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Abstract
Data augmentation (DA) is an effective strategy to help build-
ing robust systems with good generalization ability. In the em-
bedding based speaker verification, data augmentation could
be applied to either the front-end embedding extractor or the
back-end PLDA. Unlike the conventional back-end augmenta-
tion method which adds noises to the raw audios and then ex-
tracts augmented embeddings, in this work, we proposed a noise
distribution matching (NDM) based algorithm in the speaker
embedding space. The basic idea is to use distributions such as
Gaussian to model the difference between the clean and original
augmented noisy speaker embeddings. Experiments are carried
out on SRE16 dataset, where consistent performance improve-
ment could be obtained by the novel NDM. Furthermore, we
found that the proposed NDM could be robustly estimated us-
ing only a small amount of training data, which saves time and
disk cost compared to the conventional augmentation method.
Index Terms: speaker embedding, data augmentation, distribu-
tion matching, speaker verification

1. Introduction
Speaker verification (SV) aims to verify a user’s claimed iden-
tity, given his or her speech segment. Recently, the deep
neural network (DNN) based speaker embedding learning has
boosted the performance of speaker verification task and be-
came the dominant approach [1, 2]. Researchers have investi-
gated different architectures [3, 4, 5], different loss functions
[6, 7, 8, 9, 10, 11, 12, 13], and different model compensa-
tion methods [14] to further improve the system’s performance.
Currently, the x-vector style deep speaker embeddings are the
dominating approach in the SV tasks, which shows great su-
periority to conventional methods such as i-vector [15] and d-
vector [1]. The key idea behind x-vector [4] or r-vector [5] is the
segment-level optimization in the training stage, which is con-
sistent with the evaluation stage. A typical speaker embedding
based SV system consists of two parts, the embedding extrac-
tor from which we extract speaker embeddings and the scoring
back-end which makes the final decision. In most cases, we
use the probabilistic linear discriminant analysis (PLDA) as the
scoring back-end.

Despite the great advancement of SV research thanks to the
deep speaker embedding learning, building a usable SV system
for real-world applications still faces challenges. The first chal-
lenge is the lack of data. To effectively train deep models in
a supervised manner, a vast amount of labeled data is needed,
which is not always available. The second challenge is that the
environment could be very complicated, where different kinds
of noises could easily corrupt the speech. Data augmentation
(DA) is a prevalent method to deal with both challenges. The

basic idea of DA is to increase the quantity and diversity of the
training data so that we could train a more robust system with
better generalization ability. It would also be very effective to
augment the data with the noises in the target application sce-
narios if it’s available.

In terms of speaker embedding learning, data augmentation
could be applied to either the front-end embedding extractor [4]
or the back-end PLDA [4, 16, 17]. For the front-end augmen-
tation, we usually manually add noises or reverberation to the
clean audios to generate the augmented version, which would
be further used to train the speaker embedding extractors. For
the back-end augmentation which prepares the data for PLDA
training [4], the conventional way is extract noisy embeddings
from the augmented audios. In the literature [16, 17], deep gen-
erative models such as generative adversarial (GAN) [18] and
variational auto-encoder (VAE) [19] are used to describe the
distribution of noisy speaker embeddings, which directly aug-
ment the speaker embeddings for the back-end PLDA.

In this work, instead of using complex deep generative
models to learn the distribution of the noisy embeddings, we
proposed a simple but effective back-end augmentation method,
which is named as noise distribution matching (NDM). In the
proposed NDM augmentation strategy, we assume the differ-
ence (the pure noise part) between the clean and noisy embed-
dings could be modeled by simple distributions such as Gaus-
sian. After estimating the parameters of the noise distribution,
we sample noise from the distribution and directly add it to the
clean embedding to generate a noisy embedding. Experiments
carried out on the SRE16 [20] dataset show that, despite its
simpleness, our proposed NDM based back-end augmentation
method could achieve impressive improvement compared to the
baseline with no PLDA augmentation and outperforms the con-
ventional manual augmentation method. Furthermore, we show
that the NDM could be robustly estimated using a small amount
of training data, which saves both time and disk.

2. Embedding based speaker verification
In this section, we will briefly go through the embedding based
speaker verification. Two different front-end embeddings, and
the back-end PLDA model will be introduced.

2.1. Front-end embeddings

2.2. x-vector

In the x-vector framework, a time-delay neural network
(TDNN) is trained to discriminate different speakers in the
training set. Acoustic features first go through several frame-
level layers, after which a statistics pooling layer is adopted
to aggregate the frame-level deep features into a segment-level
representation. One or more embedding layers can be incorpo-
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rated in the segment-level layers to extract speaker embeddings,
and more details could be referred to in [4].

