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ABSTRACT
The mismatch between close-set training and open-set test-
ing usually leads to significant performance degradation for
speaker verification task. For existing loss functions, metric
learning-based objectives depend strongly on searching ef-
fective pairs which might hinder further improvements. And
popular multi-classification methods are usually observed
with degradation when evaluated on unseen speakers. In this
work, we introduce SphereFace2 framework which uses sev-
eral binary classifiers to train the speaker model in a pair-wise
manner instead of performing multi-classification. Benefiting
from this learning paradigm, it can efficiently alleviate the
gap between training and evaluation. Experiments conducted
on Voxceleb show that the SphereFace2 outperforms other
existing loss functions, especially on hard trials. Besides,
large margin fine-tuning strategy is proven to be compatible
with it for further improvements. Finally, SphereFace2 also
shows its strong robustness to class-wise noisy labels which
has the potential to be applied in the semi-supervised training
scenario with inaccurate estimated pseudo labels.

Index Terms— speaker verification, sphereface2, binary
classification, large margin fine-tuning

1. INTRODUCTION

Speaker verification (SV) is the task of determining whether
a pair of speech segments belong to the same speaker or not.
Recently, with the thriving of deep neural networks (DNN),
DNN-based speaker verification systems have obtained ex-
cellent performance when compared with traditional Gaus-
sian Mixture Model (GMM)-based i-vector [1]. Generally,
a typical SV model consists of three parts: (1) a frame-level
speaker feature extractor [2, 3], (2) a pooling layer for statistic
aggregation [4, 5, 6] and (3) a loss function for optimization.

For loss functions in SV, it can be mainly divided into
two technical routes. Firstly, considering the open-set set-
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ting of SV task, it’s reasonable to use contrastive learning-
based metric objectives (eg. angular prototypical [7]) to opti-
mize the pair-wise similarity. On the other hand, the softmax-
based multi-class classifier is adopted to distinguish the dif-
ferent speakers in training set [8, 9]. However, in verifica-
tion task, both of them have some shortcomings. For metric
learning-based methods, the performance strongly depends
on the strategy to search effective pairs or triplets which is
very time- and computation-consuming with the increasing
of training samples number. For multi-classification methods,
the embeddings produced by the DNN are not generalizable
enough and performance degradation is observed when evalu-
ated on unseen speakers due to the lack of similarity optimiza-
tion explicitly [8]. Recently, several margin-based softmax
variants [10, 11, 12, 13, 14, 15] are proposed to boost the dis-
criminative power of speaker representation. They optimize
the speaker embedding in a hyper-sphere space and encour-
age intra-class compactness by adding a margin to tighten the
decision boundary. Although these multi-classification meth-
ods obtain significant performance gains, it’s still difficult to
ignore the mismatch between close-set training and open-set
evaluation.

To alleviate the close-set assumption, in this paper, we
introduce a novel binary classification-based framework
SphereFace2 [16] for speaker verification. Unlike multi-
classification training widely used before, it performs binary
classification on hyper-sphere space which can effectively
bridge the gap between training and evaluation, since both
training and evaluation adopt pair-wise comparisons. Specif-
ically, suppose there are K speakers in the training set, it
will construct K independent binary classification objec-
tives which regard data from the target speaker as positive
samples and the others are negative. Experiments are con-
ducted on Voxceleb [17, 18], and the results illustrate that the
SphereFace2 achieves better performance compared with the
metric loss and multi-classification loss, which demonstrates
that its pair-wise training manner can efficiently alleviate the
mismatch between close-set training and open-set testing.
Moreover, SphereFace2 also verifies its robustness against
class-wise label noise, benefiting from the weak supervision
of pair-wise labels.IC
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2. RELATED WORK

2.1. Metric Learning-based Loss

Prototypical loss [19] is a widely used metric learning-based
loss function in speaker verification. During the training, each
mini-batch consists of a support set S and a query set Q. In
our implementation, we sample N × M utterances in each
mini-batch, where N is the speaker number and M is the ut-
terance number for each speaker. Besides, we consider the
M -th utterance for each speaker as the query and the others
as the support set. Then the prototype cj for each speaker can
be calculated by cj = 1

M−1

∑M−1
m=1 xj,m. Then, i-th query

can be classified against N speakers based on softmax to op-
timize the distance between samples and prototypes:

LP = − 1

N

N∑
i=1

log
eSi,i∑N
k=1 e

Si,k

(1)

where Si,k = ||xi,M − ck||2, the squared Euclidean distance
between the i-th query and k-th prototype. Besides, we can
replace the L2-distance function with a cosine-based similar-
ity metric to get angular prototypical loss [7]:

Si,k = w · cos(xi,M , ck) + b (2)

where w and b are learnable scale and bias parameters.

