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Abstract—Long-content automatic speech recognition (ASR)
has obtained increasing interest in recent years, as it captures
the relationship among consecutive historical utterances while
decoding the current utterance. In this paper, we propose two
novel approaches, which integrate long-content information into
the factorized neural transducer (FNT) based architecture in both
non-streaming (referred to as LongFNT) and streaming (referred to
as SLongFNT) scenarios. We first investigate whether long-content
transcriptions can improve the vanilla conformer transducer (C-T)
models. Our experiments indicate that the vanilla C-T models
do not exhibit improved performance when utilizing long-content
transcriptions, possibly due to the predictor network of C-T models
not functioning as a pure language model. Instead, FNT shows
its potential in utilizing long-content information, where we pro-
pose the LongFNT model and explore the impact of long-content
information in both text (LongFNT-Text) and speech (LongFNT-
Speech). The proposed LongFNT-Text and LongFNT-Speech mod-
els further complement each other to achieve better performance,
with transcription history proving more valuable to the model.
The effectiveness of our LongFNT approach is evaluated on Lib-
riSpeech and GigaSpeech corpora, and obtains relative 19% and
12% word error rate reduction, respectively. Furthermore, we ex-
tend the LongFNT model to the streaming scenario, which is named
SLongFNT, consisting of SLongFNT-Text and SLongFNT-Speech
approaches to utilize long-content text and speech information.
Experiments show that the proposed SLongFNT model achieves
relative 26% and 17% WER reduction on LibriSpeech and Gi-
gaSpeech respectively while keeping a good latency, compared to
the FNT baseline. Overall, our proposed LongFNT and SLongFNT
highlight the significance of considering long-content speech and
transcription knowledge for improving both non-streaming and
streaming speech recognition systems.

Index Terms—Factorized neural transducer, long-content
speech recognition, RNN-T, streaming and non-streaming.
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I. INTRODUCTION

END-TO-END (E2E) automatic speech recognition (ASR)
models [1], [2], including connectionist temporal classifi-

cation (CTC) [3], attention-based encoder-decoder (AED) [4],
[5], [6], [7], [8], [9], [10], [11], [12], and recurrent neural network
transducer (RNN-T) [13], [14], [15], [16], [17] have become the
dominated models, surpassing traditional hybrid models [15],
[18]. A common practice for ASR is to train the model with
individual utterances without considering the correlation be-
tween utterances. In real-world scenarios like conversations
and meetings, speech often appears in long-content formats.
This context-rich nature provides an opportunity to enhance
recognition accuracy compared to isolated short utterances. For
example, certain keywords mentioned earlier may reappear later
in a dialogue, or the same acoustic environment can be used to
guide the recognition in the future. Long-content ASR (also
conversational ASR, dialog-aware ASR or large-context ASR),
is a special version of the ASR task that aims to improve ASR
accuracy by capturing the relationships between the current
decoded utterance and consecutive historical utterances pre-
segmented by voice-activity-detection (VAD).

In AED architecture, previous approaches to model long-
content scenarios mainly includes concatenating consecutive
speech or transcriptions of utterances [19], [20] and using aux-
iliary encoders to model context information in an AED man-
ner [21], [22]. Hori et al. [23] extended their context-expanded
transformer to accelerate the decoding process in streaming
AED architecture. Recurrent neural language models [24], [25],
[26], [27], [28], [29], [30], [31], [32] can also be used with con-
secutive long-content transcriptions. Recently, Wei et al. [33],
[34], [35] proposed using a latent variational module, context-
aware residual attention, and pre-trained encoders to leverage
acoustic and text content. These methods offer more compre-
hensive approaches to improve ASR performance by capturing
long-content information.

Transducer-based systems, such as recurrent neural trans-
ducer (RNN-T), transformer transducer (T-T) are becoming
more popular in industry due to their natural streaming ca-
pabilities and low latency, as well as their perceived robust-
ness compared to attention-based systems [1], [36], [37], [38].
Narayanan et al. [39] had conducted primitive explorations by
simulating long-content training and adaptation to improve per-
formance using short utterances. Schwarz et al. [40] showed that
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combining input and context audio helps the network learn both
speaker and environment adaptations. Kojima [41] explored the
utilization of large context. However, incorporating consecutive
transcription history into the neural transducer model is still
an open area that has not been well explored. In modern ASR
systems, however, streaming ASR shows its importance on
reducing runtime complexity and real-time efficiency [42], [43],
[44]. But there is usually a performance degradation compared
with the offline systems which is due to the lack usage of history
information. Few works besides Hori et al. [23] have explored
long-content ASR to resolve these problem in streaming AED
situation. Hence there is still much needed to be done to fully
realize the potential of long-content neural transducer models in
streaming ASR applications.

