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ABSTRACT

Adapting End-to-End (E2E) models to unseen domains is still a big
challenge since training E2E models requires lots of paired audio
and text training data. We propose a novel domain adaptation frame-
work for the E2E model, which only uses the text of the target do-
main. Moreover, the proposed methods can keep the performance on
the source domain intact while greatly improving the performance
on the target domain. The proposed framework consists of two
parts: the discriminator and the transfer which were optimized sepa-
rately. Finally, optimized discriminator and transfer were combined
and evaluated on two domain adaption tasks. In the experiments of
adapting the English LIBRISPEECH to GIGASPEECH, we obtained
an average relative 11.6% and 11.8% on word error rate (WER) re-
duction for the target domain dev and test sets, respectively, while
almost without WER degradation on the source domain. For the in-
house Chinese corpus aviation and TV, the character error rate (CER)
of the source domain increased within 5%, while the CER on the
target domain achieved around relative 85% and 42% improvement,
respectively. In addition, our approach is also more effective in the
mixed domain scenarios in the evaluation.

Index Terms— end-to-end speech recognition, domain adapta-
tion, discriminator and transfer, log-likelihood ratio

1. INTRODUCTION

The E2E models including connectionist temporal classifica-
tion (CTC) [1, 2], attention-based encoder-decoder (AED) mod-
els [3, 4] and recurrent neural network transducer (RNN-T) [5, 6]
have gone mainstream and achieved state of the art performance
for automatic speech recognition (ASR) [7, 8]. Traditional hybrid
ASR models consist of separate acoustic model (AM), pronuncia-
tion models and language model (LM), which can be individually
optimized using a variety of data sources, especially large amounts
of textual data. However, E2E model training requires paired data,
which is more difficult to obtain and expensive. Therefore, text-only
domain adaptation for the E2E models is attracting more and more
researchers. Some common methods include synthesizing the target-
domain text into paired data using text-to-speech (TTS) [9] and fine-
tuning the E2E model with the target-domain paired data. However,
TTS model training suffers from high computational overhead.

LM fusion has been proven to be another effective way of domain
adaptation with text-only data. Shallow Fusion (SF) [10, 11, 12, 13]
is a simple yet effective method by doing a log-linear interpola-
tion between the scores of the E2E model and a separately-trained
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LM during decoding. Such LM integration is further improved
with the Density Ratio (DR) approach [14] that subtracts the score
of the source domain LM from the interpolated score of shal-
low fusion. Following this idea, the hybrid autoregressive trans-
ducer (HAT) [15], internal LM estimation (ILME) [16] and internal
LM training (ILMT) [17] are proposed to estimate the score of the
internal LM component in a source domain E2E model. The internal
LM score is used to replace the source domain LM score in the DR
approach and shows promising improvement on the target domain.

Nevertheless, the improvement on the target domain brought by
LM fusion methods often comes at the cost of severe deterioration
on the source domain. Especially when a large difference exists be-
tween the source and target domain, the model may perform well on
the target domain, but is completely unusable on the source domain.
In addition, LM fusion based methods are also not suitable for the
mixed domain scenarios where a speech contains multiple domain
switches of both the source domain and target domain. Therefore,
unlike previous work which looked at complete domain transfer at
test time, [18] proposed a likelihood ratio (LLR) based domain adap-
tation method without causing degradation on general domains.

However, in LLR, an ngram was used to do domain adaption
which is not good enough when used as LM. This is particularly evi-
dent in our experiments when transferred from LIBRISPEECH to GI-
GASPEECH. In addition, it is difficult for LLR to distinguish whether
a word is a rare word or not when the perplexity (PPL) differences
between the source domain and target domain are small.

