
The X-Lance Speaker Diarization System for the Conversational Short-phrase
Speaker Diarization Challenge 2022

Tao Liu1, Xu Xiang2, Zhengyang Chen1, Bing Han1, Kai Yu1,∗, Yanmin Qian1,∗

1MoE Key Lab of Artificial Intelligence, AI Institute, X-LANCE Lab, Shanghai Jiao Tong University
2AISpeech Ltd, Suzhou China

{liutaw, zhengyang.chen, hanbing97, kai.yu, yanminqian}@sjtu.edu.cn,
{xu.xiang}@aispeech.com

Abstract
This paper describes X-Lance Speaker Diarization System sub-
mitted to the Conversational Short-phrase Speaker Diarization
Challenge. The system outputs the ensemble results of the
four modules: self-attentive-based VAD, uniform segmentation,
ECAPA-TDNN-based embedding extractor, and spectral clus-
tering. We evaluated our system on the Conversational Short-
phrase Speaker Diarization (CSSD) dataset, which is based on
MagicData-RAMC and contains plenty of conversational short-
phrase segments. Besides being different from other diariza-
tion challenges, the challenge proposes a metric called Con-
versational Diarization Error Rate (CDER), which focuses on
evaluating short segments. In this paper, we will analyze this
metric and conduct extensive experiments. Finally, our system
achieves CDER of 13.2% and 8.0% in the CSSD dev and un-
seen CSSD eval set, respectively.

Index Terms: speaker diarization, conversational, short-phrase

1. Introduction
Based on the short phase containing semantic information and
current metric[1, 2] unable to measure short-phase segments,
CSSD proposes a CDER metric and a short-phase dataset.
This technical report describes the X-Lance system submit-
ted to the Conversational Short-phrase Speaker Diarization
Challenge[3, 4]. We adopt a modulized speaker diarization
pipeline, also called the clustering-based method. The speaker
diarization pipeline contains VAD, segmentation, embedding
extractor, and clustering. In this paper, we organize our pa-
per in the following order. First, we introduce the corpus used
in our system. Second, we make a brief overview and analysis
of CSSD. Third, detailed model configurations on each module
are explained. Finally, we make conclusions and analyses on
the result.

2. Data Resources
We will briefly introduce the corpus allowed to use in this chal-
lenge.

• VoxCeleb1 [5] contains over 100,000 utterances for
1,251 celebrities, extracted from videos uploaded to
YouTube.

• VoxCeleb2 [6] contains over 1 million utterances for
over 6,000 celebrities, also extracted from videos up-
loaded to YouTube.

∗Kai Yu and Yanmin Qian are the corresponding authors.

• CNCeleb1 [7] specially focuses on Chinese celebrities,
and contains more than 130,000 utterances from 1,000
persons.

• CNCeleb2 [8] publishes a new large-scale multi-genre
corpus, called CN-Celeb2. CN-Celeb2 shares the same
11 genres as CN-Celeb1, but the data size is much larger.
It contains over 520,000 utterances from 2,000 Chinese
celebrities.

• MagicData-RAMC[3] is a rich annotated mandarin con-
versational speech dataset containing 180 hours of dialog
speech. The dataset is divided into 149.65 hours of the
training set, 9.89 hours of the development set, and 20.64
hours of the test set.

• CSSD dataset[4] is a conversational short-phrase speaker
diarization. The dataset is based on MagicData-
RAMC[3]. Before the final evaluating stage, the dataset
is also split into three datasets, including training, dev,
and test, which is directly converted from the ASR
transcript of MagicData-RAMC. In the final evaluating
state, the CSSD dataset provides an additional evaluation
set for testing, which contains a 20-hour conversational
speech test with careful annotations. The dataset splits
and notations used in this paper are in Table 1.

• MUSAN [9] and RIRs[10]. MUSAN is a publicly
available corpus comprising music, speech, and noise.
RIRs[10] is a room impulse responses. MUSAN and
RIRs are used as data augmentation in our speaker em-
bedding module.