2.3. r-vector

Besides the TDNN architecture, ResNet also showed impres-
sive results for speaker embedding learning. Unlike the 1D
convolution used in TDNN, ResNet adopts 2D convolution as
the main computation paradigm. Following the terminology in
[5], we denote the embeddings extracted from the ResNet as
r-vector. More details about this model could be found in [5].

2.4. Back-end PLDA

Probabilistic Linear Discriminant Analysis (PLDA) is a popu-
lar scoring back-end for embedding based speaker verification
[4, 21, 15]. The PLDA model assumes embeddings are gener-
ated following a probabilistic model, where the log-likelihood
ratio of target and non-target hypothesis could be computed
for a given recording as the scores. In the SRE16 evaluation
condition, to utilize the provided unlabeled in-domain data, the
simple unsupervised PLDA adaptation method implemented in
Kaldi is used. The basic idea is to take the unlabeled embed-
dings from the target domain and use their mean and variance
to adapt the PLDA matrices, and implementation details can be
referred to in “ivector-adapt-plda.cc” in Kaldi.

3. Embedding augmentation with noise
distribution matching

As mentioned in Sec. 1, the augmentation for the speaker em-
bedding learning could be either applied to the front-end ex-
tractor or the back-end PLDA. The conventional front-end data
augmentation method is to manually add noise or reverbera-
tion to the raw audios. For instance, in the Kaldi recipe [22]
for speaker verification, noises from the MUSAN dataset are
added to the original audios to generate the corrupted version,
and both data are pooled together for the speaker embedding
extractor training. For the back-end augmentation, the simplest
way is to extract noisy embeddings from the augmented audios.
In previous works[16, 17], the authors investigated to use deep
generative models to learn the distribution of noisy embeddings
and directly generate sample new speaker embeddings from the
learned distribution. In this work, instead of directly model
the distribution of the noisy embeddings, we assume a “noisy”
speaker embedding enoisy (extracted from augmented audio)
can be decomposed into a clean speaker embedding eclean (ex-
tracted from the original audio) and a residual noise term enoise
in equation 1, in which the ⊕ represents the combination oper-
ation.

enoisy = eclean ⊕ enoise (1)

Based on this assumption, we introduce a novel noise distri-
bution matching (NDM) based back-end augmentation method,
which aims to directly learn a distribution to model the dif-
ference between the paired eclean and enoisy , i.e. the noise
term enoise. The NDM based back-end augmentation pipeline
is shown in Fig. 1. We first extract the parallel “clean” and
“noisy” embeddings from the original and augmented audios,
respectively. Then the difference between the paired embed-
dings is calculated by a simple element-wise subtract operation,
which would be used to estimate the distribution of the resid-
ual noise term1. Here, we tried several common distributions,
which would be discussed in Section 3.1. After estimating the
distribution of enoise, we could directly generate “noisy” em-

1Here, we use subtraction as the decomposition for simplicity, more
complicated methods will be investigated in future work

bedding by simply sampling a noise embedding from the esti-
mated distribution and adding it to the eclean.

Figure 1: NDM based embedding augmentation

3.1. Noise Distributions

To implement NDM in an elegant way, we hypothesize that

1. Different dimensions of the noise term enoise are i.i.d
(independent and identically distributed), thus we could
focus on every single dimension.

2. Each dimension of enoise could be modeled by simple
distributions such as univariate Gaussian.

Three different distributions, Uniform (U = µ(a < x <

b)), Laplace (exponential, L = 1
2b

exp(− |x−µ|
b

)) and Gaussian

(normal, N = 1

σ
√
2π
e−

1
2 (

x−µ
σ )

2

) are investigated in the pro-
posed NDM framework. We will first validate the performance
achieved by each distribution and select the best one for further
experiments.

3.2. Estimation

The estimation of the parameters of the distributions follows the
standard Maximum likelihood Estimation (MLE), which would
not be repeated. Here are some more details of the training data
for this estimation. As mentioned above and shown in Fig. 1,
the noise distribution of enoise depends on the original noise
added to the raw audios. In our experiments, we follow the
standard manual augmentation method in the Kaldi recipe [23],
where four different noise types are considered2. We could ei-
ther pool all four types of noises together and estimate one total
distribution, or we can also treat every noise type independently
and estimate a distribution for each of them. Considering the
simpleness of the chosen distribution, the latter strategy is more
reasonable and indeed outperforms the former in our experi-
ments (Sec.5.1). Thus we are able to model each noise type
independently.