Based on the above considerations, we proposed a new domain
adaptation framework for E2E models, which consists of two parts:
discriminator and transfer. The discriminator is used to identify the
domain to which it belongs in real-time, and the transfer is used to
better transfer to the corresponding domain. The discriminator and
transfer are optimized separately. The final optimized discrimina-
tor and transfer are combined to do the domain adaption task. Our
framework was evaluated on two test sets. On the English corpus,
we obtained 11.6% and 11.8% relative WER reduction respectively
in the target domain, while almost without sacrificing the source do-
main performance. On in-house Chinese corpus, a relative 85% and
42% improvement were obtained on the target domain while within
5% performance drop on the source domain. In the mixed domain
scenario, our method obtained 10.0% and 28.0% relative CER re-
duction. Our contributions can be summarized as follow: (1) We
propose a joint discriminator and transfer domain adaptive frame-
work. (2) We optimize the discriminator and transfer separately, and
the optimal joint system achieves better results. (3) Our approach
also works well in a domain switching scenario where a speech con-
tains a mixed situation of both source and target domains.IC
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2. METHODOLOGY

In this work a novel domain adaptation decoding framework is pro-
posed to adapt a pre-trained AED model to a target domain with only
Out-of-Domain (OOD) text data, meanwhile minimizing the degra-
dation of the performance on domains already supported.

2.1. A Domain Adaptation Decoding Framework

The proposed framework consists of two parts: discriminator and
transfer. The discriminator is used to identify the domain to which
each token belongs in real-time, and the transfer is used to better
transfer to the corresponding domain.

We take the speech X and the decoded prefix sequence Yu−1

(contains beamsize hypotheses) as input. For each hypothesis yu−1

in beam, the score of candidate tokens will be calculated. For each
token in the token list (6979 for Chinese and 5000 for English), the
discriminator is first used to discriminate whether it belongs to the
source domain or the target domain. If this token belongs to the
target domain, the transfer score is computed for it, otherwise the
score of the source domain E2E model is computed for it. Finally,
the (beam, tokensize)-dimensional Score and the already decoded
prefix sequence Yu−1 are used in the BeamSearch algorithm to get a
new decoded sequence Yu in (beam, u) dimensions. The following
algorithm 1 flow describes the proposed decoding framework.

Algorithm 1 A Domain Adaptation Decoding Framework
Input: X , Audio input.
Input: Yu−1, Prefix decoded sequence.
Output: Yu, The new decoded sequence to be decoding
Require: TransferScore, Score after domain transfer, as mentioned

in Eq. (6)
Require: SourceScore, Source model score, as mentioned in Eq. (7)

1: function JOINT-DISCRIMINANT-TRANSFER(X ,Yu−1)
2: for b← 1 to beamsize do
3: yu−1← Yb,u−1

4: for i← 1 to tokensize do
5: Domain← Discriminator(yu−1, i)
6: if Domain = dtgt then
7: Scoreb,i← TransferScore(yu−1, X, i)
8: else
9: Scoreb,i← SourceScore(yu−1, X, i)

10: Yu← BeamSearch(Yu−1, Score)
11: return Yu

2.2. Discriminators on Domain Adaptation

In our framework, the main role of the discriminator is to discern
whether the current token needs to be transferred or not. When a
token that is the source domain is discriminated as the target do-
main, an error of offset decoding occurs. Since the discriminator
affects the overall recognition performance, the performance of the
discriminator must be as accurate as possible to better discriminate
the domain switching dynamically and in real time. The following
three discriminators have been proposed.

2.2.1. Discriminator based on Domain LM Scores

It was observed that the same utterances have obvious contrast of
log likelihood calculated by different LMs from different domains.
So a straightforward idea for the discriminator is using the LM score
from the source domain and target domain. As shown in Eq. (1),
when the source domain LM log-likelihood score Ssrc < T1 and

the target domain LM score Stgt > T2, this token is classified to the
target domain and needs domain transfer.

Domain :=

{
dtgt if Ssrc < T1 and Stgt > T2

dsrc otherwise,
(1)

where Ssrc and Stgt are obtained by computing the LM scores of
token i on the source and target domains from the two inputs Yu−1

and token i, respectively, passed in by the discriminator in Alg. 1.

