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Layer-Wise Fast Adaptation for End-to-End
Multi-Accent Speech Recognition

Yanmin Qian , Senior Member, IEEE, Xun Gong , and Houjun Huang, Member, IEEE

Abstract—The variety and complexity of accents pose a huge
challenge to robust Automatic Speech Recognition (ASR). Some
previous work has attempted to address such problems, however
most of the current approaches either require prior knowledge
about the target accent, or cannot handle unseen accents and
accent-unspecific standard speech. In this work, we aim to improve
multi-accent speech recognition in the end-to-end (E2E) frame-
work with a novel layer-wise adaptation architecture. Firstly, we
propose a robust deep accent representation learning architecture
to obtain accurate accent embedding, and some advanced schemes
are designed to further boost the quality of accent embeddings,
including phone posteriorgram (PPG) feature, TTS based data
augmentation in the training stage, test-time augmentation and
multi-embedding fusion in the testing stage. Then, the layer-wise
adaptation with accent embeddings is developed for fast accent
adaptation in ASR, and two types of adapter layers are designed,
including the gated adapter layer and multi-basis adapter layer.
Compared to the usual two-pass adaptation, these adapter layers
are injected between the ASR encoder layers to encode the accent
information in ASR flexibly, and perform fast adaption on the
corresponding speech accent. The experiments on Accent AESRC
corpus show that the proposed deep accent representation learning
can capture accurate accent knowledge, and get high performance
on accent classification. The new layer-wise adaptation architec-
ture with the accurate accent embedding outperforms the other
traditional methods, and obtains consistent ∼15% relative word
error rate (WER) reduction on all kinds of testing scenarios, includ-
ing seen accents, unseen accents and accent-unspecific standard
speech.

Index Terms—End-to-end speech recognition, multi-accent,
layer-wise adaptation, accent embedding.

I. INTRODUCTION

ONE of the challenges for ASR today is the support for
multiple accents, which is often referred as multi-accent

speech recognition in the literature. Distinguished by phonol-
ogy, grammar, vocabulary, and orthography (e.g. “color” vs
“colour”), accents are usually divided and named by social
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groups and geographical regions [1], [2]. For example, The peo-
ple in China, the United Kingdom and the United States speak
English with different accents, which are referred to as the Chi-
nese accent, British accent, and American accent, respectively.
Although state-of-the-art ASR systems report high performance,
their performance still degrades dramatically when processing
accented data. The main difficulties of multi-accent ASR are:
(1) the lack of accented data in training which causes the unbal-
ance between accent-unspecific and accented data [3], (2) the
catastrophic forgetting where performance on the standard data
decreases dramatically, during fine-tuning on accented data [4].

One straightforward way is to feed the accent utterance into
accent-specific model [5], where the accent-specific model is
fine-tuned on the corresponding accented data. Usually, the
accent of an utterance is known as prior information, and if no
accent label is provided in advance, an auxiliary accent identifier
is applied [6], [7]. However, building accent-specific models is
cumbersome in production and increases maintenance costs. Ac-
cordingly some techniques are proposed to adapt a unified model
to perform well on all different accents. KL-divergence [8],
[9], [10] between the fine-tuned and baseline models is applied
through weight constraint adaptation or elastic weight consolida-
tion. Compared with the fine-tuning scheme on specific accent,
such methods try to avoid catastrophic forgetting, but lack of
improvements on accented data.

Recently multi-task learning (MTL) is proposed to jointly
optimize the objective of accent identification and speech recog-
nition by sharing some shallow layers, and improvements on
accented data can be observed. Yang et al. [11] shares the
encoder with separate output layers for two accents and an accent
identifier branches from the encoder to make a choice of which
output layer to use. Jain et al. [12], [13] adds two auxiliary tasks,
i.e. accent identification and phone identification, into the ASR
task. Li et al. [14] and Rao et al. [15] insert special accent label
tokens to the text label sequences during training inspired by
code-switching ASR. Hu et al. [16] gives a theoretical guarantee
on how accent adversarial training learns accent-invariant rep-
resentations. However, such approaches have a large number of
parameters to estimate with back-propagation and cannot always
avoid overfitting in case of limited accented data. Usually the
improvement is also not large.

Inspired from the success of speaker adaptation in ASR,
some adaption approaches are developed to incorporate accent
information into a single generic ASR model. Mixture of ex-
perts (MoE) is one method proposed in [13], [17], [18]. Different
experts are specialized to operate on one aspect in the input
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space. Outputs of the experts are then linearly combined using
data-dependent weights generated by an additional auxiliary
accent identifier. Selection of experts by one-hot encoding of
accents is another intuitive technique outperforming the accent-
specific models, and each expert is designed to cover certain
types of accents [14], [19]. Yoo et al. [17] and Zhu et al. [20]
build upon the one-hot approach by further integrating accent
information using Feature-wise Linear Modulation (FiLM). To
solve the ‘unknown’ accent issue, [17] tried to add an ‘unknown’
accent. However the drawbacks of one-hot accent encoding are
that it is not effective for unseen accents or accent-unspecific
data and it usually requires auxiliary accent labels.

