
ROBUST CROSS-DOMAIN SPEAKER VERIFICATION WITH MULTI-LEVEL DOMAIN
ADAPTERS

Wen Huang1, Bing Han1, Shuai Wang2, Zhengyang Chen1, Yanmin Qian1†

1Auditory Cognition and Computational Acoustics Lab
MoE Key Lab of Artificial Intelligence, AI Institute

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
2Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong, Shenzhen, China

ABSTRACT
Speaker verification encounters significant challenges when con-
fronted with diverse domain data, often resulting in performance
degradation due to domain mismatch. To enhance performance
in cross-domain scenarios, we introduce the Domain Adapter, an
adaptable module designed for specific domains. This module
learns and integrates domain-specific information with speaker-
related data, mitigating domain-related variations and promoting
convergence of utterance embeddings from the same speaker across
diverse domains. It offers configurability across multiple levels and
is adaptable to various backbone architectures. Our proposed mod-
ule substantially enhances cross-domain performance with minimal
parameter increments while effectively generalizing to previously
unseen domains. In our experiments, we present results on the
3D-Speaker dataset, which provides acoustically-relevant attributes
crucial for domain categorization and the subsequent learning of
domain information. The top-performing system integrated with
domain adapters achieved 10.8%, 14.8%, and 21.1% EER improve-
ments over the baseline across three 3D-Speaker dataset trials.

Index Terms— speaker verification, domain mismatch, cross-
domain learning, 3D-Speaker

1. INTRODUCTION
Speaker verification, which involves the verification of a speaker’s
identity based on their vocal characteristics, has advanced consid-
erably with the introduction of deep neural network (DNN)-based
speaker embeddings. Past research primarily focused on enhancing
architectures for extracting superior speaker embeddings [1, 2, 3, 4]
and optimizing loss functions for improved discrimination [5, 6, 7,
8]. These efforts have achieved remarkable success, consistently sur-
passing previous ones on benchmark datasets such as VoxCeleb [9].

While academic progress in speaker verification on the Vox-
Celeb dataset has been substantial, real-world industry applications
face many challenges due to complex practical scenarios. These
scenarios involve diverse environmental conditions, distances, and
recording equipment configurations for different individuals. This
complexity underscores the issue of multi-domain or cross-domain
speaker verification, where “domain” encompasses various factors,
including language content, channels, acoustic environment, and
more. When speaker models encounter data from diverse domains
during training, registration, or testing, it often results in perfor-
mance degradation due to domain mismatch.

To tackle the domain mismatch problem, various adaptation
techniques have been developed, including discrepancy-based align-
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ment and domain adversarial learning. Discrepancy-based alignment
aims to minimize the discrepancy between domains and facilitate
learning domain-invariant representations [10, 11, 12]. However,
it relies on well-defined distance metrics and faces challenges with
multiple domains. Domain adversarial learning, on the other hand,
implicitly reduces distinctions among diverse domain data through
a min-max two-player game [13, 14, 15, 16, 17]. Yet, achieving a
balance between the two tasks poses a significant challenge in this
method, adding complexity to the training process.

Furthermore, in recent years, academia has acknowledged the
significance of this challenge and introduced challenging benchmark
datasets to facilitate research on solutions. Notable examples include
CNCeleb [18] and 3D-Speaker [19], which encompass data from di-
verse domains. In this paper, we will present our tailored solution
for the 3D-Speaker dataset, addressing the nuances of speaker veri-
fication in these complex scenarios. Beyond speaker identities, the
dataset of 3D-Speaker also provides labels of Device, Distance, and
Dialect attributes. Each utterance within this dataset is recorded us-
ing various devices positioned at varying distances. By leveraging
these acoustically-relevant attributes, we can effectively partition the
data into distinct domains.

