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ABSTRACT

We introduce a novel task named ‘target speech diarization’, which
seeks to determine ‘when target event occurred’ within an audio sig-
nal. We devise a neural architecture called Prompt-driven Target
Speech Diarization (PTSD), that works with diverse prompts that
specify the target speech events of interest. We train and evalu-
ate PTSD using sim2spk, sim3spk and sim4spk datasets, which are
derived from the Librispeech. We show that the proposed frame-
work accurately localizes target speech events. Furthermore, our
framework exhibits versatility through its impressive performance
in three diarization-related tasks: target speaker voice activity detec-
tion, overlapped speech detection and gender diarization. In partic-
ular, PTSD achieves comparable performance to specialized mod-
els across these tasks on both real and simulated data. This work
serves as a reference benchmark and provides valuable insights into
prompt-driven target speech processing.

Index Terms— Target speech diarization, Prompt-driven,
Speaker diarization

1. INTRODUCTION

Humans have the ability to selectively attend to a specific sound
source in a complex acoustic environment, that is commonly referred
to as the cocktail party effect [1]. Such remarkable auditory attention
mechanism allows us to focus our listening effectively [2,3]. Speaker
extraction does this when the attended target speaker is known in
advance [4–6]. Speaker diarization seeks to demarcate ‘who spoke
when’ in a multi-talker speech [7–9]. They serve as the front-end
for several speech downstream tasks [10–12]. However, beyond
speaker identity [13–16], we are also interested in other semantic
types of human speech [17–19], for example, female speech, multi-
talker speech mixture, or the speech of keynote speaker who speaks
the most in a meeting.

In this paper, we introduce a novel task, termed ‘target speech
diarization’, which seeks to determine ‘when target event occurred’
guided by a specific prompt within an audio. From application point
of view, this is similar to speech information retrieval where we use a
prompt query to retrieve relevant speech segments. From speech pro-
cessing point of view, this is similar to a speaker extraction task ex-
cept that the prompt can be specified by a set of speech properties, re-
ferred to as semantic attributes, beyond speaker identity. We present
a prompt-driven target speech diarization framework that utilizes
prompt vectors to provide contextual information as the query. The
proposed model architecture is inspired by similar ideas in image
segmentation [20–22], audio source separation [23, 24], and speech
separation [18].
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Fig. 1: The illustration of the target speech diarization task. Each
semantic attribute (e.g., gender) takes on one or multiple semantic
values (e.g., female). The task aims to identify the target event re-
gions given the semantic value information.

Our framework considers four semantic attributes: time-stamped
speaker identity, gender, speaker counter (number of speakers at
each frame), and keynote speaker (the most talkative speaker). Each
attribute can take on one or multiple values, specifying distinct target
speech events. We associate each semantic value with its respec-
tive prompt vector. By manipulating the combination of semantic
attributes, as reflected in the prompts, the proposed model allows us
to search over the speech content, thus facilitating a wide range of
speech applications.

The contribution of this paper can be summarised as follows:

1. We introduce the innovative task of target speech diariza-
tion. Here, we utilize diverse semantic attributes to distin-
guish different speech events, aligning with human percep-
tion and cognitive speech processes.

2. We propose an efficient prompt-driven target speech diariza-
tion architecture, effectively detecting target event regions by
incorporating heterogeneous prompts query vectors. Mean-
while, we conduct comprehensive experiments to demon-
strate the system’s robustness.

3. Our framework extends versatility to target speaker activity
detection, overlapped speech detection and gender diariza-
tion, each customized to distinct semantic attribute. Notably,
we also conduct comparative analysis with specialized mod-
els on both real and simulated datasets across these tasks.
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2. TARGET SPEECH DIARIZATION

2.1. Task formulation

To formulate our task, we first introduce two concepts, the semantic
attribute and semantic value. The semantic attribute represents the
criterion of demarcating speech segments. Each semantic attribute
takes on one or multiple semantic values associated with specific
events. For examples, in speaker diarization task, speaker identity is
the semantic attribute. The specific speaker ID is semantic value and
his/her speaking activity is the aligned speech event.