When preparing the parallel embedding pairs for the NDM
estimation, although we could add noises to the original audios
and extract the corresponding noisy embeddings for all of them,
the process of both adding noise and extracting noisy embed-
ding could be disk- and time-consuming. It would be interesting
to see whether we could still make a robust estimation when we

2Noise, Music, Babble from the MUSAN dataset and Reverberation
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only use a small subset of the whole dataset, and related exper-
iments and analysis could be found in Sec.5.3. We found that
only with less than 10% of the training data, the good perfor-
mance could still be maintained with the newly proposed noise
distribution matching approach, which is another big advantage
of the proposed NDM.

4. Experimental setup
4.1. Dataset

For training, following the settings in [16], SWBD portion and
SRE portion are used. The SWBD portion consists of Switch-
board phases 2,3 and Switchboard Cellular 1,2, while the SRE
portion contains the NIST SRE 2004-2010. For evaluation, the
standard SRE16 evaluation set is used, which consists of Taga-
log and Cantonese conversational telephone speech. The unla-
belled development set (SRE16 major) is provided for unsuper-
vised PLDA adaptation.

Speaker embedding extractors are trained on both SWBD
and SRE portions, while the PLDA training and NDM-based
embedding augmentation are carried out only on the SRE por-
tion. When training the extractors, speakers with a small
amount of speech are filtered out, resulting in a training list
of 3419 speakers. In our experiments, the data preparation fol-
lows the Kaldi recipe [22, 23] with two different settings: 1) 40-
dimensional Fbanks are used instead of MFCC. 2) Besides the
augmented extractor, we also included the clean version which
is only trained on the original audios.

4.2. System Configuration

4.2.1. Embedding extractor

• x-vector: We use the standard x-vector framework, which
consists of 5 frame-level time-delay layers, a statistic pooling
layer and 2 segment-level embedding layers. The speaker
embeddings are extracted from the first embedding layer, and
the dimension is set to 512.

• r-vector: The same structure described in [5] is adopted in
this work, which is a 34-layer ResNet, and the dimension of
r-vector is set to 256. More details could be referred to in [5].

Both models are optimized using SGD with a momentum
set to 1e-4. The learning rate is set to 0.1 initially and gradually
reduced to 1e-6.

4.2.2. Scoring strategy

Standard Kaldi SRE16 scoring strategy [22] is adopted. LDA is
first applied to reduce speaker embeddings to 150 and 128 di-
mensions for x-vector, r-vector respectively. PLDA is adopted
as the scoring back-end. We trained the PLDA using 50644
clean embeddings. And when we augmented the training set
for PLDA, another 50644 “noisy” embeddings are added. Be-
sides, the unsupervised PLDA adaptation mentioned in Sec.2.4
is applied to compensate for the domain mismatch.

5. Results and analysis
5.1. Distribution Selection for Noise Distribution Matching

In this section, we will explore the impact of different distri-
bution functions for estimating the enoise. Three kinds of dis-
tribution introduced in section 3.1 will be investigated. As a
validation experiment, we chose the basic setup, i.e., clean ex-
tractors trained on the original audios. The augmented audios
are not used for the extractor training, but only for noisy em-
bedding extraction. Following the NDM approach described in
Sec.3, we estimate the noise distribution and sample the noise

term from it for embedding augmentation. The results achieved
by different distribution types can be found in Table. 1.

Table 1: Performance (EER [%]) comparison using differ-
ent distribution functions for noise distribution matching with
TDNN x-vector model.

Distribution

Model

TDNN Resnet

Tagalog Cantonese Tagalog Cantonese
- 15.34 5.81 13.26 4.21

Laplace 15.61 6.11 13.72 5.36
Uniform 14.46 5.35 13.11 4.04
Normal 13.48 4.75 12.05 3.60

As shown in Table 1, the proposed NDM using uniform and
normal distributions both can get obvious improvements, and
the normal distribution achieves the best performance, which
will be used for noise modeling in the following experiments.

5.2. NDM results on SRE16

Since the proposed NDM is a back-end augmentation method,
we would like to examine its effectiveness with/without the con-
ventional front-end augmentation method.

5.2.1. Results without front-end augmentation

In this section, we trained our embedding extractor using the
original audio data. The augmentation is only applied to the em-
beddings for training back-end PLDA. The results are shown in
the upper part of Table 2. For the PLDA augmentation, “Man-
ual” means that the conventional method to extract noisy em-
beddings from the augmented audios [4]. “NDM” denotes our
proposed method with Gaussian as the noise distribution, while
“Combine” denotes pooling both the embeddings generated by
Manual and NDM (half from each). In all augmentation meth-
ods, the clean embeddings are always combined with the aug-
mented ones, and the total amount of the pooled embeddings
are kept the same for a fair comparison.