Table 1: A brief overview and notions about the CSSD dataset
that is based on MagicData-RAMC. splits: Official CSSD
dataset split. notation: Notation used in this paper. dura-
tion: The total audio duration of the dataset split. speech: The
speech occupation to the duration. Specifically, the eval split is
unseen for participants before the final evaluation.

dataset splits notation duration speech [%]

CSSD [11]

train CSSDtrain 149h39m 83.85
dev CSSDdev 9h53m 82.79
test CSSDtest 20h38m 82.72
eval∗ CSSDeval 19h12m 72.43

3. CSSD Analysis
Before diving into our speaker diarization system, we briefly
introduce the main features of the CSSD dataset and evaluation
metric proposed in this challenge in this section.
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CSSD dataset[4] is a conversational short-phrase speaker
diarization dataset. Different from the previous speaker diariza-
tion dataset, CSSD has three features. First, CSSD focuses
on daily conversation, which contains plenty of spontaneous
speech, some even not recognizable. Second, the CSSD dataset
contains a large amount of short-phrase speeches. Third, differ-
ent from widely-used diarization metric, DER[1] and JER[2],
CSSD proposes a CDER for the final diarization evaluation.
CDER, short for conversational diarization error rate, is des-
ignated for better evaluating short segments, where the result
of DER and JER can not measure well. The pipeline in CSSD
mainly contains merging, optimal mapping, and IoU matching.
The merging operation is to merge adjacent segments with the
same speakers. The optimal mapping step is the same as DER
and JER, and the Hungarian algorithm is adopted here. The last
step, IoU matching, is to count matching segments between the
reference and the hypothesis. The matching stands when the
IoU of a reference and a hypothesis is under a threshold(0.5 is
used in this challenge). Si and Sj represents two segments with
speaker id i and j. Those two segments match if and only if
Equation. 1 holds.

Intersection (Si, Sj)

Union (Si, Sj)
⩾ IoU threshold (1)

Other segments are all categorized into unmatched seg-
ments. We use notation unmatched k to represent unmatched
segments k. The final CDER can be calculated with Equation.
2. # unmatched and # reference represent the total number of
unmatched k and the total number of references, respectively.

CDER =
# unmatched
# reference

(2)

After analyzing the metric, we get two conclusions. First,
because of merging and IoU operation, CDER is less sensitive
to segment boundaries, especially when the segment is long.
Second, CDER is susceptible to speaker turns, especially in
speaker confusion.

4. Detailed Model Configuration
4.1. Experiment setups

4.1.1. Dataset setups

CDER dev is the development of CSSD. CDER eval, different
from CDER test, is the final test set unseen before the chal-
lenge ends. Due to the original CSSD having G00000000,
which represents unknown contents, we remove those segments
on CDER dev before we calculate the CDER, and there is no
problem with CDER eval. The occupation of G00000000 is
2.67% of the whole CSSD dataset. So a slight mismatch exists
between CDER dev and CDER eval, and the baseline result is
slightly different from the original baseline result. Besides, for
simplicity, CDER test is similar to CDER dev, and we do not
report CDER test in our paper.

4.1.2. Ablation study setups

We make a grid search to get the best parameter for each mod-
ule. But, for simplicity, we only report the ablation study result
on a specific condition. For example, when we make the abla-
tion study on the VAD threshold, the parameter for other mod-
ules, like segmentation, embedding extractors, and clustering,
is the best-tuned result for each module.

4.2. VAD

The purpose of voice activity detectors(VAD) identifies speech
and non-speech segments. From the Table 1, the dataset con-
tains around 20% non-speech duration and VAD is important in
this dataset. We adopt self-attentive VAD [12] for VAD, which
has three main components: embedding layer and multi-head
attention layer. Before feeding into the embedding layer, audio
is converted to log-mel with 80 mel bins. The key component
of the first embedding layer is a sinusoidal positional encoding
layer which adds positional information to audio embedding.
Then those embeddings are fed into a multi-head attention layer.
In the experiment, we only use one head and two attention lay-
ers. So the final main architecture in the multi-head attention
layer is a two-layer self-attention module. Finally, the cross-
entropy loss is adopted in the training stage, and a threshold is
set in the inference stage. By combining the positional coding
module and self-attention module, we can better model short
and long dependency, which is quite important in the CSSD
dataset.