In this paper, we proposed a layer-wise adaptation mechanism
to improve the speech recognition accuracy on the accented
speech data. This is an extension of our prior work [21], but
with more contents, experiments and analysis. Firstly to obtain
expressive accent representation, a neural network based deep
accent representation learning framework is developed with both
TDNN [22] and Ecapa-TDNN [23], and some advanced schemes
are also applied to generate better accent embeddings, including
posteriorgram (PPG) input features, text-to-speech (TTS) based
training data augmentation, test-time augmentation on the test
phase and multiple embedding fusion. Instead of usual con-
catenating accent embeddings with input features for the ASR
system, a layer-wise adaptation using accent embedding is then
proposed to fast adapt the speech recognition system on the
accented data. The gated mechanism and multi-basis combina-
tion in one adapter layer are rapidly adjusted with the accent
embeddings. With the proposed architecture, accent adaptation
can be performed in a flexible manner, and achieve an improved
system performance with a compact adaptation parameter set.
Moreover, as the proposed architecture models different accents
in the continuous embedding space, it can naturally cope with
unseen accents and avoid the performance degradation on the
accent-unspecific standard speech data.

The main contributions of this paper can be summarized as
follows:
� A deep accent representation learning framework is de-

veloped on the advanced deep models, and some use-
ful strategies are further applied upon this framework to
generate more accurate and effective accent embedding
representation.

� A rapid layer-wise adaptation architecture with accent
embedding is proposed for accented speech recognition,
and this architecture works well on all kinds of end-to-end
ASR models.

� Two types of adapter layers are designed, one utilizes a
gated mechanism and the other consists of multiple bases.
The accent information can be learned flexibly with these
adapter layers, and these two types can be also integrated
together to get more improved performance.

� The entire proposed method is significantly better than
traditional methods on accented speech recognition which
obtains substantial ASR performance improvement on seen
and unseen accents. Meanwhile, the proposed adapta-
tion method succeed in avoiding catastrophic forgetting

on accent-unspecific standard speech, compared to other
methods.

The rest of the paper is organized as follows. Basic end-
to-end ASR models are firstly reviewed in Section II. Sec-
tion IV presents a novel deep accent representation learning
framework with some useful strategies to generate better ac-
cent embeddings, and Section IV proposes the layer-wise fast
adaptation architecture with accent embedding for multi-accent
speech recognition. The detailed experimental setup, results and
analysis are described in Sections V and VI, and finally the
conclusions are given in Section VII.

II. END-TO-END ASR ARCHITECTURE

This section reviews the joint CTC/Attention architec-
ture [24], [25], [26], which takes advantages of both CTC and
attention-based end-to-end ASR approaches during training and
decoding, and this architecture is also mainly utilized in this
work.

A. Connectionist Temporal Classification (CTC)

CTC [27] enforces a monotonic mapping from feature
X = [x1,x2, . . . ,xT ]

ᵀ,xt ∈ RF to token sequence C =
[c1, c2, . . . , cL]

ᵀ, cl ∈ U , where T is the frame length, F is
the feature dimension, L is the sequence length, xt is a D-
dimensional acoustic vector at frame t, and cl is the token at
position l.

CTC introduces a many-to-one function from frame-wise la-
tent variable sequences to token predictions with shorter lengths.
With several conditional independence assumptions, the poste-
rior distribution, p(C|X), is represented as follows:

pctc(C|X) =
∑
Z

∏
t

p(zt|X), (1)

where Z = [z1, z2, . . . , zT ]
ᵀ, zt ∈ U ∪ {blank} and p(zt|X)

is a frame-wise posterior distribution. By deleting blank sym-
bol and merging same labels in Z, C can be achieved. CTC
preserves the benefits of enforcing the monotonic behavior
of speech-label alignments, and also avoids the HMM/GMM
construction step or preparation of pronunciation dictionary.

B. Attention-Based Encoder-Decoder

As one of the most commonly used modeling techniques
in ASR, the attention-based framework [24] encodes speech
features into a fixed dimension vector representation H , which
is then consumed by the decoder to produce a distribution over
the outputs. We can directly estimate the posterior distribution
p(C|X) using the chain rule:

patt(C|X) = p(c1|X)
L∏

l=2

p(cl|c1, . . . , cl−1,X). (2)

Typically, a RNN or self-attention based encoder transforms
the speech feature X into frame-wise hidden vector H:

H = Encoder(X), (3)
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where H ∈ RA×T ′ , A is the feature dimension of encoder and
T ′ < T is the length of H due to the sub-sampling technique.
The decoder estimates the posterior probability distribution over
the previous letters with the attention mechanism, given C<l:

patt(cl|X) = Decoder(Attention(H,d<l),d<l,C<l), (4)

where d<l is the previous output from the decoder. For the
recurrent neural network (RNN) based decoder, the previous
letters C<l are encoded as latent context vectors. For the
transformer-based decoder, the previous letters are inputted into
the decoder together.

C. Joint CTC/Attention

The joint CTC/Attention architecture [25] benefits from
both CTC and attention-based models since the attention-based
encoder-decoder is trained together with CTC within the multi-
task learning (MTL) framework. The encoder is shared across
CTC and attention, and the loss function is a logarithmic linear
combination of the CTC and attention posterior probability:

Ljca = −λctc log pctc(C|X)− (1− λctc) log patt(C|X),
(5)

where λctc is a tunable scalar satisfying λ ∈ [0, 1] and
patt(C|X) here is an approximated probability conditioned on
previous labels.

For decoding, the joint decoded token cl at position l can be
predicted as:

ĉl = argmax
cl∈U

λctcsctc(cl) + (1− λctc)satt(cl), (6)

where satt(cl) � log patt(cl|Ĉ<l,X) is the attention score and
sctc(cl) � log pctc(Ĉ<l, cl|X) is the CTC prefix score [26].
The attention and CTC scores satt(l) can be accumulated recur-
sively from hypothesis scores from one step before and beam
search method is utilized.