As we mentioned in Section 1, an audio can be characterized by
various semantic attributes. In our proposed target speech diarization
task, the system will simultaneously take audio and semantic value
information as inputs and output target event regions related to this
semantic value. For example, if the semantic value is female from
the semantic attribute gender, the system should output the entire
female-speaking regions. To demonstrate the feasibility of the task,
we consider four semantic attributes in our work, denoted as T , G,
N and K:

• T - Timestamped speaker identity:
In this attribute, the attribute values consist of timestamps
that point to individual speakers. We use the brief timestamp-
based description “the person who spoke at the particular
time” to specify the speaker identity.
Compared with traditional approaches which always rely on
the pre-enrolled speaker embeddings, our system is flexible
and user-friendly for real-world applications. For instance,
when we seek to locate all speech segments for a person of
interest, we can simply scan the audio to find a timestamp
when he/she is the only one talking.

• G - Gender:
The gender attribute is more straightforward and contains two
values, female and male, which can guide the system to out-
put the gender-specific event regions.

• N - Speaker counter:
This attribute identifies the number of concurrent speakers
at each frame and contains three event values: non-speech,
single-speaker speech, and overlapped speech.

• K - Keynote speaker:
This attribute focuses on identifying the keynote speaker. It
contains one event value to represent the person who talks
most.
Identifying the keynote speaker is crucial for real-world ap-
plications. By leveraging both keynote and speaker counter
prompts, user can differentiate between speech segments be-
longing to the keynote speaker and others.

2.2. Proposed framework: Prompt-driven Target Speech Di-
arization (PTSD)

To solve the task we formulated in the previous section, we pro-
posed a framework called Prompt-driven Target Speech Diariza-
tion (PTSD). In this framework, we modeled each semantic value
information as a prompt vector p ∈ R1×D . Such a prompt-style
framework [20, 25] can be the basis for constructing a versatile and
flexible system.

In this paper, we denoted the audio input as X and formulated
the target event region aligned with each semantic value as a binary
sequence y ∈ {0, 1}1×T , where 1 represents the existence of target
event and 0 represents the absence. T is the number of audio frame.
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Fig. 2: The overview of our prompt-driven target speech diarization
framework. It takes audio and prompt vectors according to the user
intention as inputs, and outputs target event regions aligned with the
prompt vectors. ⊗ and σ represent the dot product and sigmoid op-
eration, respectively.

As depicted in Figure 2, PTSD compromises a speech encoder and
a transformer encoder-decoder. The speech encoder first maps the
input audio X to a feature sequence Fa ∈ RT×D . Then, the trans-
former encoder-decoder takes Fa and prompt vector p as input and
outputs the prediction for target event related to p. Specifically, the
transformer encoder takes Fa as input and outputs the frame-level
speech representation Fenc ∈ RT×D . The transformer decoder
takes prompt vector p and Fenc as inputs, and output Fdec ∈ R1×D .
Finally, we performed a dot product operation between the decoder
output Fdec and the encoder output Fenc and applied a sigmoid op-
eration to get the prediction sequence dp ∈ (0, 1)1×T . The value
of dp denotes the target event occurrence probability at each frame.
Notably, our framework can support one or multiple prompt vectors
at the same and output their associated target events regions accord-
ingly.

Speech encoder. In our framework, we employed a pre-trained
WavLM encoder [26] as the speech encoder to obtain frame-level
representations Fa. With consideration for the trade-off between
computational efficiency and speech information, we utilized the
first three layers WavLM encoder, freezing them during our training
process. The WavLM encoder [26] was designed to learn univer-
sal speech representations from vast amounts of unlabeled speech
data, ensuring the universality and robustness of the frame-level au-
dio representations.

Prompt query vectors. Each target event value is associated
with its own prompt query vector. By switching between different
prompts, our framework can accurately detect distinct event regions
corresponding to each prompt query vector p.