Results show that both the manual and the proposed NDM
based back-end augmentation methods could achieve notice-
able performance improvement compared to the baseline sys-
tem with no PLDA augmentation. NDM exceeds the man-
ual augmentation method on all test cases when using EER as
the evaluation metric. Notably, when we combine the embed-
dings generated by two augmentation methods, the performance
could be further enhanced in most cases.

5.2.2. Results with front-end augmentation

Here, we trained our embedding extractors using augmented
data by manually adding noises following the Kaldi recipe
[22]. The same back-end augmentation methods as the ones in
Sec.5.2.1 are used. Results are shown at the bottom part of Ta-
ble 2, where we can find all the systems outperform their coun-
terpart with no front-end augmentation. Therefore, the augmen-
tations on the front-end extractor and the back-end PLDA are
both important and they can complement each other. The per-
formance improvement obtained by individual stages could be
further boosted by combining the two methods. Based on the
augmented extractor, our proposed NDM still outperforms the
manual method, and the combined mode leads to further im-
provement, which is consistent with the findings in Sec.5.2.1.
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Table 2: Performance comparison of different data augmentation methods for different models on SRE16 (with PLDA adaptation). The
best and second best results are marked as bold or underlined

Augmentation TDNN Resnet

Extractor PLDA Tagalog Cantonese Tagalog Cantonese
EER(%) minCprimary EER(%) minCprimary EER(%) minCprimary EER(%) minCprimary

No

No 15.34 0.8612 5.81 0.5028 13.26 0.8486 4.21 0.3950
Manual 13.87 0.8276 5.08 0.4729 12.14 0.8082 3.81 0.3682
NDM 13.48 0.8581 4.75 0.4476 12.05 0.8654 3.60 0.3712
Combine 13.02 0.8581 4.53 0.4491 11.86 0.8741 3.57 0.3764

Manual

No 13.35 0.7983 4.62 0.3992 10.74 0.7729 3.38 0.3429
Manual 12.87 0.7729 4.14 0.3791 10.38 0.7819 3.29 0.3336
NDM 11.86 0.7866 3.65 0.3516 10.25 0.8071 2.92 0.3171
Combine 11.04 0.7874 3.44 0.3452 9.89 0.8047 2.80 0.3127

5.3. Evaluation on Data Sizes for Distribution Estimation

As mentioned in Sec.3.2, it would be more appealing if we
could use a small amount of data for the NDM estimation. We
chose the best system, r-vector with front-end augmentation, for
illustration. Results for NDM with different amounts of training
data are shown in Fig.2.

Figure 2: Performance comparison of different training data
sizes used in the NDM estimation. Green points denote the ratio
of the whole training data used in our experiments, correspond-
ing to 0.05, 0.1, 0.2, 0.25, 0.5, 0.75, 1.0 on the x-axis.

The results shown in Figure 2 reveal that the NDM estima-
tion is robust to the size of the training data, which means we
could only prepare a small amount of training data to estimate
a good noise distribution, which could save both time and disk.

5.4. Visualization of the Embeddings Generated by NDM

In order to better understand this noisy distribution matching
method, real “noisy” embedding samples and generated “noisy”
embedding samples using our proposed method are visualized
using t-SNE [24] and plotted in Figure 3.

The illustration shows that the generated “noisy” embed-
dings preserve the speaker identity to a good extent, which is
essential for the supervised trained PLDA. Besides, the real
“noisy” embedding samples and generated “noisy” embedding
samples follow a similar distribution, which shows that the shift
caused by noises added to the raw audios could be effectively
captured by our newly proposed NDM method.

6. Conclusions
In this paper, we proposed a novel back-end embedding aug-
mentation method for embedding based speaker verification,
which is termed as Noise Distribution Matching (NDM). Instead
of adding noises to the raw audios and then extract augmented
embeddings, NDM first estimates a Gaussian distribution to

Figure 3: T-SNE visualization of “noisy” embeddings generated
by the manual mode (darker point) and NDM (lighter point) for
5 speakers. Points in the same color are from the same speaker.

model the difference between the clean and original augmented
noisy speaker embeddings, and then generates new noisy em-
beddings by adding the noises sampled from the estimated dis-
tribution to the clean speaker embeddings. Experiments on
SRE16 show that the novel NDM exhibits better results than
the conventional manual back-end augmentation methods. Our
best system achieves EERs of 9.89% and 2.80% on the Tagalog
and Cantonese evaluation sets, respectively. Furthermore, we
show that even with a small set of training data, NDM could
still be estimated accurately and maintain a good performance,
which can save both time and disk.
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