In this paper, we propose the novel non-streaming and stream-
ing transducer models, LongFNT and SLongFNT, respectively,
which integrate long-content information into the factorized
neural transducer (FNT) [45], [46], [47] architecture to solve
the above challenge.

We firstly attempted to embed long-content transcriptions into
the predictor of the vanilla neural transducer in non-streaming
situation, but our experiments showed that it had limited impact
on the performance. One possible explanation for the limited
impact of long-content transcriptions in the vanilla neural trans-
ducer is that the prediction network does not function as a pure
language model (LM), which constrains its ability to model long-
content transcriptions. It also indicates that effective methods for
AED models, such as those proposed in Hori et al. [23], cannot
be extended to transducer-based models, as they rely heavily
on the LM characteristic of the decoder. Then, we utilized the
FNT (or named as modular hybrid autoregressive transducer)
architecture [45], [46], [48], [49], [50], which factorizes the
blank and vocabulary prediction modules, allowing for the use
of a standalone LM for vocabulary prediction.

Based on FNT, we propose the LongFNT architecture,
by fusing two sub-architecture, LongFNT-Text and LongFNT-
Speech to utilize long-content text and speech individually.
This architecture is proposed in our recent publication [51].
For LongFNT-Text, utterance-level integration and token-level
integration are proposed to integrate high-level long-content
features from historical transcriptions based on the vocabulary
predictor. Concretely, a context encoder is employed to yield the
embedding of each token in historical transcriptions. To further
improve performance, we employed a pre-trained text encoder,
RoBERTa [52]. Besides, we embed long-content speech into the
encoder to propose the LongFNT-Speech model.

Furthermore, we propose SLongFNT model, which extends
our non-streaming LongFNT model into the streaming scenario.
Similarly two approaches SLongFNT-Text and SLongFNT-
Speech are proposed. The SLongFNT-Text uses LSTM [53]
as the vocabulary predictor backbone and traditional attention
to integrate long-content information at the token level. Addi-
tionally, we explored the use the vocabulary predictor’s hidden
state as context to reduce computational cost. For real-time
speech processing, we developed SLongFNT-Speech, which
uses long-content chunk-based attention and integrates histori-
cal utterances with the hidden layer representation of the current

chunk for key and value. We explored several ways to down-
sample the historical features, including statistical and dilated
downsampling.

The main contributions of this paper can be summarized as
follows:
� Firstly, we introduce the concept of long-content scenarios

in ASR, as an opportunity to utilize both historical audio
and textual information.

� For non-streaming long-content scenario, we proposed
two architectures to explore the long-content information
from historical content text and speech respectively, i.e.
LongFNT-Text and LongFNT-Speech, and further com-
bined these two methods into one integrated architecture
to obtain the final LongFNT model, which is built upon
our preliminary work [47] with deeper analysis.

� For streaming long-content scenario, we further improved
the structure of LongFNT to meet the real-time require-
ments under streaming conditions. Similarly, we propose
SLongFNT-Text and SLongFNT-Speech, and finally com-
bine them to obtain the SLongFNT model. Huge accuracy
improvement and low latency increase also can be observed
in this streaming scenario.

The rest of the paper is organized as follows. Neural trans-
ducer architectures are first reviewed in Section II. Section III
presents the newly proposed LongFNT which utilizing the long-
content information in ASR, and Section IV further explored the
streaming version named SLongFNT. The detailed experimental
setup, results and analysis are described in Sections V,VI, and
finally the conclusions are given in Section VII.