For prompts belonging to the timestamped speaker attribute, we
extracted a single vector from the temporal axis of the frame-level
representation Fa using the provided particular frame index for the
timestamped speaker. This extracted vector serves as the prompt
query vector of this timestamped speaker. For prompts related to
gender attribute, we used two learnable embeddings to present male
and female semantic values separately during the training stage.
Similarly, for other attributes such as N and K, we also employed
learnable embeddings to provide information for each semantic
value.

Transformer encoder-decoder. We employed the transformer
encoder-decoder architecture as introduced in [27]. Leveraging the
power of self-attention and cross-attention mechanisms, the trans-
former encoder-decoder excels in capturing intricate temporal pat-
terns in the audio data and aligning them with the relevant prompts.
This synergy enables our model to precisely identify and diarize tar-
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get event regions, making it a robust and adaptable solution for our
task.

Loss function. The learning targets of our framework are frame-
wise binary ground truth labels y ∈ {0, 1}N×T of N target events.
For each target event, we utilized binary cross-entropy loss to train
our model, as defined in Equation 1. dt and yt represent the pre-
dicted and ground truth labels of a specific target event for the tth

audio frame, where t ∈ [1, T ]. The loss function is designed to
minimize the difference between predicted and ground truth labels,
encouraging our model to accurately detect target event activities.

L = − 1

T

T∑
t=1

(yt · logdt) + (1− yt) · log(1− dt) (1)

3. EXPERIMENTS

In this section, we detailed the datasets, evaluation metrics, and ex-
perimental setup used to evaluate the proposed PTSD framework.

3.1. Dataset
Given that real-world speech datasets cannot provide all the required
groundtruth labels according to the semantic attributes introduced in
Section 2.1, we followed the recipe1 proposed in [28] to simulate 2-,
3-, and 4-speaker datasets from Librispeech [29]. To create datasets
that closely resemble real-world conversations, we utilized conver-
sation statistics from the DIHARD II development set [30] to gen-
erate 1000 hours of audio for each sim2spk, sim3spk, and sim4spk
dataset.

3.2. Evaluation metric
For target speech diarization evaluation, we primarily employed
three metrics: accurate precision (AP), area under the receiver oper-
ating characteristic (AUC), and equal error rate (EER) based on the
implementation from sklearn package.

3.3. Implementation details
The proposed PSTD framework was implemented using PyTorch
and optimized with the Adam optimizer. We set the initial learning
rate to 10−4 and decrease it by 5% for each epoch. The dimension
D of audio feature Fa and prompt query vector p were both set to
256. For both transformer encoder and decoder structure, 4-layer
transformer with 8 attention heads was applied. To ensure the ro-
bustness of our system, we conducted experiments using inputs of
diverse lengths, spanning from 20 to 60 seconds during the train-
ing phase. For validation purposes, all inputs were segmented into
40-second chunks for simplicity.

4. RESULTS AND ANALYSIS

In this section, we presented a comprehensive demonstration of our
framework’s performance across heterogeneous prompts to show
the feasibility of our proposed target speech diarization task. Fur-
thermore, our framework’s applicability can be extended to target
speaker activity detection, concurrent speaker counting and gen-
der diarization tasks, each aligned with specific semantic attribute.
Moreover, we conducted a comparative analysis with the specialists
model to evaluate the effectiveness of our approach.

4.1. Overall analysis of PTSD

In this section, we conducted the training phase of our framework us-
ing the sim2spk, sim3spk, and sim4spk datasets. The performances
are depicted in Table 1, showcasing the AP, AUC, EER results for the
prompts from four different semantic attributes. Notably, in the case
of sim4spk, our model can support ten prompts vectors to specify ten

1https://github.com/BUTSpeechFIT/EEND_dataprep/

Table 1: Overall analysis of PTSD system on the sim2spk, sim3spk
and sim4spk datasets across diverse semantic attributes.