III. DEEP ACCENT REPRESENTATION LEARNING

Deep representation learning using deep models has been
proven useful on some tasks, such as speaker verification with
d-vector [28], x-vector (TDNN) [22] and r-vector (ResNet) [29],
[30]. Motivated by this, accent representation learning with
advanced deep models is firstly designed in this work to obtain
accurate accent embeddings. Then some useful technologies,
including the phone posteriorgram (PPG) feature, TTS-based
training data augmentation, test-time augmentation and multi-
embedding fusion are proposed to boost the quality of the accent
representations.

A. Deep Accent Representation Learning

Motivated by the speaker embedding learning using deep
models [22], [28], we also utilize the deep model to do the accent
representation learning. Time delay neural network (TDNN)
based architecture [22] is introduced to get effective accent
embeddings at first, illustrated in Figure 1(a). The usual acoustic
features, such as Fbank or MFCC, can be firstly fed through
several frame-level layers in TDNN, and then a statistics pooling

Fig. 1. The proposed deep accent representation learning framework. (a)
Accent embedding with time-delay neural network (TDNN), and (b) Accent
embedding with Ecapa-TDNN using SE-Res2Block structure.⊕ is the residual
connection, and ⊗ denotes the channel-wise multiplication.

layer is adopted to aggregate the frame-level deep features into
a segment-level statistical matrix. The outputs of one dense
layer are extracted as the accent embeddings z, which are
considered to encode the useful accent-related knowledge. To
enforces the similarity of intra-class samples and the diversity of
inter-class samples, several softmax-based loss functions have
been proposed [31], [32], a thorough comparison of different
loss functions was carried out in [31] on speaker verification
task. Here we choose the best-performing of them, the additive
angular margin softmax (AAM-softmax) [33] loss as the objec-
tive function, as accent identification is analogous to speaker
verification. For a raw wav with accent label a ∈ {1, 2, . . . , N},
the d-dimensional accent embedding z ∈ Rd is firstly accessed
by deep model like TDNN, where N is the number of accents.
The prediction is then generated as:

Ŷ = W T ∗ z + b, (7)

Lsoftmax = − log
eŶi

∑N
j=1 e

Ŷj

, (8)

where Ŷ ∈ [0, 1]N ,Y i =
{
1, i = a

0, else
are prediction, ground

truth. W ∈ Rd×N , b ∈ RN are the weight and bias in the
projection layer. Denote θa = arccos(W a, z) be the angle be-
tween W a and z, W a is the a-th column of W , the modified
AAM-softmax loss is:

LAAM-softmax = − log
es cos(θa+m)

es cos(θa+m) +
∑N

j=1,j �=a e
s cos(θj)

, (9)

where m, s are hyper-parameters, m is the additive margin and
s is the scale parameter which can help the model converge
faster. To stabilize the convergence of the training, the margin is
gradually increased from 0 to the mfinal.
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In addition to TDNN, more advanced Ecapa-TDNN[23] is
also used. Ecapa-TDNN can improve the time-delay layer into
1-dimensional squeeze-excitation (SE) [34] res2block shown
in Figure 1(b). The SE res2block is integrated by residual
connection to model global channel inter-dependencies. While
statistics pooling, channel- and context-dependent self-attention
mechanism are adopted. The squeeze operation is a simple mean
vector of the feature F ∈ RC×T , denoted as mean(F ) across
time domain. And the subsequent excitation operation calculates
a weight w for each channel as follows:

w = σ(W 2 ∗ f(W 1 ∗mean(F ) + b1) + b2), (10)

where σ(·) denotes the sigmoid function, f(·) denotes ReLU
function, and W 1 ∈ RR×C ,W 2 ∈ RC×R, C is the channel
number and R refers to the reduced dimensionality. Finally
w is applied to the original input F through channel-wise
multiplication ⊗: F output = w ⊗ F .

B. Hybrid ASR based PPG Features

Although Fbank and MFCC spectrum features are widely
used in speech processing, they may not be the most appropriate
for accent representation learning. One reason is that the models
trained with Fbank or MFCC could not take advantage of the
data with accent labels. Another is that spectrum features are
not task-oriented and may contain some nuisance attributes like
speaker or text information, which makes the accent represen-
tation learning harder.

Accordingly, phone posteriorgram (PPG) features are ex-
plored here to do better accent embedding learning. PPG features
are first used for voice conversion [35], [36], and it is a time-
versus-class vector that represents the posterior probabilities
of phonetic classes at the frame level. In this work to make
PPG features speaker-independent, we firstly train a hybrid
speaker-independent ASR model with both the accented training
data and the accent-unspecific standard data, and then extract
the PPG features from this SI-ASR acoustic model. In addition
to the original static PPG features, the dynamic PPG features
can also be utilized with the first- and second-order differences.
With this process, the resulting PPG features have the speaker-
independent property which helps improve the robustness of the
accent embedding learning system.

