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ABSTRACT
Machine anomalous sound detection is a useful technique for
various applications, but it often suffers from poor general-
ization due to the challenges of data collection and complex
acoustic environment. To address this issue, we propose a
robust machine anomalous sound detection model that lever-
ages self-supervised pre-trained models on large-scale speech
data. Specifically, we assign different weights to the fea-
tures from different layers of the pre-trained model and then
use the working condition as the label for self-supervised
classification fine-tuning. Moreover, we introduce a data aug-
mentation method that simulates different operating states of
the machine to enrich the dataset. Furthermore, we devise a
transformer pooling method that fuses the features of differ-
ent segments. Experiments on the DCASE2023 dataset show
that our proposed method outperforms the commonly used
reconstruction-based autoencoder and classification-based
convolutional network by a large margin, demonstrating the
effectiveness of large-scale pre-training for enhancing the
generalization and robustness of machine anomalous sound
detection. In Task2 of DCASE2023, we achieve 2nd place
with these methods.

Index Terms— machine anomalous sound detection,
self-supervised pre-train, fine-tune

1. INTRODUCTION

The task of anomalous sound detection (ASD) [1] involves
determining whether the sound produced by a specific ma-
chine should be classified as normal or anomalous. It has
garnered significant attention from researchers owing to its
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critical role in guaranteeing the safety and operational effec-
tiveness of industrial machinery.

Unlike acoustic scene classification, this task is an unsu-
pervised learning scenario where training data comprises only
normal-state samples. The objective is to determine whether
a given test sample belongs to another class known as the
anomaly class, which encompasses various anomalous situ-
ations.

Recently, there has been a notable emergence of deep
learning methodologies designed for ASD. And these meth-
ods can be categorized into two primary groups based on
their training criteria: unsupervised and self-supervised tech-
niques. Unsupervised approaches [2, 3, 4] aim to bolster ASD
model efficiency by estimating the distribution of normal
sounds and subsequently detecting anomalies. This detec-
tion process hinges on evaluating the likelihood of unknown
sounds conforming to this established normal distribution.

On the other hand, self-supervised techniques [5, 6, 7]
leverage the metadata of audio files (such as machine types
and machine status) as labels to train a classifier to extract
the latent representation of machine sounds. Despite the no-
table achievements of these methodologies, their capacity for
generalization often remains limited, primarily due to the in-
herent challenges posed by data collection and the complexity
of acoustic environments.

To address this challenge, our focus is on identifying
robust audio encoders with the capacity for generalization,
thereby mitigating the risk of overfitting to a limited training
dataset. In recent years, the adoption of large-scale pre-
trained models has emerged as the predominant approach
for achieving state-of-the-art performance. Building upon
the groundbreaking achievements of models like BERT [8] ,
researchers within the speech community have introduced a
range of innovative architectures. Examples include wav2vec
2.0 [9], HuBERT [10], UniSpeech [11] and WavLM [12], all
of which leverage extensive unlabeled speech data. These
methods have yielded impressive results in automatic speech
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recognition (ASR) tasks, capitalizing on the power of pre-
training and demonstrating the potential of leveraging vast
amounts of unlabeled data in the speech domain.

Inspired by the excellent results of the pre-trained models
in various downstream tasks [13, 14], we adopt multiple large
scale pre-trained models to enhance the generalization per-
formance in the context of anomalous sound detection. To ad-
dress the issue of limited data diversity from a single machine,
we introduce a novel approach known as “status augmenta-
tion,” which simulates diverse machine statuses. Finally, we
enhance the system’s stability by incorporating a transformer
pooling method for segment fusion. We participated in Task2
of DCASE and achieved 2nd place with these strategies. Our
contribution can be succinctly summarized as follows::

• We firstly explore several large scale pre-trained mod-
els for robust machine anomalous sound detection.

• We are the first to propose a data augmentation method
named “status augmentation” for anomalous sound de-
tection to simulate different operation status of machine
by perturbing the speed.

• We adopt transformer pooling to gather the embeddings
from the same recording into one embedding for dis-
covering effective information.

