 2. Unified IO in Wespeaker

2.3.2. On-the-fly feature preparation

Traditional feature preparation for speaker embedding learning is
usually done offline. A typical offline procedure could comprise re-
sampling, data augmentation, data slicing2 and feature extraction.
The offline feature preparation generates the final training examples
and saves them on the disk, which will remain unchanged during the
whole training process3. Wespeaker loads the original wave data and
performs all these steps in an on-the-fly manner, which has two main
advantages: 1) There is no need to save the augmented wave files and
processed features, which significantly saves the disk cost. 2) Online
augmentation makes it possible for the model to see different train-
ing examples at different epochs, this uncertainty and randomness
improve the robustness of the resultant model.

Figure 3 presents the pipeline of online feature preparation in
Wespeaker, which includes the following modules:

• Local shuffle: Construct and shuffle a local buffer each time,
improving the diversity of samples across different epochs.

• Spk2id: Map speaker name into speaker id (from 0 to N − 1,
where N is the total speaker number of the training set).

• Resample: Resample the training data to meet the require-
ment of the sample rate.

• Speed perturb: Change the speed of the training data with a
certain probability.

• Random chunk: Chunk the training data into the same length
randomly. Padding is applied on the short ones.

• Noise/Reverb: Add noise or reverberation augmentation.

• Compute Fbank: Extract filter banks (Fbank) feature from
raw PCM data.

• CMVN: Apply cepstral mean and variance normalization per
utterance.

2Data slicing means cutting each utterance into a fixed length, which eases
the data preparation and speeds up the GPU training. For text-independent
speaker modeling, we assume this context information corruption has a lim-
ited impact on the modeling accuracy.

3We name this “feat” data type and also support it in Wespeaker.
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Fig. 3. The pipeline of online feature preparation in Wespeaker. “same” means that no new attributes are added and only change a specific
attribute value for each sample (except “local shuffle”), compared with the last node. New speakers could be generated by “speed perturb”.

• SpecAug4: Apply Spec-Augmentation [17] on the feature.

• Batch: Organize the training data into fixed-size batches.

2.4. SOTA Model Implementation

Wespeaker currently supports the following models,

• TDNN based x-vector, this is a milestone work that leads the
following deep speaker embedding era.

• ResNet based r-vector and its deeper version, this is the best
system of VoxSRC 2019 [3] and CNSRC 2022 [19].

• ECAPA-TDNN, a modified version of TDNN, this is the
champion system of VoxSRC 2020 [4].

Pooling functions aggregate frame-level features into segment-
level representations, where Wespeaker supports the statistics-based
and attention-based ones. Loss functions are critical to current deep
speaker embedding learning. We support the standard softmax cross-
entropy loss and different margin-based variants [20, 21], such as
A-softmax [22, 23], AM-softmax [24] and AAM-softmax [25].

2.5. Training strategies

2.5.1. Learning Rate and Margin Schedule

Wespeaker implements the learning rate schedule as the composi-
tion of two functions. The variation function of the learning rate
with respect to time as lr(t) can be represented by the product
of warmup function g(t) and exponential descent function h(t):
lr(t) = g(t)h(t). The specific expressions of g(t) and h(t) are:

g(t) =

{
t

Twarm
, t < Twarm.

1, Twarm ≤ t < T .
(1)

h(t) = η0 · exp
( t

T
ln (

ηT
η0

)
)

(2)

where t, Twarm, T represents the current, the warm-up, and the to-
tal iterations, η0 and ηT denotes the initial and final learning rate,
respectively.

The margin scheduler is a three-stage function m(t):

4SpecAug is commonly not compatible with other augmentation types
and thus set to False by default.

m(t) =


0, t < T1.

f(t), T1 ≤ t < T2.

M, T2 ≤ t < T .

(3)

where 0 ≤ T1 ≤ T2 ≤ T , M is the final margin in loss and f(t) is
a linear or logarithmic growth function from 0 to M .

2.5.2. Large Margin Fine-tuning

The large margin fine-tuning strategy was first proposed in [26] and
widely used in speaker verification challenge systems [19, 27, 28]
to further enhance the system’s performance. This strategy is per-
formed as an additional fine-tuning stage based on a well-trained
speaker verification model. In this stage, the model will be trained
with a larger margin and longer training segments relative to the nor-
mal training stage. For Wespeaker implementation, we use AAM
loss with a margin of 0.5 and 6s training segments.

2.6. Back-end Support

For the dominant deep speaker embeddings supervised by large-
margin softmax losses, the simple cosine similarity can serve as a
good scoring back-end. Before the era of large-margin embeddings,
parametric back-ends such as probabilistic linear discriminant anal-
ysis (PLDA) are more widely used. Wespeaker implements both
scoring back-ends5, while an additional score normalization func-
tion [29] is also provided to calibrate the speaker verification scores.

2.7. Deployment

For the models trained in Wespeaker, we can easily export them to
“tensorrt” or “onnx” format, which can be deployed on the Triton In-
ference Server. Detailed information including the instructions and
performance can be found at https://github.com/wenet-
e2e/wespeaker/tree/master/runtime/server/x86_
gpu. Furthermore, since Wespeaker is designed as a general speaker
embedding learner, we also provide the python bindings and deploy
it via standard “pip” packaging, which allows users to trivially use
the pre-trained models for down-stream tasks6.

5The two-covariance version of PLDA is supported currently, more vari-
ants will be added in the future

6https://github.com/wenet-e2e/wespeaker/tree/
master/runtime/binding/python, a toy demo on speaker verifica-
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3. EXPERIMENTS AND RECIPES

As described in the above sections, deep speaker embeddings could
be applied to different downstream tasks, whereas this paper focuses
on speaker verification and speaker diarization.