2.2.2. Discriminator based on Log-likelihood Ratio

Because the direct comparison of the score through the LM with
the threshold is too broad and may not work well enough. There-
fore, as shown in Eq. (4), the discriminator in the form of a relative
LM scores difference is proposed. If the score difference exceeds a
certain threshold, then it belongs to the target domain, otherwise it
belongs to the source domain. In this work, three LMs were inves-
tigated including N-gram, neural network language model (NNLM)
and ILME. Since N-gram can only see local information, we believe
that using a sliding window to provide longer history would be help-
ful. A soft sliding window was applied, which is shown in Eq. (2).
In order to make an accurate comparison with the threshold value,
normalization was applied to the scores in Eq. (3). The NNLM can
also see long historical information, so we compare the N-gram with
the sliding window with the NNLM.

Su = βSu−1 + Si (2)

S′
u = Norm(Su) = Su/

1− βu

1− β
(3)

where Si indicates the log-likelihood score of the i-th token in the
token list and Su denotes the momentum LM score of the decoded
sequence Yu.

Since ILME in [17] is able to evaluate the internal LM of the
source domain more precisely, it may be a better choice for discrim-
inator. Since the ILM in [17] is only a weak LM, the score of ELM
may not be of the same magnitude in numerical scale. In order to
make a more accurate comparison, a hyperparameter λ in Eq. 4 is
used.

Domain :=

{
dtgt if Stgt − λSsrc > T

dsrc otherwise,
(4)

where Ssrc and Stgt are S′
u on the source domain and target domain

when the LM is N-gram with sliding window, respectively, other-
wise Ssrc are Stgt are LM scores on the source and target domain,
respectively. T is a threshold value.

2.2.3. Discriminator based on Neural Domain Classifier

The other choice for domain discriminator is model based classifier.
A neural networks based model was investigated in this work, de-
tailed configuration is introduced in Sec 3.1. The training is similar
to the LM training, for each token in the target domain text, we con-
sider that its label belongs to the target domain, on the source domain
as well. Since the amount of text data in the source domain is gen-
erally much larger than that in the target domain, we introduce the
focal loss in [19] as the training loss function for our classification
in Eq. (5).

Lfl =

{
−(1− p̂)γ log(p̂) if y = 1,

−p̂γ log(1− p̂) if y = 0,
(5)
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where γ is an adjustable factor to control the rate at which easy ex-
amples are down-weighted and p̂ is the predicted probability of label
y = 1.

In addition, we can also repeat the target domain text several times
so that it is of the same order of magnitude as the source domain. For
the inference of the neural domain classifier, The output of logits is
passed through log softmax to discriminate which domain the clas-
sifier predicts by argmax.

2.3. Transfer on Domain Adaptation
For the transfer, we currently use the LM fusion based approach.
More precisely, as shown in Eq. (6), a linear interpolation is applied
between the score of the E2E model and the score of the LM.

TransferScore(yu−1, X, i) = logP (y = i|X,yu−1; θ
S
AED)

−λ1 logP (y = i|yu−1; θ
S
LM ) + λ2 logP (y = i|yu−1; θ

T
LM )

(6)

where P (y|X,yu−1; θ
S
AED) is the posterior score of the source do-

main E2E model, which is referred to as SourceScore Eq. (7), and
P (y|yu−1; θ

S
LM ) and P (y|yu−1; θ

T
LM ) are the posteriors for the

source LM and target LM, respectively.

SourceScore(yu−1, X, i) = logP (y = i|X,yu−1; θ
S
AED) (7)

When λ1 = 0, the transfer method corresponding to Eq. (6) is SF,
which is a more moderate transfer approach that does not subtract the
score of the source domain language model when doing the transfer,
and thus the source domain performance drop is moderate. When
λ1 ̸= 0 and λ2 ̸= 0, the transfer method corresponding to Eq. (6) is
the DR-based transfer method, which is a complete transfer, i.e., the
score of the source domain LM is subtracted, and the performance
on the source domain degrades dramatically.

2.4. Comparison with LLR
In this section, a theoretical comparison is made between our pro-
posed framework and the previous LLR method [18]. We illustrate
that LLR is a special case of our framework. The LLR-based do-
main adaptation approach can be expressed by the following equa-
tion [18].

S(G) :=

{
LLR(G) if LLR(G) > T

0 otherwise,
(8)

where S(G) is the boost score that does linear interpolation with
the E2E model and LLR(G) = logPT (G) − logPS(G), which
PT (G) and PS(G) are the posterior of n-gram G on the target and
source domain LM N-grams, respectively.