II. REVISIT ON NEURAL TRANSDUCER

A. Transformer-Based Neural Transducers

Take the acoustic features X = {x1, . . . ,xT } as input and
label sequence y = {y1, . . . , yL} as output, modern transducer
architecture for speech recognition consists of 3 components, a
speech encoder, a label predictor and a joint network to predict
the tokens. Conformer [54] is a convolutional augmented trans-
former speech encoder that is widely used in attention-based
encoder-decoder and neural transducer architectures to improve
the ASR performance. The predictor works like a language
model which produces label representation zl given non-blank
outputs y≤l, where t is the time index and l is the output label
index. The encoder and predictor outputs are combined in the
joint network and are subsequently passed through the output
layer to compute the probability distribution zt,l over the output
layer:

h[1:T ] = Encoder(X), (1)

zl = Predictor(y≤l), (2)

zt,l = JointNet(ht, zl) (3)

where t ∈ [1, T ], l ∈ [1, L] are the frame and label index, respec-
tively. The predicted probability of the neural transducer model
and loss can be computed as:

PASR(ŷl+1|x≤t, yl) = softmax(zt,l), (4)
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Fig. 1. Illustration of factorized neural transducer (FNT) and its improved
version [46].

Ltransducer = − log
∑

α∈η−1(y)
P (α|X), (5)

where η is a many-to-one function from all possible transducer
paths to the target y and a special blank symbol, φ, is added
to the output vocabulary. Therefore the output set is {φ ∪ V},
where V is the vocabulary set.

B. Factorized Neural Transducer

The factorized neural transducer model (FNT) [45], [46]
has emerged as a promising architecture, aiming to separately
predict the blank token and vocabulary tokens, so that an aux-
iliary vocabulary predictor fully functions as an LM. The FNT
model is comprised of four main components, the conformer
encoder, the blank predictor (PredB), the joint network forφ, and
the vocabulary predictor (PredV , i.e. LM manner). The whole
architecture is illustrated in Fig. 1.

zB
t,l = Joint(ht,PredB(y≤l)), (6)

zV
l = log_softmax(PredV (y≤l))

= logPLM (ŷl+1|y≤l), (7)

zV
t = log_softmax(Linear(ht)), (8)

zV
t,l = zV

t [:-1] + βzV
l , (9)

where β is a trainable parameter, zV
t is used for computing CTC

loss LCTC , and zV
t become U + 1 because CTC needs another

extra output blank ψ. It’s important to note that the blank token
(ψ) in CTC is not the same as the blank token (φ) in RNN-T
mentioned above [3], [13]. For PredB , it repeats (2), (3) but only
predict the φ in (6). For PredV , LM logits is firstly projected to
the vocabulary size and converted to the log probability domain
by the log softmax operation, denoted as zV

l in (7). In (9), then
it is added with projected encoder output zV

t to get zV
t,l, i.e. the

output of PredV . Finally we can compute the posterior of the

Fig. 2. Architecture of LongFNT-Text: the text-side context encoder and long-
content textual integration methods for PredV .

transducer model as

PASR(ŷl+1|X, yl) = softmax([zB
t,l, z

V
t,l]). (10)

and then the loss is computed as

L = Ltransducer + λLMLLM + λCTCLCTC , (11)

where λLM , λCTC are hyper-parameters.

III. LONGFNT: LONG-CONTENT FACTORIZED NEURAL

TRANSDUCER ASR

In this section we describe LongFNT, the non-streaming long-
content ASR architecture based on factorized neural transducer,
which contains LongFNT-Text and LongFNT-Speech parts.

Here, we use p as the index of the current utterance,
and then the first/second utterance before utterance p are
p− 1 and p− 2 and etc. Then the historical utterances have
acoustic sequences like {· · · ,Xp−2,Xp−1}. and label se-
quences like {· · · ,yp−2,yp−1}, where the current utterance
has acoustic sequence Xp and label sequence yp and Xp =
[xp

1, . . . ,x
p
Tp ],yp = [yp1 , . . . , y

p
Lp ]. And then the acoustic rep-

resentation sequence from speech encoder is hp
[1:Tp] for currernt

utterance p.

A. LongFNT-Text: Long-Content Text Integration of FNT

As shown in Fig. 2, we first propose LongFNT-Text, which
contains a text-side context encoder and two different textual
integration methods. We modify the PredV in (7) to expand long-
content textual information in FNT.