This enables us to establish a domain-aware speaker verification
system, aiming to utilize domain labels for enhanced performance
in cross-domain scenarios. In this paper, we proposed a novel mod-
ule named “Domain Adapter”. This module is domain-specific and
highly adaptable, configurable at multiple levels and with different
backbones. During the training process, it autonomously incorpo-
rates insights from each domain and integrates them with speaker-
related data. This adaptive mechanism reduces domain-related vari-
ations and promotes the convergence of utterances from the same
speaker across diverse domains, consequently improving the overall
consistency of speaker information. It is noteworthy that our pro-
posed framework achieves substantial performance improvements
with a minimal parameter increment, even when facing a consid-
erable number of domains, while also demonstrating the ability to
generalize to previously unseen domains. Experimental results val-
idate the efficacy of the proposed approach, with the best system
achieving improvements of 10.8%, 14.8%, and 21.1% in terms of
EER over the baseline across three trials in the 3D-Speaker dataset.

2. METHODS

To leverage multi-domain data effectively, this paper presents a two-
step method: refine domain labels for more accurate domain infor-
mation and integrate multi-level domain adapters into the model to
enhance cross-domain learning performance.
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Fig. 1. The proposed framework with Domain Adapters. Block Domain Adapters (BDA) are inserted between adjacent blocks, while the
Embedding Domain Adapter (EDA) is applied to the embeddings. In (b) and (c), we use notations: N for the number of domains, F or C for
frequency or channel dimension, and D for code dimension.

2.1. Refining Domain Labels

2.1.1. Domain partition strategy
In the context of 3D-Speaker [19], we introduce an innovative strat-
egy to create domain labels. Our method involves partitioning do-
mains based on the combination of two attributes: Device and Dis-
tance. This partitioning aims to create domains that encompass ut-
terances recorded within the same acoustic environment.

There are two key rationales behind this strategy. Firstly, as il-
lustrated in Figure 2, the joint distribution of these two attributes is
notably sparse. For instance, certain devices are exclusively associ-
ated with a single specific distance. When modeling device and dis-
tance independently, the neural network may face challenges in de-
veloping a robust representation of device-related information, given
that it has only encountered the device in one specific context.

Secondly, device and distance jointly play a pivotal role in shap-
ing the characteristics of the acoustic environment. For example,
the same device can yield distinct acoustic environments at varying
distances, and conversely, different devices can produce diverse en-
vironments even at identical distances.

Fig. 2. Visualization of data distribution in the 3D-Speaker dataset
for the attributes Device and Distance. Color intensity represents the
number of utterances. The red border encloses instances from un-
specified domains, while the blue border encloses unseen domains.

2.1.2. Dealing with unspecified and unseen domains
A notable aspect of the dataset is a special category named Dis-
tance00, which includes utterances recorded without specified dis-
tances. As shown in Table 1, this segment of unspecified data con-
stitutes more than 30% of the train set and over 20% of the test set. It
encompasses varied distances and devices, necessitating further par-
tition. Meanwhile, following our partition strategy, a fraction of the
test set data does not align with domains seen in training.

Table 1. Statistical analysis of the 3D-Speaker dataset. The figures
represent the numbers of utterances in each category.

Set #Total #Unspecified #Unseen

Train 579,003 185,749 -
Test 18,782 5,040 258

To tackle these issues and enhance the model capacity to handle
unseen domains, we developed a domain classifier utilizing train-
ing data with explicit domain labels. This classifier is designed for
two purposes, as illustrated in Figure 1. First, obtain domain em-
beddings for data with unspecified or unseen domains in both the
training and testing sets. These embeddings are utilized to generate
pseudo-labels via clustering. In both training and testing stages, we
combine the original labels with these pseudo-labels to establish do-
main labels, which serve as the ground truth. Second, generate soft
or hard labels in the testing stage to address situations involving un-
specified or previously unseen domains when actual ground truth is
not accessible.