When the discriminator is λ = 1 in Eq. (4) and the transfer
method is λ1 = λ2 in Eq. (6), under this condition it is equiva-
lent to LLR. Thus LLR is a special case of our framework, and it is
used as a baseline in our experiments.

3. EXPERIMENTS

3.1. Experiment Setup
3.1.1. Detailed Model Structure
Our baseline Conformer [20] model consists of 12 encoder layers
and 6 decoder layers with 2048 hidden units. Each encoder layer is a
Conformer block with 8 heads of 512 dimension self-attention [21]
and each layer of decoder layer is a Transformer block with 8 heads
of 512 dimension self-attention. When the transfer method is ILME,

the weight λ1 and λ2 in Eq. (6) set to 0.3 and 0.6 respectively. The
weight for CTC and attention is set to 0.3 and 0.7.We use an 80 di-
mensions log Mel-filterbank with 25ms window length computed
every 10ms as inputs of audio encoder. SpecAugment [22] as a
data augmentation policy is also used during model training. The
Adam [23] optimizer is adopted with 0.0025 initial learning rate and
40,000 warmup steps. The structure of the neural network language
model is the same as the decoder layer of the baseline conformer
model. The neural domain classifier consists of 4 layers of lstm with
2,048 hidden units. The number of modeling units (BPE) [24] for
the English corpus in the decoder is 5,000 and the number of mod-
eling units (Char) for the Chinese corpus is 6,979. All models are
trained with ESPnet [25] toolkit until convergence.

3.1.2. Dataset

We have experimented on both English and Chinese corpus. English
corpus is taken on 960-hour LIBRISPEECH [26] as intra-domain and
Youtube partition of GIGASPEECH [27] XL subset, which has five
different domains such as science (sci), news, people (peo), enter-
tainment (ent) and education (edu) were selected as target domains.
In Table 1, there are the linguistic gap between the five domains of
GIGASPEECH and LIBRISPEECH, but they are not significant.

Table 1: PPL of LIBRISPEECH LM on various domain test sets

Dataset test-other sci news peo ent edu
PPL 61 201 213 286 316 115

Chinese Corpus including in-house 3K-hours (aitrans) as general
domain, aviation dialogue domain (aviage) has 103,307 transcripts
and synthetic TV has 271,390 transcripts whose test set contains
13.8 hours of 5,000 utterances synthesized by TTS. The transcripts
of TV are a variety of movies names populated into the generic do-
main to form a target domain containing rare words. The PPL of the
source domain aitrans LM is 26 on its own domain and in the target
domain TV and aviage are 796 and 894, respectively. there are the
significant linguistic gap between aitrans and TV/aviage.

3.2. Experiment Results and Analysis
3.2.1. Optimizing Domain Transfer Methods

In Table. 3, the first row shows the decoding results of the source
domain model without any discriminator and transfer under each do-
main. Since TV is a dedicated rare word corpus synthesized by TTS,
nothing can go wrong acoustically, and its 7.89% CER is basically
all errors caused by language mismatch. The second row is the case
of the source domain model without a discriminator, we can see that
without a discriminator, the target domain has better performance,
however, the performance of the source domain drops dramatically.
From row 3 to row 5, we optimize the transfer method when the rel-
ative CER of the source domain increases by less then 10%. The
results showed that ILME has approximately 72% and 36% WER
reduction over the two target domain test sets compared with the
baseline N-gram. However, when the discriminator discriminates
the domain incorrectly, the source domain CER increases will occur.
Therefore, the discriminator also needs to be optimized separately in
order to more accurately identify the domain type.

3.2.2. Optimizing Domain Discriminator

We selected the ILME method as our transfer method and optimized
the discriminator in this section. The domain classification accu-
racy (ACC) of each token was used to rank each method. As in
Table. 4, longer history does increase the classification accuracy. We
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Table 2: Performance WER(%) comparison of different setups on English corpus. TF and DC stand for transfer and discriminator respec-
tively.The left results in each column show WERs on LIBRISPEECH test clean / test other sets. The right results in each column show WERs
on GIGASPEECH dev / test sets for the corresponding domain.