Context Encoder: The text-side context encoder converts
historical label sequences yhis = {· · · ,yp−2,yp−1} into token-
level historical embedding sequence C:

C = Context-Encoder(yhis), (12)

where C has length equal to · · ·+ Lp−2 + Lp−1. During infer-
ence, the current utterance information will not be used in the
context encoder. The basic context encoder is jointly trained with
long-content FNT in a transformer manner. To extract stronger
features, we directly use a pre-trained RoBERTa [52] model as
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the context encoder. We utilize the pre-trained RoBERTa1 model
and freeze it during LongFNT training.

Two textual integration methods are designed for LongFNT-
Text. As shown before, FNT factorizes out the vocabulary pre-
dictor part by jointly training the speech-text pair data, therefore
the historical transcriptions can be injected inside the vocabulary
predictor PredV or after it.

Utterance-level integration: To get the utterance-level em-
bedding c̃, we first do mean and standard variance (std) such
that c̃ = concat(mean(C), std(C)), and then enhance zV

l with
utterance-level information c̃ in the yellow box of Fig. 2:

olast
≤l = PredV − Encoder(y≤l), (13)

olast′
l = olast

l + Projection(c̃), (14)

zV ′
l = log_softmax(LinearV · ReLU(olast′

l )), (15)

where olast
≤l is the l-th textual embedding in the last layer of

PredV -Encoder, and olast′
l is the historical-enhanced version of

olast
l , and zV ′

l is the historical-enhanced logits.
Token-level integration: Different from the utterance-level

integration method, we put more granular historical information
(C) into PredV by adding an auxiliary cross-attention layer
inside transformer blocks:

oi
≤l = MHA(oi−1

≤l ,o
i−1
≤l ,o

i−1
≤l ), (16)

oi′
≤l = MHA(oi

≤l,C,C), (17)

oi′
≤l = FFN(oi′

≤l), (18)

where PredV is a transformer encoder, i is the block index, o≤l
is the representation of current tokens, FFN is the feed-forward
layer and MHA is the multi-head attention layer, respectively.
Residual connection is ignored for simplification. In (17), we
integrate the long-content context embedding sequence C into
the representation o≤l, where C is key and value and oi

≤l is
the query in this attention. Meanwhile, there is also a projection
layer forC when we use mismatched dimensions for the context
encoder and PredV .

Finally, the utterance-level integration and the token-level
integration can be combined to achieve better utilization of C.
Since the PredV in FNT is designed to be an LM, we explore
the possibility of training it independently on a much larger
text corpus (i.e. the external text) than the transcriptions in the
FNT training data. The vocabulary of the external LM is the
same as that of the FNT system, and is pre-trained using the
conventional cross-entropy loss. With the help of large external
text data, the model achieves better results, which is then named
as LongFNT-Text.

B. LongFNT-Speech: Long-Content Enhanced Speech
Encoder

As shown in Fig. 3, we describe our proposed LongFNT-
Speech to train the speech encoder on long-content speech,

1[Online]. Available: https://huggingface.co/sentence-transformers/all-
roberta-large-v1

Fig. 3. Architecture of LongFNT-Speech: the speech encoder pipeline with
long-content speech input. Only the yellow part is used for gradient back
propagation.

which is pre-segmented into utterances {· · · ,Xp−2,Xp−1}.
· · · ,h′p−1[1:Tp−1],h

′p
[1:Tp] = Encoder(· · · ,Xp−1,Xp), (19)

whereh
′p
t is the historical-enhanced t-th acoustic representation

of the p-th utterance (i.e. the current one) matches ht in (1).
The label representations zV

t is calculated by h
′p
t as in (9). For

normal FNT, the whole · · · ,h′p−1,h′p{1:T } is used to compute
the transducer loss and for gradient back-propagation. However,
LongFNT-Speech only utilizes the current acoustic hidden rep-
resentations h

′p
[1:T ] for computing the transducer loss and CTC

loss, and backward across historical utterances is ignored during
training. Using such extension, the speech encoder receives a
longer history and thus benefits both training and evaluation.