The experiment result on VAD is shown in Table. 2. Base-
line VAD1 uses the TDNN-Stats SAD model, trained on Chime-
6[13] data. Different from Baseline VAD, we train our VAD
model solely on the CSSD train set without data augmentation.
The VAD label is directly converted from the ASR transcript by
only keeping active speech duration(G00000000 is kept here)
and removing speaker identities. The experiment results are in
Table. 2 shows that our VAD model reduces the false alarm
rate from 12.53% to 6.47%, with only a slight worse in miss
detection rate.

Table 2: The false alarm (FA), miss detection (MISS) and detec-
tion error rate of the VAD model on CSSD dev set.

Method FA [%] MS [%] Detection Error [%]
Baseline VAD [4] 12.53 0.20 12.73
Self-attentive VAD [12] 6.47 1.33 7.80

On the VAD module, we also test several different VAD
thresholds. From Table 3, we find that a higher VAD thresh-
old can achieve a better result, and we use VAD threshold: 0.9
in our system. A higher VAD threshold reduces false alarms,
leading to lower speaker confusion.

Table 3: Ablation Study on VAD threshold

VAD threshold FA [%] MS [%] Detection Error [%] CDER dev [%] CDER eval [%]
0.5 6.47 1.34 7.81 11.7 11.1
0.6 4.86 2.57 7.44 11.7 10.7
0.7 3.50 4.79 8.29 12.3 10.3
0.8 2.34 9.06 11.4 12.6 9.7
0.9 1.36 15.61 16.97 13.2 8.0

4.3. Segmentation

Segmentation divides the speech segment, detected by VAD,
into smaller segments. The duration of smaller segments is
not fixed, and two hypotheses exist on those smaller segments.
First, the segment should smaller enough so that there is only
one person speaking in the segment. Second, there is no over-
lapped speech in the segments. Due to there being no overlap in
the CSSD dataset, the second hypothesis stands. For the first hy-
pothesis, the duration is a hyperparameter for our system, which
is the trade-off between the time resolution and the accuracy of

1https://github.com/MagicHub-io/MagicData-RAMC
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the embedding extractor. In our system, we find a sliding win-
dow of two seconds without overlap step is the optimal parame-
ter in the CSSD dataset. If not specified, all experiments in this
paper use this type of sliding strategy.

4.4. Embedding extractors

The embedding extractor extracts speaker-discriminative rep-
resentation. The robust speaker embedding has higher inter-
speaker distance and lower intra-speaker distance, typically re-
ducing speaker confusion in speaker diarization. DNN-based
speaker representations, like x-vector [14], can better capture
speaker discriminative characteristics compared to traditional
methods like GMM-UBM. ECAPA-TDNN [15] is an extended
version of Time Delay Neural Network (TDNN) module. In our
system, we adopt ECAPA-TDNN to extract speaker embedding.

In this challenge, we use VoxCeleb [5, 6] and CNCeleb [7,
8] to train our model. We use an online data augmentation
strategy with noises and reverberation sampled from MUSAN
[9] and RIRs [10] respectively. The training loss is the addi-
tive angular margin (AAM) softmax loss, and the margin is set
to 0.2. Other unmentioned setups or parameters follows [16].
In the first training stage, we train our model on VoxCeleb2,
CNCeleb1, and CNCeleb2, with 8994 speaker numbers in total.
Then we evaluate on Vox-O, and the result is shown in Table 4.
In the final evaluation stage, to get a better embedding extractor
result, we train our model on all available speakers, with 10365
speaker numbers in total. The training strategy is the same as
the previous training stage, and we use the result of the epoch
186.