TF DC libri→ science libri→ news libri→ people libri→ entertainment libri→ education
test c/o dev/test test c/o dev/test test c/o dev/test test c/o dev/test test c/o dev/test

N/A N/A 2.5/5.4 17.1/19.0 2.5/5.4 18.1/16.8 2.5/5.4 23.3/17.7 2.5/5.4 24.1/24.1 2.5/5.4 16.1/9.9
SF N/A 2.9/6.5 15.3/16.4 2.9/6.4 16.0/14.8 3.0/6.3 21.6/16.2 3.0/6.2 23.3/22.9 2.9/6.5 14.0/9.6
N-gram N-gram 2.5/5.5 17.1/19.1 2.5/5.4 18.1/16.7 2.5/5.5 23.4/17.8 2.5/5.4 24.1/24.2 2.5/5.5 16.0/9.8
ILME N/A 3.1/6.7 13.8/14.8 3.3/6.8 14.9/13.2 3.1/6.3 19.9/15.1 3.1/6.3 22.0/21.7 2.9/6.5 12.9/8.5
ILME ILME 2.5/5.5 14.2/15.1 2.6/5.6 15.8/14.3 2.5/5.4 20.9/16.2 2.5/5.5 22.8/22.7 2.5/5.4 13.6/8.9

Table 3: Performance CER(%) comparison of different configura-
tions on Chinese corpus. The two numbers in the source domain
aitrans column are the CER(%) of the source domain with the TV or
aviage domain adaptation respectively.

Transfer Discriminator source target
aitrans TV aviage

N/A N/A 8.92/8.92 7.89 57.58
ILME N/A 101.94/20.61 0.30 26.07
N-gram N-gram 9.02/9.01 2.74 46.11
DR N-gram 9.48/9.49 1.15 30.71
ILME N-gram 9.72/9.67 0.75 29.44
ILME NNLM 9.33/9.42 0.52 28.57
ILME ILME 9.29/9.33 0.41 26.71

found that when β was adjusted to 0.9 in Eq. (2), the first 10 tokens
could be seen, its accuracy is very close to the accuracy of NNLM.
The accuracy of ILME is much higher than both N-gram and NNLM,
even more it obtained a competitive performance as domain classi-
fier. Since domain classifier needs extra training steps, ILME was
chosen as our final discriminator. As shown in the last three rows
of Table. 3, both the source and target domains could be further im-
proved as the discriminator is optimized. Finally, our best system,
i.e. the last row of Table. 3, gained 85% and 42% relative CER re-
duction on the target domain TV and aviage, respectively, compared
to LLR, i.e. the third row of Table. 3.

Table 4: Domain classification accuracy ACC(%) of different Dis-
criminators. The two numbers in the source domain aitrans column
are the classification ACC(%) between the source domain and the
TV/aviage target domain respectively.

Discriminator source target
aitrans TV aviage

Domain LM Scores 80.3/82.5 82.6 81.3
N-gram 82.0/85.3 85.4 84.5
+ sliding window 85.2/87.0 88.9 88.3

NNLM 85.6/87.6 89.1 88.7
ILME 89.1/89.2 93.1 91.3
Domain Classifier 89.5/89.0 93.5 91.1

3.2.3. Evaluation on the English corpus

The optimal transfer and discriminator were further evaluated on
open-sourced English corpus. As shown in the Table. 2. The first
row is the decoding result of the source domain model in each do-
main. The second row is shallow fusion, as a soft transfer approach,
the improvement of the target domain is not as obvious as the fourth
row of ILME, but the performance degradation of the source do-
main is smaller. The ILME without discriminator in the fourth row
leads to a complete transfer to the target domain at the cost of perfor-

mance degradation on the source domain. Our proposed approach,
i.e. the last row, obtained significant improvement on the target do-
main without performance degradation on the source domain. Mean-
while, comparing it with the LLR method based on boost score, i.e.
the third row, the newly proposed approach has the same perfor-
mance in the source domain, while obtains average 11.6% and 11.8%
relative CER reduction on dev and test, respectively, for all the five
target domain in GIGASPEECH.