Furthermore, to better showcase the performance on unseen do-
mains, we extracted pairs related to unspecified and unseen domains
from the three trials of 3D-Speaker. These pairs were combined to
form a new trial, named “out-of-domain trial”, consisting of a to-
tal of 209,495 instances. The resources pertaining to domain par-
tition and trial details can be accessed through the following link:
https://github.com/holvan/cross domain speaker verification.

2.2. Incorporating Multi-Level Domain Adapters

Once domain labels are acquired, the subsequent challenge lies in
efficiently incorporating domain information into the processing
pipeline. Common methods often involve extracting domain-related
features from the raw input or the intermediate output of the trained
model, and then compensating for their influence on the original
input. However, this approach has two key challenges, i.e. accu-
rate domain information extraction and effective domain knowledge
integration.

Instead of attempting to extract domain information from the
input, our approach enables the model to autonomously learn and
leverage domain-specific information, while it can dynamically in-
tegrate it with speaker-related information to boost the performance.
To facilitate this, we propose a novel structure called the Domain
Adapter (DA), as illustrated in Figure 1.

To facilitate the model’s autonomous learning of domain infor-
mation, we assume that domain information can be represented by
discrete codes stored within a domain codebook denoted as C. The
domain label d serves as a means to select a specific code cd from
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the codebook, enabling the model to adjust its output based on the
domain. This selection process can be formulated as:

cd = ΣN
i=1di · C[i] (1)

where N represents the codebook size, di is either a binary indicator
(for one-hot hard labeling) or a weight value (for soft labeling).

To achieve multi-level adaptation, our framework incorporates
two distinct types of domain adapters: the Block Domain Adapter
(BDA) and the Embedding Domain Adapter (EDA).
Block Domain Adapter (BDA) The Block Domain Adapter op-
erates between different blocks of the model’s architecture. Con-
sidering the outputs of block i, denoted as Hi, BDA incorporates
the current sample’s domain label d and discrete domain code Cd

through a dense layer f . This is represented as:

H ′
i = f(Hi ⊕ Cd) (2)

where the ⊕ operator offers two interpretation modes: channel-wise
addition (BDA-C) and frequency-wise addition (BDA-F), with the
code Cd being expanded in accordance with the chosen addition di-
mension.
Embedding Domain Adapter (EDA) The Embedding Domain
Adapter functions at the final stage, targeting embeddings. This
adapter employs dense layers f and g, allowing the embedding out-
put z to be transformed through the domain’s discrete code cd:

z′ = f(z + g(cd)) (3)

By incorporating these multi-level domain adapters, we enable
the model to autonomously acquire domain-specific information and
integrate it with speaker information using linear transformation.
This fusion allows us to mitigate variations from different domains,
thus facilitating the extraction of domain-invariant embeddings.

The training pipeline can be summarized as follows: 1) Train a
domain classifier using training data with explicit domain labels and
generate pseudo-labels for the remaining unspecified data in both
the train and test sets. 2) Enhance the pre-trained speaker model
by adding domain adapters. Fine-tune the adapters with the en-
coder block frozen, employing speaker labels for speaker classifi-
cation loss and ground truth domain labels for adapter control. 3)
During testing, extract speaker embeddings from testing data using
ground truth or predicted domain labels and conduct scoring.

3. EXPERIMENTS

3.1. Experimental Settings

Dataset In our experiment, we trained all systems using the 3D-
Speaker’s training dataset [19], which includes 10,000 speakers and
579,003 utterances, totaling 1124 hours of valid speech. Domain la-
bels are generated as described in Section 2.1. This process results in
35 domains, excluding unspecified ones. For unspecified data, their
ground truth domain labels are derived using Kmeans clustering, re-
sulting in 10 additional classes.
Data processing We use the 80-dimensional fbank features with
frame length of 25ms and hop size of 10ms as the input of the
model. The data is preprocessed with three types of augmentation,
consistent with the official baseline [19]: 1) adding noise with MU-
SAN [23]; 2) adding reverberation with RIRs [24]; 3) speed pertur-
bation [25].
Networks Several baseline models are employed for speaker
verification, including ResNet34 [26, 27], CAM++ [21], and
ERes2Net [22]. Notably, CAM++ and ERes2Net serve as the
official baselines in [19]. For domain classification, we utilize