C. TTS based Data Augmentation

With limited accented training data, building a more robust ac-
cent representation model requires data augmentation schemes.
Besides the conventional methods, such as speed or volume
perturbation, adding noises and room impulse responses, we
develop a novel accent-specific TTS-based data augmentation to
generate more accented data for accent representation learning.
The high-quality synthesized speech data can show speaker
variations within same texts and indistinguishable from hu-
man speech, and is proven useful in speaker verification [37]
and ASR [38]. In this work, we choose FastSpeech [39] as
our synthesizer and LPCNet [40] as the vocoder. FastSpeech
is a transformer-based TTS model which generates the entire
mel-spectrogram from text in parallel. LPCNet is a variant

Fig. 2. The multi-embedding fusion model includes the TDNN and Ecapa-
TDNN sub-models with two PPG feature types. ‘40D-PPG’ features denote the
40-dimensional PPG features, while ‘120D-PPG’ features represent the original
static 40D-PPG features with their first and second differentials.

of WaveRNN that combines linear prediction with recurrent
neural networks to significantly improve the efficiency of speech
synthesis.

To train a universal FastSpeech synthesizer, we first train a
TDNN speaker model and then feed speaker embedding and
phoneme representations to train the synthesizer. After that, we
train accent-specific synthesizers by fine-tuning to capture the
characteristics of each accent. As for LPCNet vocoders, male
and female speakers are trained separately. While synthesizing,
we use speaker-specific x-vectors with randomly selected texts
to generate new accented by the accent-specific synthesizer,
thus can not only preserve the speaker style but also adapt to
a different accent.

D. Test-Time Augmentation

In addition to the data augmentation on the training stage to
enlarge the training data, e.g. the above TTS-based data aug-
mentation, the augmentation on the test sample is also designed,
which is named Test-Time Augmentation (TTA) in this work.
Test-time augmentation is a common trick proved useful in
image classification tasks to improve the test accuracy [41].
Instead of only predicting the label of the original test audio,
the model takes multiple augmented versions of the test audio
to give the final result. Here we augment the test speech by
speed perturbation and then splice the augmented audios into
one longer utterance, which is then used to extract the accent
embeddings.

E. Multi-embedding Fusion

Finally we use a multi-embedding fusion scheme to achieve
final accent representation and identification, which is shown as
Figure 2. Four separate accent classifiers are trained individually,
and they use different deep models and different PPG features
respectively. Each model generates the related accent embed-
ding, and then four types of accent embeddings are combined
to form a new multi-embedding fusion representation. This
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Fig. 3. Schematic diagram of the proposed adapter layer in the proposed layer-wise fast adaptation architecture. The proposed adapter layer in (a) is optionally
inserted in each encoder block of the End-to-end ASR model. (b) is the proposed gated adapter layer Ag , and (c) is the proposed multi-basis adapter layer Am

with the Basis Bk in (d). Here, +, ×, and 	 denote summation, matrix multiplication, and element-wise product, respectively.

combined multi-embedding representation can be more robust
and accurate, and it can be utilized in the accent adaptation for
speech recognition or usual accent identification.

IV. LAYER-WISE FAST ADAPTATION ON END-TO-END

MULTI-ACCENT ASR

The speech recognition model usually lacks generalization on
accented data due to the accent mismatch issues. In this section,
a novel layer-wise adaptation architecture with above accent em-
bedding is proposed to improve multi-accent speech recognition
while avoiding catastrophic forgetting on the non-accented data.

A. The Adapter Layer in Layer-Wise Adaptation

The architecture of the new ASR encoder with the proposed
adapter layer is illustrated in Fig. 3(a). Denoted asA, the adapter
layer is actually a transformation which is injected into the
encoder blocks to transform the accent-independent representa-
tions H into the accent-dependent representationsA(H, z). At
i-th encoder block, the transformation takes the representation
Hi ∈ RA×T ′ and the accent embedding z ∈ Rd as the input,
where d is the dimension of accent embedding z, and then
wraps the output A(Hi, z) into later part in i-th encoder block
by a residual connection, shown as “+” in Fig. 3(a), to ensure
the original acoustic information to flow through later encoder
layers. Additionally, we normalize the input of each adapter
basis by LayerNorm [42]. Note that the accent embedding z
is obtained using the strategy proposed in the above section.
Two different types of adapter layers are explored in this work,
including the gated adapter layer Ag and multi-basis adapter
layerAm, which will be described in the following subsections.
Moreover, we also explore different encoder block modules like
Transformer [43] and convolution augmented transformer (Con-
former) [44] to verify the generalization of the proposed archi-
tecture in the experiments.

B. Gated Adapter Layer

The first type of adapter layer is designed to attain the
transform function by a gate mechanism, denoted as Ag . The

gated adapter layer encodes the accent embedding z into the
hidden representations. As illustrated in Fig. 3(b), a scaling
factor function f(z) and a shifting factor function g(z) can
be optionally applied to adapt the input acoustic features to
accent-dependent space:

Ag(Hi, z) = τ1f(z)	Hi + τ2g(z), (11)

whereAg is the gated adapter layer,	 denotes the element-wise
product. τ1, τ2 are boolean matrices to decide the trigger of f(·)
and g(·), so that scaling-only and shifting-only are alternative
transformations. For example, τ1 = 1, τ2 = 0 for scaling-only
case. f(z) and g(z) are separately generated by a single dense
layer with σ = tanh(·) activation:

f(z) = σ(W fz + bf ),

g(z) = σ(W gz + bg), (12)

where W f ,W g ∈ Rd×d and bf , bg ∈ Rd. Compared with ex-
plicit concatenation with accent embeddings, the gated adapter
layer provides a ‘soft’ transformation by providing accent infor-
mation at the input level of the encoder.