3.2.4. Evaluation on the Mixed Domain Scenarios

The test set of the mixed domain was generated by TTS, and the text
was generated by random concatenating utterances in the source and
target domain. The mixed domain is a situation where one speech
has multiple domain switching. Table. 5 shows that comparing our
approach (the last row) to the source domain unadapted model (the
first row), we obtain relative 15.6% and 32.7% performance im-
provement on the TV and aviage domains, respectively. Moreover
we still obtain relative 10.0% and 28.0% CER reduction over the
basic LLR method (the second row). It shows that our proposed
framework is also more effective in the mixed domain scenarios.

Table 5: Performance CER(%) comparison of different setups in the
mixed domain scenarios.

Transfer Discriminator aitrans & TV aitrans & aviage
mixed mixed

N/A N/A 5.76 12.58
N-gram N-gram 5.38 11.74
ILME N/A 7.19 10.01
ILME ILME 4.86 8.46

4. CONCLUSIONS
In this paper, we proposed a new framework for text-only fast do-
main adaptation. The proposed framework consists of two parts: the
discriminator and the transfer which were optimized separately. Fi-
nally, optimized discriminator and transfer were combined and eval-
uated on two domain adaption tasks. In the experiments of adapting
the English LIBRISPEECH to GIGASPEECH, we obtained an average
relative 11.6% and 11.8% WER reduction on the target-domain dev
and test, respectively, while almost without any WER degradation
on the source domain. For the in-house Chinese corpus aviation and
TV, the CER on the source domain increased within 5%, while the
CER on the target domain achieved around relative 85% and 42%
improvement, respectively. In addition, our approach is also more
effective in the mixed domain scenarios.

5. ACKNOWLEDGEMENTS
This work was supported in part by China NSFC projects un-
der Grants 62122050 and 62071288, and in part by Shanghai
Municipal Science and Technology Major Project under Grant
2021SHZDZX0102.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 06,2024 at 09:09:12 UTC from IEEE Xplore.  Restrictions apply. 



6. REFERENCES

[1] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks,” in Proceedings of
the 23rd international conference on Machine learning, 2006,
pp. 369–376.

[2] J. Li, G. Ye, A. Das, R. Zhao, and Y. Gong, “Advancing
acoustic-to-word ctc model,” in 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2018, pp. 5794–5798.

[3] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and
Y. Bengio, “Attention-based models for speech recognition,”
Advances in neural information processing systems, vol. 28,
2015.

[4] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and
spell: A neural network for large vocabulary conversational
speech recognition,” in 2016 IEEE international conference on
acoustics, speech and signal processing (ICASSP). IEEE,
2016, pp. 4960–4964.

[5] A. Graves and N. Jaitly, “Towards end-to-end speech recogni-
tion with recurrent neural networks,” in International confer-
ence on machine learning. PMLR, 2014, pp. 1764–1772.

[6] A. Graves, “Sequence transduction with recurrent neural net-
works,” arXiv preprint arXiv:1211.3711, 2012.

[7] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen,
Z. Chen, A. Kannan, R. J. Weiss, K. Rao, E. Gonina
et al., “State-of-the-art speech recognition with sequence-to-
sequence models,” in 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2018, pp. 4774–4778.

[8] J. Li, R. Zhao, Z. Meng, Y. Liu, W. Wei, S. Parthasarathy,
V. Mazalov, Z. Wang, L. He, S. Zhao et al., “Developing
rnn-t models surpassing high-performance hybrid models with
customization capability,” arXiv preprint arXiv:2007.15188,
2020.

[9] W. Wang, Z. Zhou, Y. Lu, H. Wang, C. Du, and Y. Qian, “To-
wards data selection on tts data for children’s speech recogni-
tion,” in ICASSP 2021 IEEE, 2021, pp. 6888–6892.

[10] A. Kannan, Y. Wu, P. Nguyen, T. N. Sainath, Z. Chen, and
R. Prabhavalkar, “An analysis of incorporating an external
language model into a sequence-to-sequence model,” in 2018
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), 2018, pp. 1–5828.

[11] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khu-
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