2. LARGE SCALE PRE-TRAINED MODELS

In this section, we will provide a concise overview of several
large scale pre-trained models investigated in this paper.

Wav2Vec 2.0 [9] is a continuation of the wav2vec series.
It replaces the original architecture’s convolutional context
network with multi-layer transformer-based encoder. While
incorporating discrete speech units and a quantization mod-
ule akin to the vq-wav2vec model [15], wav2vec 2.0 reverts
to the original contrastive objective used in the first version
of wav2vec, rather than adopting BERT’s masked language
modeling objective. It’s worth noting that we use the scale-up
XLS-R version, which utilize much more training data.

UniSpeech [11] presents a multi-task model that inte-
grates a self-supervised learning objective, similar to wav2vec
2.0, with a supervised ASR objective using Connectionist
temporal classification. This combined approach enables
enhanced alignment between discrete speech units and the
phonetic structure of the audio, resulting in improved perfor-
mance in multi-lingual speech recognition and audio domain
transfer tasks.

HuBERT [10] utilizes the architecture of wav2vec 2.0
while substituting the contrastive objective with BERT’s orig-
inal masked language modeling objective. This transforma-
tion involves a two-step pre-training process. In the cluster-
ing step, short speech segments are assigned pseudo-labels,
and in the prediction step, the model is trained to predict these

Status Augmentation
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Fig. 1. Overview of the pretrained models based classification
system. For the waveform sound, we first augment it with sta-
tus augmentation. Then, the augmented waveform is fed into
a large-scale pre-trained model and transformed into embed-
ding for training and evaluation.

pseudo-labels at randomly-masked positions within the origi-
nal audio sequence. This strategy facilitates the incorporation
of BERT’s objective into the wav2vec 2.0 architecture.

WavLM [12] models adhere to the HuBERT framework
but emphasize data augmentation during the pre-training
phase to enhance speaker representation learning and subse-
quently improve performance in speaker-related downstream
tasks.

3. APPROACHES

The overview of our proposed methods is shown in Fig. 1.
The details of our proposed methodology are elaborated upon
in this section.

3.1. Status Augmentation

Inspired by speed perturbation, a technique commonly used
in the field of automatic speech recognition (ASR) [16] and
speaker verification (SV) [17] to improve the robustness and
generalization of systems, we propose a data augmentation
method named “status augmentation”. It can account for vari-
ations in operational status and increase the robustness of the
ASD models, based on the fact that changing the speed of a
sound signal can alter its frequency and duration, which are
related to the operation status of machines.

During the status augmentation process, the original
speech signal is modified by stretching or compressing its
duration while maintaining the original pitch or not. This ma-
nipulation is achieved by resampling the signal at a different
rate or adjusting the playback speed. By applying random

1327

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 06,2024 at 09:05:58 UTC from IEEE Xplore.  Restrictions apply. 



status augmentation to the sound signals, we generate syn-
thetic data that emulates diverse machine operational statuses.
These synthetic datasets serve to augment the original training
data, enabling the training of more diverse and effective ASD
models. Consequently, this augments the models’ capacity
for generalization.

3.2. Classification Training with Pre-trained Models

The general idea of this paper is to adopt large-scale pre-
trained models for fine-tuning on normal machine sounds
through classification training, and then detect the anoma-
lous sound based on the fine-tuned models. As illustrated in
Figure 1, this process can be segmented into two key stages:
training and inference.

During the training process, we fine-tune the pre-trained
models on training data with a classifier to categorize the op-
erational status of machines [5]. The input feature for the pre-
trained model is a waveform. After traversing through several
convolutional blocks and transformer layers, the waveform
is encoded into several sequence representations denoted as
Hl, where l belongs to the set {0, . . . , L}, representing each
layer. To enable the model to effectively harness information
from different layers, similar to [13], we employ learnable
weights wl to perform a weighted summation of the hidden
states, with

H̃ =
∑
l

wl ·Hl (1)

Then, the sequence H̃ will be aggregated by a pooling layer
to generate chunk-level audio embeddings. In our system, the
network is optimized to predict the attributes ID from meta-
data using AAM-softmax [18], as expressed in Equation 2.