C. Multi-Basis Adapter Layer

Denoted asAm, the other adapter layer type is the multi-basis
adapter layer in Fig. 3(c), which extracts accent information
from the hidden representations Hi and then re-combines it
with hidden representations.Am is comprised of multiple bases
Bk, k ∈ {1, 2, . . . , n}. Each basis takes Hi as input, and the
output is denoted as Bk(Hi). The output Bk(Hi) from each
basis is linearly interpolated by the corresponding weight vector
α = [α1, α2, . . . , αn]

ᵀ:

Am(Hi, z) = αᵀ ∗B =

n∑
k=1

αkBk(Hi), (13)

where k = 1, 2, . . . , n, andn = #bases is the number of adapter
bases. Similar to Section IV-B, the scaling Fk(·) and shifting
Gk(·) modules are used to transform the input Hi into the
accent-dependent space as shown in Fig. 5(d):

Bk(Hi) = τ1Fk(Hi)	Hi + τ2Gk(Hi), (14)
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τ1, τ2 are boolean matrices to decide the trigger of Fk(·) and
Gk(·).

We propose a sandglass-style structure for F (·) and G(·)
modeling: a down-projection module and a up-projection mod-
ule with non-linear activation ReLU(·). To make the bases in
Fig. 3(d) simple and flexible, we can easily adjust the inner di-
mension between two projections depending on the complexity
of the accented data.

The dynamical soft assignment of bases is done by the inter-
polation vector α ∈ Rn. In this work, the accent embedding z
is used to construct a predictorP(·) module, which can estimate
α and give the guidance on the bases usage:

α = Softmax(P(z)), (15)

where 1 =
∑n

k=1 αk and the interpolation vector α =
[α1, α2, . . . , αn]

ᵀ are probabilities for multiple bases. The pre-
dictor P(·) can be composed of several dense layers. The linear
composition of the bases is designed to represent the final accent
of each utterance.

D. Predictor Regularization on the Multi-Basis Adapter Layer

During the multi-basis adapter layer model optimization,
we have found that, without any constraints, the shape of in-
terpolation vector α would rapidly reduce to one certain ba-
sis (#bases = 1), which significantly limits the model ability
on accent adaptation. This is caused by the mismatch between
the distribution of predicted interpolation vectors and that of the
expected ones at first. To circumvent this situation, an auxiliary
task is proposed to regularize the predictor P , so that it can
be initialized randomly. The final objective loss combines the
conventional ASR objective Ljca from Equation 5 and the
element-wise mean square error (MSE) loss from predictor P:

Lmtl = Ljca + γmtlLMSE(αgt, α̂), (16)

where γmtl is a hyper-tuning parameter and αgt is the training
label. As the purpose of this auxiliary task is to regularize each
element of α̂ to avoiding one-/two-hot vector, we can use pre-
trained clustering labels with k-means method by minimizing
the L2 square error:

Err =

n∑
i=1

∑
z∈Ci

||z − μi||22, (17)

where μi = meanz∈Ci
(z) is the center of accent embeddings

belonging to cluster Ci. Then the ground truth αgt can be
estimated as:

αgt = [α1, α2, . . . , αn]
ᵀ, such that

αk =

⎧⎨
⎩
1, if k = argmin

i
||z − μi||2,

0, else .
(18)

V. EXPERIMENTAL SETUP

A. Dataset

Our experiments are conducted on the Accented English
Speech Recognition Challenge 2020 (AESRC2020) dataset [3]1

with the Librispeech corpus [45]. The sampling rate of these
two datasets is 16 kHz. The AESRC2020 training set contains
eight English accents, including England (UK), America (US),
China (CHN), Japan (JPN), Russia (RU), India (IND), Portu-
gal (PT), and Korea (KR). Each accent in the AESRC2020
dataset has 20 hours speech data collected from around 60
speakers. The auxiliary Librispeech set contains 1000 hours
accent-unspecific speech of the audiobooks reading.

For evaluation, Librispeech test sets are used as the accent-
unspecific standard English test data, consisting of dev-
clean/other (dev c/o) and test-clean/other (test c/o) subsets.
AESRC2020 test sets are used as the accented test data, con-
sisting of a cross validation (cv) set and a test set. Note that
the cv set in the AESRC2020 dataset has the same number
of accents as the training set, while the test set has two more
unseen accents compared to the training set, i.e. Canada (CAN)
and Spain (ES). We present the word error rate (WER) on all
above evaluation sets, including seen accents, unseen accents,
and accent-unspecific standard speech.

B. ASR Configurations

The input feature of the ASR system is 80-dimensional
log-Mel filterbanks (Fbank) with a 10 ms step size and a
25 ms window size. All features are extracted using the Kaldi
toolkit [46] and applied with cepstral mean and variance normal-
ization (CMVN) on the utterances. Target sequences are oper-
ated on 500 Byte-pair encoding [47] subword units. All models
in our experiments have the same depth and a similar size, and
this can be fair to do the comparison. The end-to-end (E2E)
ASR model is built with ESPnet toolkit [48], and it comprises a
transformer encoder and a transformer decoder joint with a CTC
decoder. A two-layer CNN structure is used to down-sample
acoustic features, and each of them has 512 filters with 3× 3
kernel size and 2× 2 stride, which shrinks the input sequence
to 1/4. The encoder has 12 transformer blocks, and the decoder
has 6 transformer blocks, respectively. The multi-head attention
module has 8 heads and the dimension of the query, key, and
value is 512. The position-wise feed-forward module has the
inner dimension of 2048. We choose Adam optimizer with a
warmup learning rate schedule (25000 warm steps) to train our
models (i.e. noam optimizer) [43]. SpecAugment [49] is applied
for data augmentation during training. CTC joint parameter λctc

mentioned in Section II-C is set to 0.3. During inference, a
rescore scheme [25] is applied with CTC weight of 0.3 and the
beam width is 10 for beam search.