Dataset Attribute AP (%)↑ AUC (%)↑ EER (%)↓

sim2spk

T 99.90 99.91 1.18
G 95.65 96.38 5.98
N 99.84 99.92 1.47
K 99.91 99.84 1.68

sim3spk

T 99.40 99.65 2.80
G 95.70 96.46 5.93
N 99.56 99.77 2.41
K 99.32 99.21 4.81

sim4spk

T 98.88 99.57 3.29
G 96.70 97.19 6.20
N 99.53 99.76 2.51
K 98.75 98.88 5.85

target events regions simultaneously, comprising four timestamped
speakers (T ), two under gender (G) (related to female and male),
three under speaker counter attribute (N ) (related to non-speech,
single speaker speech, overlapped speech) and one under keynote
speaker attribute (K).

Impressively, all the AP and AUC values surpass 95%, and EER
values are under 7%. These results demonstrate that our PTSD
framework can accurately identify the desired event regions guided
by provided prompt query vectors. In this way, we can switch the
prompt query vector according to the user intention, which is flexible
and powerful.

4.2. PTSD with specific semantic attribute

The results from the previous section indicate that we can utilize a
single PTSD model by switching between different prompts to de-
tect various speech events, and it has demonstrated commendable
overall performance. To further evaluate PTSD, in this section, we
compared PTSD with specialized models for different sub-tasks with
specific semantic attribute.

4.2.1. PTSD (T ) v.s. TS-VAD

Our framework also has the potential to perform the target speaker
voice activity detection (TS-VAD) task when furnished with times-
tamp for each speaker, denoted as PTSD (T ). In the primitive TS-
VAD paradigm [9], an i-vector for the target speaker was provided
to help the system to detect the speaking activity.

The key difference between TS-VAD and PTSD lies in the meth-
ods used to provide the speaker prior information: timestamped
speaker prompt vectors in PTSD (T ) and speaker embeddings in
TS-VAD.

To ensure a fair comparison, we made modifications to the orig-
inal TS-VAD model and named it as ‘mod. TS-VAD’. Specifically,
we replaced the Bidirectional Long Short-Term Memory (BLSTM)
and MFCC used in the original TS-VAD with a four-layer trans-
former encoder and a three-layer WavLM encoder, respectively. Ad-
ditionally, we employed the ECAPA-TDNN2 trained on a combi-
nation of VoxCeleb, CnCeleb [31] and Alimeeting training sets, to
extract accurate speaker embeddings for TS-VAD.

In PTSD, the timestamped speaker prompt vector corresponds
to a temporal duration of 0.04 seconds (given that the length of the
WavLM feature is 25 for one second) within the audio sequence. To
ensure an objective comparison, we selected clean speech segments

2https://github.com/TaoRuijie/ECAPA-TDNN
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of length 1s, 2s, and 3s and employed them in the ‘mod. TS-VAD’
system to extract speaker embedding. We provided these speaker
priors for each input chunk to conduct the comparison experiments
on Alimeeting and sim4spk datasets. Besides, since TS-VAD system
was first introduced in a speaker diarization task [32], we used the
diarization error rate (DER) as the evaluation metric for comparison.

The results, as shown in Table 2, highlight that PTSD (T ) out-
performs all three versions of TS-VAD on sim4spk dataset. Further-
more, PTSD also performs better than TS-VAD with 1s enrollment
speech and achieves comparable results with 2s and 3s enrollment
speech on Alimeeting dataset. This difference can be attributed to
the ECAPA-TDNN encoder, which has been fine-tuned on the Al-
imeeting dataset. In contrast, our method does not rely on a specific
speaker encoder, offering enhanced flexibility and convenience in
this regard.
Table 2: The performance comparison between PTSD (T ) and TS-
VAD on Alimeeting and sim4spk datasets.