2.2. Margin-based Softmax

For margin-based softmax loss function, the general formula
can be summarized as:

LM = − 1

N

N∑
i=1

log
es·ψ(θyi )

es·ψ(θyi ) +
∑
j ̸=yi e

s·cos(θj)
(3)

where ψ(θyi) = cos(m1θyi+m2)−m3 and s is the scale fac-
tor to accelerate and stabilize the training. The m1, m2 and
m3 correspond to angular softmax (A-softmax) [10], addi-
tive angular softmax (AAM-softmax) [11] and additive mar-
gin softmax (AM-softmax) [12] respectively. With these mar-
gins, the decision boundary is tightened which can explicitly
enhance the similarity of intra-class samples and enlarge the
distance between inter-class samples.

3. SPHEREFACE2: BINARY CLASSIFICATION

GivenK speakers in the training set, SphereFace2 is designed
to alleviate the mismatch between close-set training and open-
set evaluation by explicitly constructing K independent bi-
nary classification heads to perform the pair-wise compari-
son. Specifically, for the i-th sample in a batch, xi ∈ Rd
represents the corresponding input to the classification layer
and yi is the ground truth. For the projection head, we denote

the weights of the j-th binary classifier by W j . Then the loss
can be formulated as:

Li = log(1 + exp(−W⊤
yixi − byi))

+

K∑
j ̸=yi

log(1 + exp(W⊤
j xi + bj))

where Li is a summation ofK standard binary logistic regres-
sion losses. Following [10, 12, 11], binary classification can
also be optimized in hyper-sphere space by removing the bias
bi and fixing all the binary classifier ||W j ||2 = 1 and speaker
embedding ||x||2 = 1. Due to the lack of norm information,
the variation range of cosine similarity is very small. So an-
other parameter s is introduced to scale the cosine similarity
for accelerating and stabilizing the optimization [12]:

Li = log(1 + exp(−s · cos(θyi))

+

K∑
j ̸=yi

log(1 + exp(s · cos(θj))

For K independent binary classifier and a sample xi, they
can only construct one positive sample and K − 1 negative
sample which is highly imbalanced. A simple but effective
method is to introduce a weight parameter λ ∈ [0, 1] to bal-
ance the gradients for positive and negative samples. Then,
the loss function becomes:

Li =λ log(1 + exp(−s · cos(θyi))

+ (1− λ)

K∑
j ̸=yi

log(1 + exp(s · cos(θj))

For multi-classification soft-based loss [10, 11, 12], the
decision boundary among different classes is not unified since
there exists a competition among different classifiers and the
boundary will be largely affected by the neighbor classifiers.
As for SphereFace2, it can avoid such competition by utiliz-
ing K independent binary classifiers, and then achieve a uni-
versal confidence threshold 0 (s · cos(θyi) = 0). However,
it’s difficult to achieve the universal threshold 0 in practice.
Thus, the bias that was removed before comes back again to
improve the training stability:

Li =λ log(1 + exp(−s · cos(θyi)− b))

+ (1− λ)

K∑
j ̸=yi

log(1 + exp(s · cos(θj) + b))

where b means the bias term. Then, the bias b becomes the
universal confidence threshold for all the binary classifiers
and the decision boundary is turned into s · cos(θyi) + b = 0
which can increase the stability of training.

The introduction of large margin penalty [10, 11, 12] on
decision boundary, which can enforce the intra-class tightness
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and the inter-class discrepancy, has boosted the verification
performance significantly. Similarly, an additive angular mar-
gin is added to SphereFace2 framework on two sides includ-
ing positive and negative samples. Then the loss function can
be formulated as:

Li =λ log(1 + exp(−s · (cos(θyi)−m)− b))

+ (1− λ)

K∑
j ̸=yi

log(1 + exp(s · (cos(θj) +m) + b))

where m is the adjustable margin parameter which can be
used to further tighten the boundary. The final decision
boundary of positive and negative samples are s · (cos(θyi)−
m) + b = 0 and s · (cos(θyi)−m) + b = 0 respectively.

A large inconsistency between the positive and negative
pairs’ score distribution is observed in [16], and this discrep-
ancy will make it difficult to find a threshold to distinguish the
positive pairs due to the large overlap. To tackle this problem,
a similarity adjustment method is proposed to map from angle
to similarity score during training for discriminative distribu-
tion. Then, the final loss function can be summarized as:

Li =λ log(1 + exp(−s · (g(cos(θyi))−m)− b)) (4)

+ (1− λ)

K∑
j ̸=yi

log(1 + exp(s · (g(cos(θj)) +m) + b))

where g(z) = 2( z+1
2 )t−1 is a mapping function to adjust the

score similarity distribution.
It is noteworthy that all types of angular margins are com-

patible with SphereFace2. In addition to the Additive-type
margin [12] in Equation 4, we also explore the ArcFace-type
margin [11] and a combination of two types margins which
are denoted as SphereFace-A and SphereFace-M respectively.