C. Deep Accent Representation Learning Configurations

For the accent representation learning, the Librispeech corpus
is excluded, and only the 8 accents in the training set are

1[Online]. Available: https://www.datatang.com/INTERSPEECH2020
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TABLE I
ACCENT IDENTIFICATION ACCURACY (%) COMPARISON OF THE PROPOSED ACCENT EMBEDDING REPRESENTATION LEARNING WITH TDNN AND ECAPA-TDNN

MODELS ON THE AESRC SET. ‘I-VECTOR’ DENOTES A LINEAR CLASSIFIER TAKES I-VECTOR AS INPUT. ‘+CONV’ DENOTES THE CONVENTIONAL DATA

AUGMENTATION, ‘+TTS’ DENOTES THE PROPOSED TTS-BASED DATA AUGMENTATION, ‘+TTA’ DENOTES THE PROPOSED TEST-TIME DATA AUGMENTATION, AND

‘+DELTA’ DENOTES THE PPG FEATURES WITH THEIR FIRST AND SECOND DELTAS. ‘FINAL SYSTEM’ DENOTES THE SYSTEM USING ALL ABOVE TECHNIQUES AND

FURTHER WITH MULTI-EMBEDDING FUSION

used. 40-dimensional and 120-dimensional PPG features are
used in the accent identifier model training, and 40-dimensional
Fbank feature is also applied as a comparison. The 120-dim
PPG feature is the concatenation of 40-dim PPG features with
their first and second derivatives. For TDNN [22] and Ecapa-
TDNN [23] systems, the standard setup is applied. All systems
are trained using AAM-softmax [33], and the weight-decay
is applied of 2e−5. In addition, performance can be further
improved when applying data augmentation on it. By em-
ploying speed perturb of 0.8×, 0.9×, 1.1×, 1.2×, and adding
noise, music, speech with MUSAN dataset [50] and room re-
verberation (room impulse responses, RIRs) from kaldi vox-
celeb recipe [46], we extend the training accented data to 10
times size. The model trained with these conventional aug-
mented data approaches is denoted as ‘CONV’ in the following
sections.

We then synthesize data with the TTS system as described
in Section IV-C. The TDNN x-vector speaker model follows
the settings in [22] trained with both accent and Librispeech
data. The implementation of FastSpeech is based on the ESPnet
toolkit [39], [48] and fine-tuned on each 20 hours accent data
to build 8 synthesizers. The size of the input vocabulary is 41,
including English phonemes, a pause break token, and a sentence
boundary token. Additionally, we augment the decoder with a
five-layer post-net [51] and the LPCNet vocoders are for the
male and female speakers as a re-implementation based on [40].
To get more robust speaker-specific x-vectors, 30 utterances for
each speaker are grouped to calculate the statistical x-vector.
We use the speaker statistical x-vector and randomly selected
reference texts to synthesize data with another accent synthesizer
to generate additional three times as much data. For the test-time
augmentation (‘TTA’), each test utterance is augmented with
0.8×, 0.9×, 1.1×, 1.2× on time, and then aggregated to obtain
the accent embedding.

VI. EXPERIMENTAL RESULTS

The detailed experimental results, comparison and anal-
ysis are described in this section. The results on accent
representation learning are firstly presented and then those on the
layer-wise adaptation with accent embedding for multi-accent
speech recognition are given.

A. Evaluation on the Deep Accent Representation Learning

To evaluate the proposed methods for accent representation
learning, we firstly construct the relative accent identifier and
compare the accent identification accuracy. ‘I-vector’ system
takes i-vector as input, and pass a 256-dim linear layer before
the final layer to predict the accent label. ‘Challenge Baseline’
system directly takes the results from the dataset paper [3], which
use Transformer as its base model. The higher accuracy indicates
the better accent embedding representation. The system results
and comparison are shown in Table I.

PPG vs. FBANK: The normal acoustic spectrum feature
FABNK and the proposed accent PPG feature are performed
on both TDNN and Ecapa-TDNN. It shows that the accent
identification is not easy to do, and the deep model with usual
FBANK can only achieve∼ 60.0% on accuracy. However, using
the proposed PPG feature for accent representation, the accent
identification can be boosted with a very large improvement, and
the accent identification accuracy approaches 85.0%, which is
∼ 25.0% absolutely better than FBANK.

Data Augmentation: Upon the system with PPG feature, the
different data augmentation approaches are applied, including
the conventional method modifying the raw wavform, the pro-
posed TTS-based accent data augmentation and the test-time
augmentation. The results show that all the data augmentation
strategies are effective and improve the system performance sig-
nificantly. The proposed TTS-based method is not conflict with
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Fig. 4. The 2-dimensional T-SNE illustrations of i-vector (the first one) and deep accent embeddings (others) on accent cv set, and 200 accent embeddings are
randomly chosen for each accent. From left to right, different accent embedding learning strategies are compared.

conventional one, and still gets substantial gains. The test-time
augmentation can obtain slight but consistent improvements on
the accent embedding representation and identification.