ResNet18 [26]. When dealing with BDA, the code dimension is
chosen either as the frequency dimension or the channel dimension,
based on the specific block. To ease fine-tuning, BDAs can be ini-
tialized as identity functions, preventing distribution incompatibility
during training. For EDA, we consistently set the code dimension to
32 and then use a dense layer to transform it into a 512-dimensional
embedding.
Training details We employ the SGD optimizer for network opti-
mization with a momentum value of 0.9. For speaker verification, we
pretrain a baseline model and then finetune it with domain adapters.
Both stages employ Additive Angular Margin (AAM-Softmax)
loss [5], following the same training configuration in [19]. For
domain classifier, we utilize cross-entropy loss for model training,
achieving 99% accuracy.
Evaluation metrics We use consine similarity for trial scoring.
Results are reported in line with three defined trials [19] in terms
of Equal Error Rate (EER) and minimum Detection Cost Function
(minDCF) with ptarget = 0.01, CFA = Cmiss = 1.

3.2. Performance of Domain Adapters
In this section, the performance comparisons of some baselines and
our proposed Domain Adapters are shown in Table 2. We initiate
experiments using various adaptation methods with the ResNet34
baseline. Initially, we assess the effectiveness of a straightforward
adversarial training approach by introducing a module with a gradi-
ent reversal layer for domain classification on speaker embeddings.
Although this resulted in some improvements, the impact was mod-
erate rather than substantial.

Next, we test the systems equipped with domain adapters using
ground truth domain labels. Among the different adaptations, BDA-
F slightly outperforms BDA-C, using fewer parameters. This phe-
nomenon can likely be attributed to the domains we have selected,
which are closely associated with factors like device and distance.
These factors tend to manifest more prominent variations in the fre-
quency dimension, in contrast to the channel dimension observed in
images. In contrast to processing intermediary layer outputs, the ap-
proach of directly manipulating speaker embeddings through EDA
also yields favorable outcomes.

Moreover, combining both BDA and EDA techniques can fur-
ther boosts system performance across three trials, improving upon
the baseline by 10.8%, 14.8%, and 21.1% in terms of EER. This ob-
servation underscores the inherent complementarity between BDA
and EDA, highlighting their capacity to accommodate speaker-
related information across varying hierarchies. Additionally, we

Fig. 3. t-SNE visualization of speaker embeddings, with distinct col-
ors indicating various domains. The legend provides domain labels.
Dotted line encloses the embeddings for different utterances from
one speaker.
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Table 2. Performance evaluation of different speaker verification systems in terms of EER and minDCF. The model with GRL describes the
adversarial learning that uses GRL upon the speaker verification to perform domain classification. “Frozen” refers to freezing encoder blocks
during fine-tuning.

System #Params Frozen Cross-Device Cross-Distance Cross-Dialect

EER(%) minDCF EER(%) minDCF EER(%) minDCF

ResNet34 7.95M N 7.09 0.674 9.71 0.759 12.75 0.888
+ GRL [20] 7.95M N 6.95 0.667 9.45 0.755 12.44 0.890
+ BDA-C + 0.11M Y 6.56 0.653 8.66 0.740 10.65 0.843
+ BDA-F + 0.02M Y 6.52 0.655 8.54 0.733 10.59 0.853
+ EDA + 0.28M Y 6.46 0.649 8.43 0.739 10.48 0.847
+ EDA + BDA-C + 0.39M Y 6.37 0.650 8.35 0.737 10.19 0.837
+ EDA + BDA-F + 0.30M Y 6.32 0.643 8.27 0.730 10.06 0.840
+ EDA + BDA-C + 0.39M N 6.52 0.662 8.62 0.726 10.39 0.852
+ EDA + BDA-F + 0.30M N 6.57 0.664 8.54 0.732 10.26 0.841