4. EXPERIMENTS SETUP

4.1. Dataset

In our experiment, we trained all the systems on the de-
velopment set of Voxceleb2 [18], which contains 1,092,009
utterances among 5,994 speakers. The evaluation trials in
our experiment include three cleaned version trials Vox1-O,
Vox1-E and Vox1-H constructed from 1251 speakers in Vox-
celeb1 [17]. In addition, the validation trials from VoxSRC
2020 and VoxSRC 2021 are introduced to evaluate the per-
formance on hard trials.

4.2. Training Detail

To explore the extreme performance of SphereFace2, three
online data augmentation methods including adding noise [20],
reverberation1 and speed perturbation [21] are applied here

1https://www.openslr.org/28

for robust training. The length of training samples is 2 sec-
onds and we extract 80-dimensional Fbank with 25ms length
Hamming windows and 10ms window shift as the input fea-
ture, while no voice activity detection (VAD) is involved
here. The encoder we adopt is 32 channels ResNet34 [22]
with statistic pooling, and stochastic gradient descent (SGD)
with momentum of 0.9 and weight decay of 1e-4 is employed
as the optimizer to train the model. The whole training pro-
cess will last 150 epochs and the learning rate decrease from
0.1 to 1e-5 exponentially. As for large margin fine-tuning
[23], the initial learning rate is set to 1e-4 and we train the
models with only 5 epochs. It should be noted the margin is
set to 0.35 and the segment duration increases to 6s in this
stage.

4.3. Evaluation Metrics

For evaluation, we use cosine distance as the scoring criterion.
After that, adaptive score normalization (A-snorm) [24] and
quality-aware score calibration [23] applied for further im-
provements. Performance is measured in terms of the equal
error rate (EER) and the minimum detection cost function
(minDCF).

5. RESULTS AND ANALYSIS

5.1. Comparison between Different Loss Functions

In this section, we first give a results comparison between
different loss functions in Table. 1. In [7], metric learning-
based objectives are boosted and achieved competitive perfor-
mance with the classification-based losses when there is no
data augmentation. However, the metric learning-based ob-
jectives require large batch-size to mine enough negative pairs
and are sensitive to the hard negative mining strategy. Be-
sides, equipped with more extensive data augmentation and
advanced training strategies, the results in Table .1 show that
the classification-based losses have a more obvious advantage
over the angular prototypical loss.

Among all the multi-classification losses, it’s obvious to
find a performance leap when the margin penalty is intro-
duced to boost the discriminative power of speaker repre-
sentation compared with traditional Softmax. In addition,
SphereFace2 replaces the multi-classification with K bi-
nary classifiers, and trains the model in pair-wise learning
paradigm. In Table. 1, SphereFace2 based loss functions sur-
pass all other loss functions including metric- and softmax-
based objectives, especially in hard trials (VoxSRC20-val
and VoxSRC21-val). Moreover, the results of SphereFace2-
A and SphereFace-M are also provided in Table. 1, and we
observe that different types of angular margins perform well
and obtain similar performance.

Large margin fine-tuning (LM-FT) [23] is a training strat-
egy to further optimize the inter- and intro-class distance by
enlarging the margin and duration, which is widely used in
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Table 1. Voxceleb and VoxSRC results comparison between different loss functions. LM-FT denotes the large margin
fine-tuning strategy. For AM and AAM, the margin and scale are set to 0.2 and 32 respectively. And for circle loss, the margin
and scale are 0.25 and 64 following the setup in [13]. For A-softmax, the margin is 4.