Dynamic Delta Features: The dynamic feature is also impor-
tant for speech processing, and the first and second delta features
on PPG is still useful and get an improvement on most accents.

Multi-embedding Fusion: Finally, the proposed multi-
embedding fusion scheme is evaluated, and it is performed with
all above techniques. This is also the final accent embedding used
in multi-accent ASR adaptation, and the accent identification
results are shown as the last line of Table I. It shows that the
final multi-embedding fusion system can achieve a promising
performance position on accent identification. This system with
the proposed accent embedding representation learning also
ranks the first position on the accent identification track of
AESRC challenge [3], [52], which is much better than the official
challenge baseline shown as the first line of Table I.

Accent Embedding Visualization: To better understand the
proposed accent representation learning, the t-SNE illustrations
of different accent embeddings are shown and compared in
Fig. 4. It obviously shows that i-vectors are scattered everywhere
for the accents, and in contrast the proposed accent embeddings
(except those using Fbank feature) are distinguished from each
other clearly. This observation further demonstrates the effec-
tiveness of the proposed deep accent representation learning. For
the comparison of the accent embeddings using deep models, it
is observed that the learned accent embedding from the Fbank
system cannot be discriminated well, and most of the accents
are overlapped with each other except Indian accent. In contrast,
using the proposed PPG features, the clustering of each accent
is much better, and the separation on different accents is much
easier. Moreover the data augmentation and dynamic feature can
further improve the accent embedding representation, and they
can cluster better gradually. The last embedding representation
achieves smaller intra-class distance and larger inter-class dis-
tance, and all accents are segregated well.

B. Evaluation on the Layer-Wise Accent Adaptation

With utilization of the above accent embeddings, the proposed
layer-wise adaptation architecture is then evaluated in this sec-
tion. For the following experiments, the pre-trained transformer
model is used as an initialization, and the adapter layers are
then injected. The detailed configurations for the layer-wise
adaptation are explored, including the type of the adapter layer,
the position and number of the adapter layer, and the basis

TABLE II
PERFORMANCE (WER) (%) COMPARISON OF THE PROPOSED LAYER-WISE

ACCENT ADAPTATION WITH DETAILED CONFIGURATION COMPARISON

number in the multi-basis adapter layer. The results are shown
in Table II.

Adapter Layer Type: Firstly, two different adapter layer
types are performed and shown as the top part of Table II. Four
bases are used in the multi-basis adapter layer in default, and a
dense-based down-up module with inner dimension=64 is used
for each basis with both scaling and shifting connection (τ1 = 1
and τ2 = 1). It shows that the proposed layer-wise adaptation
can significantly improve the system performance on the accent
data, while also obtain obvious WER reduction on the accent-
unspecific standard Librispeech data. Both two adapter layer
types work well, and get the similar accuracy. For the multi-basis
adapter layer, to verify the importance of the proposed predictor
regularization with multi-task learning, another system without
the predictor regularization is also conducted, and the results
are shown as A∗m in Table II. It is observed that the multi-basis
adapter layer cannot work well without the predictor regular-
ization module, and the predictor regularization with multi-task
learning is important for the proposed multi-basis adaptation.
For better understanding, we print α for observation, and found
that the weight almost falls on one basis, e.g. α ≈ (0, 1, 0, 0). In
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Fig. 5. Boxplot and violinplot visualization of the interpolation weight distri-
butions for each basis in the multi-basis adapter layer. The vertical axis shows
the interpolation weight αi, where i is the basis index. The horizontal axis is the
accent categories. Here, 4-basis adapter layer is applied, and we plot all data in
accent test by boxplot and violinplot to visualize the mean value of each accent.

this case, Am(Hi) ≈ Hi, which means the adapter layer does
not work, therefore the system performance is only at the same
level with the baseline model.

Adapter Layer Position, Number and Basis Quantity:
Different adapter layer positions are firstly explored for both
gated and multi-basis adapter layers, and the layer positions
{1}, {2}, {4}, {10} are chosen.2 It shows that almost all po-
sitions of the end-to-end ASR model can get obvious improve-
ment, and the lower position, i.e. {1} or {2}, is more suitable
than the higher position for the proposed layer-wise adaptation
architecture. Then multiple adapter layers are compared and it is
performed with multi-basis adaptation. {1}, {1-3}, {1-6} mean
1, 3, 6 adapter layers respectively.3 It shows that there is even
no more improvement with multiple adapter layers compared to
the single adapter layer. Considering multiple adapter layer will
increase the model parameters, so we utilize one single adapter
layer in the following experiments. Finally the ‘#bases’ number
is investigated and the results are shown as the last 4 lines in
Table II. It is observed that the system performance seems be
improved gradually with more bases in the multi-basis adapter
layer, but the improvement is very limited when #bases≥4. To
keep compact adaptation parameters, 4-basis is the good choice
and also be used in the following experiments.

Visualization on Multi-Basis Adapter Layer: Fig. 5 shows
the interpolation weight distributions on each basis from the
four-basis adapter layer model. The large interpolation parame-
ter of one basis is considered having more correlation to this
accent. It can be clearly seen that different bases capture a
different set of highly correlated accents. For example, Basis
Two focuses mostly on the Portuguese (PT) accent, and then

2It is worth noting that the encoder transformer layers are numbered starting
from 1 to 12, and the adapter layer is then inserted before the i-th encoder layer.