Table 4: The EER and minDCF for speaker embedding extrac-
tors via ECAPA-TDNN trained on VoxCeleb2, CNCeleb1, and
CNCeleb2 (8994 speakers in total)

Test set EER [%] minDCR [%]
Vox-O 0.97 0.0757

However, the discriminative ability of the speaker embed-
ding will weaken as the input speech duration decreases. So,
we conduct an ablation study to find the duration on which the
embedding extractor fails. We set several skip duration param-
eters, which means segments less than such duration will skip
without calculating the embedding to verify the best result. Ta-
ble. 5 shows the ablation study for our experiment. The skip
duration is set to 0.93 seconds, which achieves the final best
CDER result on the evaluation set.

Table 5: Ablation study on skip duration for embedding extrac-
tor.

Skip Duration CDER dev [%] CDER eval [%]
0.6 14.2 10.4
0.7 12.9 9.7
0.8 13.2 8.9
0.9 13.4 8.2

0.93 13.2 8.0

4.5. Clustering

The clustering module is to cluster homogeneous segments with
the same speaker. Our system tests two clustering methods:
agglomerative hierarchical clustering[17](AHC) and spectral
clustering[18](SC). We set two as the cluster number for AHC

and SC because the speaker number is fixed to two. Other pa-
rameters are adjusted on CSSD dev.

AHC. AHC is a bottom-up clustering method by iteratively
merging the sample group with the shortest similarity. We adopt
the cosine similarity metric to measure the distance, and the
linkage is complete.

SC. The spectral cluster aims to expand the distance of inter
graph group as large as possible and reduce the distance of the
internal node in the same group as small as possible. A Laplace
matrix is built to solve this problem. In our system, we use un-
normalized graph Laplacian and construct the affinity matrix by
cosine similarities. We only keep top 15 value in affinity matrix.
Speakers are divided by the maximum gap of eigenvalue.

Table 6: Ablation study on clustering methods.

Clustering method CDER dev [%] CDER eval [%]
AHC[17] 14.4 15.9
SC[18] 13.2 8.0

Table 7: Final results of our methods compared with the base-
line.

Clustering method CDER dev [%] CDER eval [%]
VBx (Baseline) [19] 21.6 † 26.5 ‡

ours 13.2 8.0

5. Results and analysis
Due to EEND[20] requiring large amounts of data and the cor-
pus in this challenge is constrained, we utilize a clustering-
based speaker diarization pipeline. The pipeline is a modulized
pipeline, where modules are optimized dependently. We care-
fully tune the parameters in our system to achieve the best re-
sult. Compared with the baseline system, using TDNN-based
VAD, x-vector-based embedding and AHC-VBx-based cluster-
ing, we make the following attempts. In the VAD module, we
adopt a self-attentive-based module, achieving 4.93% absolute
improvement on CSSD dev set compared with the baseline. To
best improve the embedding extractor performance, we use all
the speakers permitted in this challenge to train a speaker dis-
criminative embedding extractor via ECAPA-TDNN, achieving
a SOTA result on the speaker verification task. In the cluster-
ing stage, we test two classic clustering methods, agglomerative
hierarchical clustering and spectral clustering, on the dataset.
Experiment result in Table 7 shows that our system is superior
to the baseline system. Besides, our architecture is simple and
without fusing module, which is convenient to reproduce.

6. Conclusions
In this paper, we reported the systems developed by the X-
Lance team for the Conversational Short-phrase Speaker Di-

† The CSSD dev result of the baseline in this table is slight differ-
ent from the original baseline: 26.9 because we remove the ambiguous
identity from the original transcript. The reason is illustrated in Section
4.1.1.

‡ The CSSD test result of the baseline in this table is generated
by the baseline code repo (https://github.com/MagicHub-io/MagicData-
RAMC/tree/main/sd) with the original parameters.
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arization Challenge. We adopt a clustering-based speaker di-
arization pipeline including several modules: self-attentive-
based VAD, segmentation, ECAPA-TDNN-based embedding
extractor, and spectral clustering. To better solve short-phrase
settings, we conduct extensive experiments to get the optimal
parameters on the dataset. Without any fusion strategy, our best
submission on the CSSD evaluation set is 8.0% of CDER.
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