C. Training Strategies for LongFNT

Combining LongFNT-Text and LongFNT-Speech, the final
proposed method is called as LongFNT. During training, the
large-context encoder obtains not hypotheses but reference (or-
acle) transcripts. The long-content information utilization is
controlled by the number of historical utterances (Nhis), and
will effect the improvement of the LongFNT model. Nhis is a
hyper-parameter, andN train

his (the number of historical utterances
during training) is randomly sampled from the pre-defined distri-
bution [0,Nhis] for each utterance, whileN decode

his (the number of
historical utterances during decoding) is controlled by Nhis and
available historical utterances. TakeNhis = 3 as an example, the
first decoded utterance has no history (N decode

his [1] = 0), second
has N decode

his [2] = 1, and the 10th utterance has N decode
his [10] = 3.

Although we can achieve much longer history, it is a huge burden
for training as the history length grows and meanwhile causes
serialization data training rather than the random shuffling one.

IV. SLONGFNT: SPEED UP LONGFNT ASR IN STREAMING

SCENARIO

In streaming ASR, besides the recognition error rate, the
recognition latency stands as a pivotal metric. However, the
LongFNT approach yields high latency, which inspire us to
explore a streaming model that makes efficient use of historical
information and keep the benfits of streaming models.

Firstly, we introduce a modified version of the FNT architec-
ture for streaming scenarios named as streaming FNT (SFNT).
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Fig. 4. Architecture of SLongFNT-Text: the long-content self-attention mod-
ule and two different kinds of historical textual information.

For speech encoder, we adopt the streaming conformer [54] de-
rived from its offline version. Different from emformer [44], our
attention mechanism omits the memory bank and right-context
(named as chunk-based attention [55]). During training, the
left-context and center-context are concatenated together as a
large chunk. During decoding, the left-context and its related
states are consistently cached so that the chunked attention is
like:

Ht = MHA(Ht,H{u:v},H{u:v}), (20)

where t ∈ [u : v] denotes the frames used in computation which
starts from timestamp u and ends at v, and v − u is the summed
length of left-context frames and center-context frames. Addi-
tionally, we substitute the traditional convolution block with a
causal one.

As for PredV , as the use of transformer as PredV can cause
unacceptable delays, so we use LSTM structure [14], [53] to
improve the latency.

A. SLongFNT-Text

As mentioned in Section III-A, the context encoder however
is not efficient enough in terms of real time latency when we
apply transformer-style architecture such as RoBERTa. Thus,
we propose an alternative approach: taking PredV as the context
encoder, rather than the transformer-style context encoder ref-
erenced in LongFNT (transformer or RoBERTa). This allows us
to mitigate the computational delays associated with using an
extra context encoder to process historical utterances.

Shown in Fig. 4(a), we improve the token-level integration
mentioned in Section III-A from concatenating operation to the
long-content attention:

o′l = Long-content Attention(ol,C,C), (21)

where ol is the output state of PredV before the projection
layer, i.e.zV

l = log_softmax(LinearV (ol)), andC is the context
embedding sequence, which is referred as RoBERTa or PredV

in experiments. When using PredV as the context encoder, and
the hidden states of PredV in SFNT is regraded as token-level

Fig. 5. Architecture of the attention layer in SLongFNT-Speech: the long-
content chunk-based self-attention module in the speech encoder. Downsam-
pling is applied to reduce the history length.

embeddings C. Moreover, the historical-enhanced representa-
tion o′l is concatenated with ol, o′′l = [ol,o

′
l] to achieve better

integration performance.

B. Slongfnt-Speech

In the streaming FNT mentioned above, the encoder is used
with limited acoustic frames in order to ensure low recognition
latency, which also leads to a relatively large reduction in recog-
nition accuracy. Therefore, how to use historical information
efficiently is explored in a streaming situation and a SLongFNT-
Speech architecture is proposed. Shown in Fig. 5, when feeding
external historical speech into the encoder, a similar technique
called long-content chunk-based attention can be applied to
retain its historical features:

Ht = MHA(Ht, [H
his;H{u:v}], [Hhis;H{u:v}]). (22)

where Hhis is the cached features from historical utterances
· · · ,Hp−2,Hp−1. This allows the chunk-based attention to be
expanded to a larger global field of perception.