CAM++ [19, 21] 7.26M N 7.75 0.723 11.29 0.783 13.44 0.886
+ EDA + BDA-C† + 0.93M Y 7.61 0.734 9.66 0.757 10.60 0.844

ERes2Net [19, 22] 9.91M N 7.21 0.678 10.18 0.757 12.52 0.886
+ EDA + BDA-F + 0.30M Y 6.93 0.672 9.22 0.750 11.28 0.861

†: CAM++ is a model based on 1d convolution blocks and cannot support frequency-wise BDA.

assess the training strategy with both frozen and unfrozen encoder
blocks. The results indicate that the system performs better with the
frozen encoder block, demonstrating support for hot plugging in our
proposed module.

Subsequently, we also conduct experiments on alternative base-
lines, namely CAM++ and ERes2Net. The experiment results show
that proposed Domain Adapters also improve the performance on
these models. This demonstrates that our method, in addition to be-
ing compatible with residual blocks, can be applied effectively to
architectures featuring 1D-convolution TDNN blocks or multi-scale
Res2Net blocks, which shows its versatility and robustness across
various backbone structures.

To do a deeper insight into the influence from Domain Adapter,
t-SNE visualizations for different systems are illustrated in Figure 3.
Compared to the baseline, the Domain Adapter fosters proximity
among utterances from the same speaker while increasing the dis-
tance between different speakers. Additionally, embeddings from
the same domain exhibit increased compactness. All these obser-
vations demonstrate the advantage of the newly proposed domain
adapter method.

3.3. Test with different domain labels
Table 3. Comparison of different domain labels in the testing stage.

Test Label EER(%)

Cross-Device Cross-Distance Cross-Dialect

Ground Truth 6.32 8.27 10.06
Predicted (hard) 6.97 8.44 11.13
Predicted (soft) 6.41 8.30 10.23

As discussed in sections 2.1, utilizing domain labels during the
testing phase becomes important. In the initial experiment outlined
in Table 2, systems were evaluated using ground truth labels to en-
sure consistency with the training phase. Assuming the absence of
ground truth domain labels for the testing set, we generate their soft
or hard labels using the pre-trained domain classifier. As shown in
Table 3, utilizing predicted soft labels results in a negligible degrada-
tion compared to the ground truth labels, and the predicted hard la-
bels will cause obvious performance degradation. This discrepancy
can be attributed to the inherent uncertainty in domain classification,
which is better accounted for by the soft labels.

Table 4. Performance comparison of systems with and without do-
main adapters on the out-of-domain trial.

System Test label EER(%) minDCF

ResNet34 - 6.19 0.627
+ GRL - 6.05 0.611
+ DAs Predicted (soft) 5.59 0.573

CAM++ - 6.42 0.656
+ DAs Predicted (soft) 6.36 0.628

ERes2Net - 6.27 0.620
+ DAs Predicted (soft) 6.03 0.598

3.4. Performance on unseen domains
Table 4 provides a comparison between systems with and without
domain adapters on the “out-of-domain trial” as defined in 2.1. In
this scenario, ground truth labels are absent, and all test domain la-
bels are soft labels generated by the domain classifier. It is observed
that across various backbone architectures, the domain adapters con-
sistently demonstrate improvements in this trial, which underscores
the proposed framework’s effective capacity for generalization to un-
known domains.

4. CONCLUSIONS
In this work, we propose the Domain Adapter, a versatile module
that is domain-specific, highly adaptable, configurable at various
levels and with different backbone architectures. During train-
ing, it independently extracts knowledge from each domain and
merges it with speaker-related information, effectively mitigating
domain-related disparities. Our framework significantly enhances
performance with a minimal increase in model size and demon-
strates effective generalization to previously unseen domains. The
proposed best system achieves substantial EER improvements of
10.8%, 14.8%, and 21.1% over the baseline in three 3D-Speaker
dataset trials.
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