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ABSTRACT

This paper presents the design and implementation of our system for
Track 1 of the Multi-modal Information based Speech Processing
(MISP) 2022 Challenge. We design an end-to-end transformer-based
multi-talker system. The transformer backbone is well-suited to cap-
ture long-term features, which is crucial for multi-modal speaker
diarization in cases where temporal modalities are missing. Be-
sides, we employ several loss functions and image data augmenta-
tion techniques to prevent over-fitting during training. Moreover,
to further improve the system’s performance, we incorporate Inter-
channel Phase Difference (IPD) to model the location features and
pre-train an ECAPA-TDNN-based model to extract speaker embed-
ding features. Our system achieved a diarization error rate (DER) of
10.82% on the evaluation set, which earned us second place in the
audio-visual speaker diarization task of the MISP 2022 challenge.

Index Terms— MISP Challenge, Audio-visual, Speaker Di-
arization

1. INTRODUCTION

Speaker diarization, solving the problem of ‘who spoke when,’ is
a combined task of speaker identification and voice activity detec-
tion. Speaker diarization has various application scenarios, such as a
meeting or telephone recording. The MISP challenge[1, 2] releases
a multi-modal dataset whose scenario is a casual home chatting in
the living room with two to six speakers. The dataset collects audio-
visual data from far, middle, and near fields, which provides a valu-
able benchmark for the community.

Target-Speaker Voice Activity Detection (TS-VAD) [3] shows
excellent performance in multiple speaker diarization challenges.
TS-VAD takes speaker embedding, like i-vector, as input to get a
personalized VAD output. This architecture shows superior perfor-
mance in the overlapped speech condition. The speaker embedding
is initialed with a fair result and improved by an iterative process.
Inspired by end-to-end neural diarization (EEND) [4] and active
speaker detection (ASD) [5], the speaker in context is a crucial
cue in the multi-talker condition, which can suppress non-talkers,
especially when there is only one talker. Based on speaker context,
multi-talker TS-VAD takes all speakers as input to train the network
jointly.

In our system, we also take similar architecture to the multi-
talker TS-VAD. The main differences are as follows. First, we
adopt transformer-based architecture to grasp long-term features
for single-speaker feature extraction. Second, several losses are
designed to regularize the training process, and angular loss is
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added to encourage the embedding to have a small intra-speaker
and large inter-speaker distance. Third, we add Inter-channel Phase
Difference (IPD) to model the spatial information and leverage
an ECAPA-TDDNN-based [6] model as the speaker embedding
module. Finally, our system achieves a 22% relative improvement
compared to the baseline. Extensive experiment results are listed in
Section 2.5.

2. METHODS

The system architecture shown in Figure 1 consists of a single-
speaker encoder and a multi-speaker decoder. The single-speaker
encoder combines different features for each speaker, while the
multi-speaker decoder models the speaking relationships among
speakers.

2.1. Single-speaker Encoder

Location Encoder Based on the phase part of STFT, we calculate
Inter-channel Phase Difference (IPD) as the spatial feature. Specif-
ically, we calculate the difference between (0,3), (1,4), and (2,5),
where the number is the microphone number, and there are six mi-
crophones in total.

Audio Encoder We extract a filter bank with 80-dimensional
features from the first microphone as the audio features by using
Hamming windowed frame of 25ms with a shift of 10ms. To match
the visual frame sampling rate, audio features are down-sampled
from 100Hz to 25Hz through Conv1D.

Speaker Embedding Encoder We pre-train the ECAPA-
TDNN [6] model on VoxCeleb and CNCeleb with 10,365 speak-
ers. Then we fine-tune the model on the MISP training set with
910 speakers. In the feature extraction module, we take a 192-
dimensional feature from the last FC layer as the speaker embedding
feature. The first initial embedding is extracted from the visual VAD,
and the embedding is updated iteratively until the result converges.

Visual Encoder We adopt ResNet34 and TCN as our optical
encoder. We do not initial the encoder with any pre-trained param-
eters. We directly use the face RoI result by the MISP dataset, and
the lacking face is filled with zero matrices. Apart from flipping,
cropping, or rotation, we design a data augmentation called ‘random
delete,’ which randomly sets 10% to 60% frames to zero matrices
to simulate the missing visual modality. In our experiment, we find
that this technique can prevent the model from over-fitting.

Feature Fusion Encoder We use two encoder blocks with 256
attention units and four heads. Before being fed into the transformer
layers, all features will be projected a unified dimension: 128, and
four features will be concatenated to 512. IPD features and speaker
embedding features will be repeated T times along the time axis. Ad-
ditionally, we have incorporated a skip connection to link the visual
and fused features, as we consider the visual cue is essential.IC
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Fig. 1. The overview of our multi-speaker end-to-end multi-modal speaker diarization system.

2.2. Multi-speaker Decoder

This decoder is a two-layer BLSTM, which learns the speaker con-
text cues by predicting the VAD result and the speaker number.

2.3. Losses

We use five losses: visual VAD loss, single-speaker VAD loss, multi-
speaker VAD loss, speaker loss, and speaker number judgment loss.
We calculate the time-weighted speaker embedding and optimize
the embedding via an angular loss: AAM-Softmax. Apart from the
speaker loss, other losses are BCE losses that are same to the base-
line. The loss weights are 0.01, 0.1, 1, 0.01, and 0.01, respectively.

2.4. Post-processing Methods

Logit Average. We generate multiple results by a two-second-step
sliding window and average the logit to smooth the result.

Dual Threshold. To expand the segment boundaries, we adopt
a dual-threshold strategy commonly used in VAD to adjust the seg-
ment boundary. The low and high thresholds are set to 0.45 and 0.7.

2.5. Results

As shown in Table 1, the experimental results demonstrate the sig-
nificance of the components and techniques used in the system on
its performance. For threshold strategy, our final system uses a dual
threshold in the post-processing module, while systems with other
setups use a single threshold of 0.65. The evaluation metric is the
diarization error rate (DER), which is the sum of false alarm (FA),
miss detection (MS), and speaker confusion (SC).

The final system achieves a DER of 10.82%, which is in line
with the leaderboard. Removing the post-processing module, which
includes the logit average and dual threshold, decreases performance
by 0.54%. The use of ECAPA-TDNN for speaker feature extraction
is found to be more effective than using an i-vector, as a replacement
results in a decrease in performance by 0.67%. The 0.82% decrease
in performance demonstrates the importance of speaker context cues
after removing the multi-speaker decoder.

Updating the i-vector in the TS-VAD and including the IPD fea-
ture is also shown to be essential for performance, as not updating
the i-vector and using a fixed speaker embedding resulted in a de-
crease of 0.85%, and removing the IPD feature results in a decline
of 1.09%. The speaker embedding module (i-vector) is also found
to be necessary, as removing it resulted in a decrease in performance
by 0.76%. The ‘random delete’ augmentation is shown to prevent
over-fitting, as removing it decreased performance by 0.84%.

Table 1. The false alarm (FA), miss detection (MS), speaker confu-
sion (SC) and diarization error rate (DER) in the evaluation set.
Method FA [%] MS [%] SC [%] DER [%]
Our System 4.44 4.28 2.10 10.82
- Post-processing 3.88 4.84 2.64 11.36
- ECAPA-TDNN [6] 3.96 5.02 3.05 12.03
- Multi-speaker 4.12 5.33 3.40 12.85
- TS-VAD [3] 6.50 4.20 3.01 13.70
- IPD 4.94 5.77 4.07 14.79
- I-vector 4.92 5.86 4.77 15.55
- Random delete 5.97 5.55 4.87 16.39
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