Loss Function Vox-O Vox-E Vox-H VoxSRC20-val VoxSRC21-val
DCF0.01 EER DCF0.01 EER DCF0.01 EER DCF0.05 EER DCF0.05 EER

Angular Prototypical [7] 0.2286 1.356 0.1927 1.468 0.2885 2.699 0.2366 4.100 0.3361 6.614
Softmax 0.1425 1.324 0.1532 1.292 0.2274 2.295 0.1955 3.549 0.2185 4.166
Circle Loss [14, 13] 0.1014 0.946 0.1166 1.031 0.1702 1.823 0.1547 2.878 0.1743 3.147
A-Softmax [10] 0.1200 0.984 0.1300 1.087 0.1992 1.930 0.1628 3.003 0.2115 3.771
AM-Softmax [12] 0.0914 0.840 0.1147 0.987 0.1743 1.796 0.1553 2.919 0.1875 3.453
AAM-Softmax [11] 0.0840 0.861 0.1122 0.996 0.1749 1.767 0.1531 2.830 0.1925 3.450
SphereFace2-A 0.0690 0.862 0.1069 0.993 0.1649 1.731 0.1494 2.761 0.1686 2.836
SphereFace2-M 0.0851 0.914 0.1182 1.059 0.1772 1.831 0.1576 2.901 0.1838 3.060
SphereFace2 0.0757 0.877 0.1065 0.969 0.1699 1.726 0.1476 2.731 0.1741 3.067
+ LM-FT 0.0571 0.670 0.0852 0.809 0.1384 1.424 0.1242 2.345 0.1376 2.362

building challenge systems. And we find that LM-FT is also
compatible with SphereFace2 and leads to a great perfor-
mance gain.

Finally, we provide an ablation study to analysis the effect
of hyperparameters λ, t, s and m in SphereFace2 loss, and
the results are listed in Table 2. According to the results, we
observe that the SphereFace2 achieve the best performance
under λ = 0.7, t = 3, s = 32 and m = 0.2.

Table 2. Ablation study of hyperparameters λ, t, s and m.
Results are given with EER(%).
λ t s m Vox-O Vox-E Vox-H VoxSRC20 VoxSRC21

0.7 3 32 0.2 0.877 0.969 1.726 2.731 3.067
0.8 3 32 0.2 0.835 0.976 1.728 2.780 3.083
0.7 2 32 0.2 0.808 0.989 1.724 2.821 3.183
0.7 3 32 0.2 0.877 0.969 1.726 2.731 3.067
0.7 4 32 0.2 0.829 0.980 1.750 2.834 3.160
0.7 3 24 0.2 0.761 1.000 1.800 2.849 3.407
0.7 3 32 0.2 0.877 0.969 1.726 2.731 3.067
0.7 3 40† 0.2 - - - - -
0.7 3 32 0.1 0.824 1.000 1.806 2.878 3.333
0.7 3 32 0.2 0.877 0.969 1.726 2.731 3.067
0.7 3 32 0.3 0.909 1.056 1.838 2.947 3.263

†: for parameter s, 40 is too large to train.

5.2. Robustness on Noisy Label

All the loss functions we discussed in section 5.1 are su-
pervised training loss, which require precisely labeled data.
Although the Voxceleb dataset is collected through an au-
tomated pipeline [17, 18], the authors found very few label
errors after manual inspection [18]. Thus, it is curious how
well these algorithms perform on data with noisy labels. In
this section, we select the best performed multi-classification
loss AAM-softmax and compare it with the SphereFace2 loss.
In this experiment, we randomly select 30% of the data and
change their labels before training. The corresponding results
are shown in Table 3. From the results, we find that the per-
formance of the models trained on data with noisy labels has

a clear drop in performance. Surprisingly, the performance
degradation of the model trained with SphereFace2 loss is
much smaller than the model trained with AAM-softmax.
This is because the multi-class softmax function has very
strong supervision, which pushes all the similarities between
embedding and non-target centers smaller than the similarity
between embedding and target centers. However, this strong
supervision loss can be counterproductive when there are
some data with noisy labels. In comparison, SphereFace2
loss has weaker supervision and is more robust to the noisy
labels.

Table 3. EER(%) results of different loss functions trained
on data with noisy labels. It should be noted that A-snorm
and score calibration are not used here because these strate-
gies require accurate speaker labels.

Loss Function AAM-softmax SphereFace2
Noisy Proportion(%) 0 30 0 30
Vox-O 1.058 2.005 1.032 1.638
Vox-E 1.147 2.106 1.060 1.665
Vox-H 2.087 3.744 1.907 2.931
VoxSRC20-val 3.398 5.669 3.120 4.646
VoxSRC21-val 4.074 5.743 3.373 4.798

6. CONCLUSION

In this paper, we introduce SphereFace2, a binary classification-
based loss function for speaker verification to alleviate the
mismatch between open-set training and close-set testing.
Experiments conducted on Voxceleb show its leading per-
formance compared with popular metric learning or multi-
classification based loss functions. Moreover, the large mar-
gin fine-tuning strategy is applicable to further boost the
performance. Finally, SphereFace2 also shows its strong ro-
bustness to class-wise noisy labels which has the potential
to be applied in the semi-supervised training scenario with
inaccurate estimated pseudo labels.
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