3.1. Basic setups for speaker embedding learning

For the training setups of all speaker models in the following sec-
tions, we adopted the shard UIO method and applied the same online
data augmentation in the training process. The audios from the MU-
SAN dataset [30] are used as additive noises, while the simulated
room impulse responses (RIRs)7 are used for the reverberation. For
each utterance in the training set, we apply additive-noise or rever-
beration augmentation (not both at the same time) with a probability
of 0.6. For speed perturbation, we randomly change the speed of an
utterance with a ratio of 0.9 or 1.1, and the augmented audios will
be treated as from new speakers due to the pitch shift after the aug-
mentation. Moreover, the ratio of speeds 0.9, 1.0 and 1.1 is set as
1:1:1. The acoustic features are 80-dimensional log Mel-filter banks
(Fbank) with a 10ms frameshift and a 25ms frame window. All train-
ing data are chunked into 200 frames and CMN (without CVN) is
also applied. Note that SpecAug is not used in any experiment.

3.2. Speaker Verification

For the speaker verification task, recipes are constructed based on the
VoxCeleb and CNCeleb datasets, which are very popular and used by
many researchers, thanks to the promotion by related competitions.
All the results exhibited here are obtained after large margin fine-
tuning, with cosine scoring and AS-Norm applied.8.

3.2.1. VoxCeleb

VoxCeleb dataset [31] has been released by Oxford and become one
of the most popular text-independent speaker recognition datasets.
Following the segmentation of the VoxSRC challenge, we only use
the VoxCeleb2 dev as the training set, which contains more than one
million audios from 5994 speakers.

Table 1. Results achieved using different architectures on the Vox-
Celeb dataset, “dev” of part 2 is used as the training set

Architecture voxceleb1 O voxceleb1 E voxceleb1 H
EER(%) minDCF EER(%) minDCF EER(%) minDCF

TDNN 1.590 0.166 1.641 0.170 2.726 0.248

ECAPA-TDNN ([4]) 0.870 0.107 1.120 0.132 2.120 0.210

ECAPA-TDNN 0.728 0.099 0.929 0.100 1.721 0.169

ResNet34 ([3]) 1.310 0.154 1.380 0.163 2.500 0.233

ResNet34 0.723 0.069 0.867 0.097 1.532 0.146

ResNet221 0.505 0.045 0.676 0.067 1.213 0.111

ResNet293 0.447 0.043 0.657 0.066 1.183 0.111

The results in Table 1 show that our implementation achieves
very competitive numbers compared with the original ones in the
literature. Scaling the ResNet deeper can further boost the perfor-
mance significantly.

tion can be found at https://huggingface.co/spaces/wenet/
wespeaker_demo

7https://www.openslr.org/28
8Due to the limit of paper length, we only list the main results in the

following experiments. More detailed results including ablation study, PLDA
results, etc. can be found in the corresponding recipes online.

3.2.2. CNCeleb

For the CNCeleb recipe, we combine the 1996 speakers from
CNCeleb2 and 797 speakers from the CNCeleb1 dev set as the
training set, and evaluate on the CNCeleb1 test set. Although the
collection procedure of the CNCeleb dataset [32] is similar to the
one of VoxCeleb, many recordings are shorter than 2 seconds in
this dataset. Therefore, in the data preparation, we first concatenate
the short audios from the same genre and same speaker to construct
audios longer than 5 seconds.

Table 2. Results on the CNCeleb evaluation set
Architecture EER(%) minDCF

TDNN 8.960 0.446

ECAPA-TDNN 7.395 0.372

ResNet34 ([16]) 9.141 0.463

ResNet34 6.492 0.354

ResNet221 5.655 0.330

The results obtained using different backbones are exhibited in
Table 2. Unlike the VoxCeleb evaluation protocol, CNCeleb as-
sumes each speaker is enrolled with multiple sessions. Embeddings
for all enrollment sessions for each speaker are extracted and aver-
aged to obtain the final enrollment embedding, which brings consid-
erable performance improvement in our experiments.

3.3. Speaker Diarization

VoxConverse dataset [33] was released for the diarization track in
VoxSRC 2020, which is a “in the wild” dataset collected from the
Youtube Videos. This recipe shows how to leverage a pre-trained
speaker model for the speaker diarization task. The pre-trained
ResNet34 model is used for speaker embedding extraction and spec-
tral clustering is implemented specifically for this task. As illustrated
in Table 3, we achieve strong results on the VoxConverse dev dataset,
using oracle speech activity detection (SAD) annotations or system
SAD results from Silero-VAD [34] pre-trained model, proving the
effectiveness of deep speaker embedding learning in Wespeaker.

Table 3. Results on the VoxConverse dev set
System MISS(%) FA(%) SC(%) DER(%)

[33] (system SAD) 2.4 2.3 3.0 7.7

Wespeaker (system SAD) 4.4 0.6 2.1 7.1

Wespeaker (oracle SAD) 2.3 0.0 1.9 4.2

4. CONCLUSION AND FUTURE WORK

In this paper, we introduced Wespeaker, a research and produc-
tion oriented speaker embedding learning toolkit. Wespeaker has a
lightweight code base and focuses on high-quality speaker embed-
ding learning, achieving very competitive results on several datasets.
Despite the friendliness for researchers, CPU-and GPU- compatible
deployment codes are also integrated to bridge the gap between the
research and production systems.

For the next release, we will focus on the following key points:
1) Self-supervised learning (SSL) for speaker embedding learning.
2) Small footprint solutions for resource-limited scenarios. 3) Con-
tinually adding SOTA speaker models (network architectures and
scoring back-ends) and optimizing the training strategies.
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