Dataset Method DER (%)↓

Alimeeting

mod. TS-VAD (with 1s ref) 12.63
mod. TS-VAD (with 2s ref) 10.22
mod. TS-VAD (with 3s ref) 8.80

PTSD (T ) 11.40

sim4spk

mod. TS-VAD (with 1s ref) 12.63
mod. TS-VAD (with 2s ref) 8.81
mod. TS-VAD (with 3s ref) 7.03

PTSD (T ) 5.58

It should be noting that the TS-VAD system cannot perform
speaker diarization task independently. The authors in TS-VAD [9]
leveraged a pre-trained diarization system to provide clean enroll-
ment speech for each speaker, and then TS-VAD system was applied
to detect the activity of each speaker. As an initial attempt, our ex-
periments have demonstrated the feasibility of using timestamps as
speaker enrollment priors to perform target speaker activity detec-
tion. Similarly, we can also extend our PTSD system in the same
way as [9] to complete the speaker diarization task. We will con-
tinue to explore the timestamp-based speaker diarization system in
the future.

4.2.2. PTSD (N ) v.s. OSD

PTSD can also be functioned as a three-class speaker counter, capa-
ble of estimating the number of concurrent speakers at each frame
when we provide prompt vectors for non-speech, single speaker
speech and overlapped speech simultaneously. We denote this mode
as PTSD (N ).

We evaluated the performance of PTSD in the overlapped speech
detection (OSD) task on DIHARD II evaluation set. We used the
overlapped speech prompt vector, which was initially trained on
the sim4spk training set and further fine-tuned on the DIHARD II
development set. Table 3 presents the comparison results between
PTSD (N ) and previous two OSD models proposed by Jung et
al [33] and Bullock et al [34] respectively. PTSD (N ) achieves sig-
nificantly better precision at 68.93% and recall at 48.18% compared
to the specialized overlapped speech detection models on DIHARD
II evaluation set.

4.2.3. Gender diarization: PTSD (G)

When we provide both female and male prompts, PTSD (G) can per-
form for gender diarization for the first attempt to answer the ques-
tion: “which gender appeared when”. We implemented the ‘base-
line1’ using WavLM speech encoder and ECAPA-TDNN encoder

Table 3: Overlapped speech detection comparison results on DI-
HARD II evaluation set.

Method Precision (%)↑ Recall (%)↑
Bullock et al. [34] 64.50 26.70

Jung et al. [33] 66.48 32.22
PTSD (N ) 68.93 48.18

followed by fully connection layer as frame-wise binary classifica-
tion. The second baseline we implemented is using WavLM speech
encoder and transformer encoder with fully connection layer, de-
noted as ‘baseline2’. As shown in Table 4, PTSD (G) can get better
performance than two baselines. At the same time, our framework
can obtain more flexible prompt-driven outputs with transformer de-
coder structure.

Table 4: Gender diarization on sim4spk datasets.

Method AP (%)↑ AUC (%)↑ EER (%)↓ DER (%)↓
baseline1 96.85 97.85 5.50 8.45
baseline2 97.31 97.57 6.34 9.04
PTSD (G) 98.17 98.39 5.13 7.75

4.3. Discussion and future work

We believe that the attention mechanism plays a crucial role in mak-
ing our framework operate effectively. Taking PTSD (T ) as an ex-
ample, the attention structure combines information from nearby au-
dio frames into the specific frame, thereby enriching the speaker-
related information.

In the future, our research will progress toward integrating natu-
ral language commands and supporting various prompt forms. This
expansion aims to improve the input query’s effectiveness by adopt-
ing a multi-modal approach, which should enhance the system’s
adaptability and versatility in real-world applications.

5. CONCLUSION

In this paper, we have introduced an innovative task called "target
speech diarization", aimed at distinguishing diverse speech events
from various perspectives. This task mimics how humans natu-
rally engage with audio in their daily lives. Additionally, we have
proposed a framework, Prompt-driven Target Speech Diarization
(PTSD), to replicate the multi-dimensional auditory comprehension
process observed in humans. We have developed specific prompts
for each target event, allowing us to switch between different func-
tional modes. Our model’s performance across various semantic
attributes and the subsequent comparison with specialized models
have demonstrated the superior performance and flexibility of our
approach. Our study provides new insights for diraization-related
tasks. More practical application scenarios can be designed based
on this direction.
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