LAAM = − 1

N

N∑
i=1

log
es(cos(θyi,i+m))

Z
(2)

where Z = es(cos(θyi,i+m)) +
∑c

j=1,j ̸=i e
s(cos(θj,i)), θj,i is

the angle between the column vector Wj and embedding xi,
where both Wj and xi are normalized. s is a scaling factor
and m is a hyperparameter to control the margin.

During the inference phase, we use the previously fine-
tuned network to extract the embeddings from the training set,
allowing us to establish the distribution of normal machine
sounds. Then, k-NN [19] is adopted as the outlier detector
here to compute the anomaly score. This score is then used
to ascertain whether a given sound falls within the normal
distribution.

3.3. Transformer Pooling

In our observations, we noted that within a recording, the
pertinent signal for anomaly detection does not persist con-
tinuously. Therefore, it is important for the model to au-
tonomously acquire the skill of discovering effective infor-

mation. So we chunk the recording into several shorter seg-
ments using a sliding window and extract embedding repre-
sentations from each of these segments. To enhance the ag-
gregation of embeddings from the same recording and cap-
ture essential information effectively, we utilize a transformer
pooling layer to fuse multiple embeddings into one with the
attention mechanism. Consistent with the training objective
outlined in Figure 1, we employ a classification to optimize
the transformer pooling layer.

4. EXPERIMENTAL SETUP

Dataset We conduct experiments on the development (with-
out additional part) dataset of Task2 in DCASE 2023 Chal-
lenge [1], which includes seven machine types (Bearing, Fan,
GearBox, Slider, ToyCar, ToyTrain, and Valve). For each
machine type, this dataset provides (i) 1000 clips of normal
sounds for training, and (ii) 100 clips each of normal and
anomalous sounds for the test. Additionally, the attributes of
each sample in the training and test data are provided, and we
use the attributes as labels for self-supervised classification
training [5].
Evaluation Metrics For evaluation metrics, we evaluated the
systems with the area under the receiver operating charac-
teristics (ROC) curve (AUC) and the partial AUC (pAUC)
following the setup in [1]. We report the harmonic mean
(hmean) of the AUC and pAUC scores over all machine types.
Training Configuration For the detailed training configura-
tion, we adopt the AdamW as the optimizer to optimize the
whole network. In order to prevent overfitting on training
data, we use a relatively small learning rate of 5e-4 and the
weight decay is set to 1e-4. The whole training process will
last 10k steps. We don’t apply model selection, but choose the
last epoch for evaluation. Besides, to construct the training
batch effectively, we randomly sampled 2s from each record-
ing in the training process. All large-scale pre-trained models
we used are coming from the huggingface1. For back-end k-
NN, the distance metric is chosen as cosine distance, and the
number of neighbors k is selected as 2, which is same as [20].

5. RESULTS AND ANSLYSIS

The large scale pre-trained models including wav2vec 2.0,
UniSpeech, HuBERT and WavLM are pre-trained on distinct
datasets with varying training strategies. In our investiga-
tion, we assess their impact on the anomalous sound detec-
tion task and present the findings in Table 1. For the baseline
systems, we choose the reconstruction-based AutoEncoder
and classification-based convolutional network MobileNet for
comparative analysis. As the results indicate, our fine-tuned
systems based on pre-trained models are capable of achiev-
ing results comparable to the traditional baseline systems, all

1https://huggingface.co/models
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Table 1. Results of different large scale pre-trained models on anomalous sound detection of DCASE2023 [1]. The WS denotes
the weighted sum of latent representation from pre-trained models. SA and TFP means status augmentation and transformer
pooling, respectively. It’s noted that all the results we report are the harmonic mean (hmean) of the AUC and pAUC.