3Here {m-n} means injecting adapter layers into the mth∼nth encoder
blocks.

the American (US) and Russian (RU) accents. The inherent
correlation shown in Fig. 4 between different accents can be
also revealed from this figure. For example, British (U.K.)
and American (US) accents have consistently high correlations
with Basis One, and much lower correlations with other bases.
Meanwhile, Indian (IND) and Japanese (JPN) are far from each
other, which also have distinct preferences for bases: IND accent
prefers Basis Four, while JPN accent prefers Basis Three. If
we further compare this illustration with the accent embedding
visualization in Fig. 4, we can find that the correlation and
distance within different accents are consistent. These illustra-
tions further demonstrate that the proposed multi-basis adapter
layer can well-capture the accent-dependent information with
the guidance of accent embeddings, thus finally improve the
multi-accent speech recognition.

C. Comparison of Different Adaptation Methods

The best configuration for the proposed layer-wise adaptation
can be chosen based on the experiments in the above section.
Different adaptation methods are applied and the comparison
with detailed results are illustrated in Table III for multi-accent
speech recognition. Several traditional methods for multi-accent
ASR are also performed, including ‘fine-tune,’ ‘concatenation
with i-vector and accent embeddings’ and ‘MTJR’ [53]. ‘Fine-
tuning’ is the intuitive method, which re-trains and fine-tunes
the model on the available 160 hours accented data in this
work. ‘Concat’ means we concatenate i-vector (or the accent
embedding) with down-sampled Fbank features, and feed it into
the model directly. ‘MTJR’ denotes ‘multi-task learning with
joint speech and accent recognition,’ which is recently proposed
in [53] for multi-accent speech recognition.

It shows that although the other methods can obtain WER
reduction on the corresponding seen accented data, the improve-
ment is usually limited on the unseen accented data such as
Spain (ES) here. So these methods are easy to be implemented,
but are not feasible for unseen accent generalization. More-
over, for the accent-unspecific standard data, the performance
degrades catastrophically with fine-tuning strategy, which is
undesirable in the real implementation. Compared with deep
accent embeddings, i-vector adaptation gains much smaller on
both accented and accent-unspecific test sets in both intuitive
concatenation and the proposed layer-wise adaptation method.
The recently proposed multi-task learning with joint speech and
accent recognition (MTJR) can slightly improve the accent data,
but also degrade obviously on the accent-unspecific standard
data, which is not discussed in the original MTJR paper [53].

In contrast, the proposed layer-wise adaptation strategy, no
matter using the gated adapter layerAg or the multi-basis adapter
layer Am, can get larger, significant and consistent improve-
ments on all seen accent, unseen accent and accent-unspecific
standard speech data, which shows the advantages than the
other traditional methods. Furthermore, we combineAg andAm

together with one entire architecture by computing the output as:

Hg
2 ← H2 +Ag(H2, z),

Hg,m
2 ← Hg

2 +Am(Hg
2, z), (19)
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TABLE III
PERFORMANCE (WER) (%) COMPARISON OF BASELINE SYSTEM AND DIFFERENT ADAPTATION METHODS

TABLE IV
PERFORMANCE (WER) (%) COMPARISON OF THE PROPOSED LAYER-WISE

ADAPTATION WITH DEEP ACCENT EMBEDDINGS ON DIFFERENT END-TO-END

ASR MODELS

wherez is the accent embedding,H2 is the input of 2-nd adapted
encoder block or the input ofAg, Hg

2 is the output ofAg as well
as the input ofAm, and Hg,m

2 is the output ofAm as well as the
input of the later original 2-nd encoder block. It is observed that
the final system using bothAg andAm adapter layer obtains an
additional improvement, and it outperforms the baseline with
about 15.0% WER reduction on all seen/unseen accent data and
accent-unspecific standard data sets. These results suggest that
the proposed methods can learn accent-dependent information
effectively and improve the robustness of speech recognition
against accent variations.

D. Layer-Wise Adaptation on Different End-to-End ASR

The proposed layer-wise adaptation approach is further ap-
plied on different end-to-end ASR models to evaluation the gen-
eralization of the method. Besides the above joint CTC/Attention
model with Transformer, Conformer and RNN-Transducer are
also implemented with the multi-basis adapter layer, and the
results are illustrated in Table IV. The results show that the pro-
posed layer-wise adaptation works consistently well on different
end-to-end architectures, and significant improvements can be
obtained on both accent-specific data and accent-unspecific
standard data.

VII. CONCLUSION

In this paper, a layer-wise fast adaptation is proposed for
multi-accent ASR in end-to-end model. To get the accurate

accent representation, a deep model based deep accent repre-
sentation learning method is firstly developed, with some useful
strategies, including PPG feature, TTS-based data augmenta-
tion, test-time augmentation and multi-embedding fusion. With
this new approach, high-performance accent classification and
accurate accent representations can be obtained.

Assisted with the above accurate accent embeddings, the
layer-wise adaptation architecture is explored for fast accent
adaptation in ASR, and two types of adapter layers are proposed,
which make the accent adaptation flexible and effective. This
new accent adaptation approach is significantly better than the
traditional methods on multi-accent speech recognition, and
works well on different kinds of end-to-end ASR models. More
importantly, another advantage of the new adaptation approach
is that it can get consistent improvement not only on the seen
accent in the training data, but also on the unseen accents.
Moreover, it avoids catastrophic performance degradation
for fine-tuning method on accent-unspecific standard speech.
The system with our proposed method gets consistent ∼15.0%
WER reduction on all seen/unseen accents and accent-unspecific
standard speech data.
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