Even though caching technique is applied in long-content
chunk-based attention, we notice that the computation com-
plexityO(d× (v − u+ · · ·+ tp−2 + tp−1)) is still huge, where
the historical feature lengths tp−2, tp−1 is much longer than
the chunk size. This will result in a corresponding increase in
computation when performing the attention calculation. Accord-
ingly two downsampling methods are proposed to reduce the
increment length for historical acoustic information by rate K
into an acceptable magnitude shown in Fig. 5.

Statistical Downsampling: The first method is called statisti-
cal downsampling. The uncompressed features h<p are firstly
broken into discontinuous blocks, and then all frame features
in each block are added and normalized to obtain a global
representation, i.e. block-wise mean or standard variance. If the
whole history is regraded as one block, then the downsampling
can be seen as a global mean or standard variance. For each
block:

H̃i = 1/K
∑

K·i≤t<K·(i+1)

Ht, (23)
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where we compute the i-th block historical embedding, and K
represents the number of blocks from historical content. Then
Hhis = [H̃1; · · · ; H̃K ] mentioned in (22).

Dilated Downsampling: Another method is called dilated lo-
cal downsampling, where it is implemented by random selection:

H̃i = Ht, where t
uniform← [K · i,K · (i+ 1)). (24)

By utilizing these two downsampling methods in training,
and the statistical downsampling method in inference (which is
referred to as ‘mix’ in the experiments section), the proposed
SLongFNT-Speech model can achieve better results.

C. Training Strategies for SLongFNT

Combining SLongFNT-Text and SLongFNT-Speech, the
final proposed streaming version of LongFNT is named
SLongFNT (Streaming LongFNT). Firstly, we extend the pre-
vious FNT model in Section II-B into the streaming version. We
mainly follow the setup from [14], using truncated history with
no future information. Meanwhile, we follow MoCHA [56] to
segment speech into chunks with a specified chunk size and
attention caching used to optimize inference speed. In addi-
tion, for the convolutional layer in the conformer, we also use
causal convolution to ensure that future information will not be
utilized in the training process. The training is performed on
concatenated utterances, and it enforces time restriction on the
self-attention layers by masking attention weights, which can
simulate a situation where future content is not available while
still considering several look-ahead frames.

V. EXPERIMENTAL SETUP

We conduct experiments with two datasets, LibriSpeech [57]
and GigaSpeech Middle (abbr. as GigaSpeech) [58]. Lib-
riSpeech has around 960 hours of audiobook speech, while
GigaSpeech has around 1,000 hours of audiobook, podcasting,
and YouTube audio. The sampling rate of these two datasets
is 16 kHz. The word error rate (WER) averaged over each test
set is reported. For acoustic feature extraction, 80-dimensional
mel filterbank (Fbank) features are extracted with global level
cepstral mean and variance normalization. Frame length and
frame shift are 25 ms and 10 ms respectively. Standard SpecAug-
ment [59] is applied for both datasets. Each utterance has
two frequency masks with parameter (F = 27) and ten time
masks with maximum time-mask ratio (pS = 0.05). 5,000 word
pieces with Byte Pair Encoding (BPE) [60] are trained using
LibriSpeech and GigaSpeech datasets separately. As for the
PredV part, the text scale is 10.27 million words for LibriSpeech
and 9.68 million for GigaSpeech. And the extra text data (‘+
external text’ mentioned in Section III-A), for LibriSpeech,
we use the official extra text corpus which has 812.69 million
words (https://www.openslr.org/11/), and for GigaSpeech, we
use GigaSpeech-XL training text data which has 113.80 million
words. The external text is used to pre-train PredV to get a better
initialization.

As shown in Fig. 6, we evaluate the average length of audio
and bpe-level tokens in different long-content setups, i.e. the

Fig. 6. Statistics of speech and words in the LibriSpeech (left) and Gi-
gaSpeech (right). Red denotes speech, and blue denotes text. Solid line denotes
train set and dotted line denotes dev set. The left vertical axis of each figure
denotes the speech duration (ms), while the right one denotes the text length
(bpe5000). The horizontal axis #Previous denotes Nhis.