WS SA TFP Models All Hmean Machines (Hmean)
Bearing Fan GearBox Slider ToyCar ToyTrain Valve

- - - AutoEncoder [1] 54.96 61.47 46.55 59.11 57.26 56.55 53.79 52.74
MobileNet [5] 54.13 60.88 41.29 58.39 96.54 48.32 46.89 52.15

% % %

Wav2Vec 2.0 57.89 54.71 56.19 55.08 78.80 50.16 52.99 65.80
UniSpeech 53.39 53.63 51.52 52.41 58.40 50.49 54.28 53.73
HuBERT 53.19 53.14 52.79 57.55 55.32 50.64 52.03 51.50
WavLM 55.30 54.64 53.81 58.34 58.51 53.71 52.85 55.79

Avg. 54.94 54.03 53.58 55.84 62.76 51.25 53.04 56.70

! % %

Wav2Vec 2.0 61.96 61.21 62.24 64.45 74.07 64.40 56.57 54.48
UniSpeech 61.57 66.89 64.24 62.69 81.04 59.06 54.30 51.18
HuBERT 62.36 61.83 59.45 72.90 81.04 59.75 56.70 53.14
WavLM 62.33 63.00 52.50 66.98 83.36 59.01 58.51 60.92

Avg. 62.06 63.23 59.61 66.76 79.88 60.55 56.52 54.93

! ! %

Wav2Vec 2.0 63.17 58.67 60.20 68.46 75.54 64.12 57.38 61.38
UniSpeech 63.35 63.85 67.95 67.74 72.45 66.64 54.35 55.09
HuBERT 63.06 61.11 60.91 66.63 72.39 66.66 53.82 63.24
WavLM 63.13 61.94 60.35 66.73 75.31 58.99 56.78 65.22

Avg. 63.18 61.39 62.35 67.39 73.92 64.10 55.58 61.23

! ! !

Wav2Vec 2.0 64.31 57.10 62.76 67.52 79.11 63.47 57.35 67.79
UniSpeech 64.30 65.19 69.31 65.81 75.31 66.41 55.16 57.36
HuBERT 62.92 59.88 62.65 64.85 72.03 67.46 56.04 60.15
WavLM 63.50 60.21 54.80 69.06 71.05 66.49 61.89 63.99

Avg. 63.76 60.60 62.38 66.81 74.38 65.96 57.61 62.32

without using WS, SA, TFP strategies. This underscores the
efficacy of the acoustic features extracted by pre-trained mod-
els in the context of ASD tasks, even though their initial pre-
training objective pertains to speech-related tasks.

Fig. 2. The visualization of weight value wi for each layer. It
should be noted that the wav2vec 2.0 has 24 layers and others
only have 12 layers.

Instead of simply using the outputs from the last layer of
the pre-trained models, we employ a weighted sum (WS) ap-
proach to blend the hidden states from various layers, thereby
merging acoustic features across different scales. According
to the results in Table 1, pre-trained models with weighted
sum obtain significant performance improvement (Avg. All
Hmean from 54.94 to 62.06) and outperform the baselines
by a large margin. In addition, we provide a visualization
of the weight vale wi for each layer in Fig. 2. The figure

shows that the distribution of layers with high importance is
relatively uniform, and there is no phenomenon of concentra-
tion in shallow or deep layers like [13]. It indicates that the
anomalous information may be hidden at different scales, and
this multi-layer fusion mechanism can effectively improve the
robustness of ASD task.

Based on the pre-trained models, we also evaluate the ef-
fectiveness of the status augmentation (SA) we proposed in
Table 1. It can be observed that there exists an improvement
in consistency across all pre-trained models. Similarly, we
also provide the comparison results of transformer pooling
(TFP). Performance will also be further improved with TFP.

6. CONCLUSION

In this paper, to tackle the poor generalization problem in
ASD caused by the challenges of data collection and complex
acoustic environment, we explore several pre-trained models
which are trained on large scale speech data for robust per-
formance. Comparing with traditional baseline systems, it
can achieve excellent results on DCASE2023 dataset. In ad-
dition, we propose status augmentation for augmenting nor-
mal sounds. Finally, we adopt a transformer based pooling
method to gather the effective information from the record-
ings. With these strategies, we outperform the commonly
used methods by a large margin and achieve 2nd place in
Task2 of DCASE2023.
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