different numbers of historical utterances. In our experiments
utilizing Librispeech and Gigaspeech, we maintained the tem-
poral sequence of sentences using successive utterance ids,
such as XXX_01, XXX_02 and etc. Gigaspeech occasionally
exhibits sequence discontinuities, but given their typical session
lengths over one hour, such breaks have a marginal impact
on continuity. While not every Librispeech book’s content is
fully represented, each session’s content is intact and sequential.
During testing, for any utterance with non-consecutive histor-
ical utterances, we adaptively treat the immediately preceding
utterance as historical content to balance both relevance and
efficiency. Take ‘03,05,06’ utterance sequence as an example,
during the inference of ‘06’ with Nhis = 2 and ‘04’ is missing,
we would consider ‘03’ and ‘05’ as the preceding historical
content for ‘06’. For the first utterance, there is no historical
information, whereas the second utterance has only ‘01’ as its
historical content.

The non-streaming FNT baseline follows the single-utterance
settings of factorized neural transducer (FNT) [46]. And the
non-streaming C-T baseline has the same architecture of speech
encoder and predictor and training setup where as FNT, the
predictor has the same shape as PredB . The subsampling layer is
a VGG2L-like network, which contains four convolution layers
with the down-sampling rate of 4. The encoder has 18 conformer
layers, in which the inner size of the feed-forward layer is 1,024,
and the attention dimension is 512 with 8 heads. The PredB

has two unidirectional LSTM layers with 1,024 hidden size
and the joint dimension is set to 512. The PredV use vanilla
8 transformer layers, which has 256 attention dimension with 8
heads. The textual input for PredB and PredV is prefixed with
a start-of-sequence (SOS) token. The hyper-parameter weights
are fixed as λCTC = 0.1. The context encoder has the same
shape as PredV if training from scratch, and utilizes the frozen
RoBERTa model otherwise. The input of the context encoder
is also always started with a start-of-sequence (SOS) symbol
for distinction. During inference, we keep beam size equal to 8.
As for the FNT’s external larger text-trained LM (external text),
we use 16 transformer layers with 512 attention dimension with
8 heads. In the following experiments, the default number of
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long-content sentences Nhis is two. We also conducted ablation
studies to explore the effects of varying this number. Through-
out both training and decoding, we consistently incorporate
≤ Nhis sentences as the historical textual content. Two possible
long-content text forms, i.e. oracle and hypotheses, are fed into
LongFNT model series to obtain the results. Both FNT and
LongFNT follow consistent training stages. When no external
text is utilized, both models are trained from scratch. However,
when ‘+external text’ is incorporated, the PredV is pre-trained
using the external text data.

As for the streaming experiments, the basic training/inference
setup remains the same, but the conformer encoder is with
chunk-wise casual convolution layer. We train the streaming
encoder with 8 left chunks and 1 center chunk (per chunk is
40 ms, i.e. totally 320 ms delay in the basic streaming FNT
system). Furthermore, in streaming human-computer interaction
scenarios, we have to take the speech time into consideration
when evaluating the real decoding time. Under this scenario, the
non-streaming ASR system will be suspended until all the audio
frames have been received, which will cause high latency, while
the streaming one can process the speech as far as it receives
the audio chunk. And the training stages for SFNT/SLongFNT
remains the same as FNT/LongFNT for ‘+ long text’, ‘+ external
text’ and etc.

We measure the end-latency under single core of Intel(R)
Xeon(R) Gold 6132 CPU @ 2.60 GHz:

End-Latencyp = T p
end − T p, (25)

where T p is the length of utterance p, and T p
end denotes the total

computation time elapsed from the moment the first frame is fed
to the encoder until the final bpe token is decoded for utterance p.
Meanwhile, we evaluate the average end-latency for the whole
dev set. To be notified, the context embedding sequence C is
simulated to compute in another CPU core to avoid any latency
issues during the inference process.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. Evaluation on the Non-Streaming LongFNT Model

In our initial experiments, we investigated whether the per-
formance of the vanilla C-T model could be improved by incor-
porating long-content transcription history (‘+ long text’), in the
first block of Table I. We observed that the vanilla C-T model
demonstrated only minimal improvements when using extended
long-content text or utterance-level integration, even with the use
of oracle transcripts. Moreover, when incorporating hypotheses,
the system performance actually degraded. This outcome can be
attributed to the fact that the predictor network in traditional
neural transducer models is not a pure language model and
cannot easily leverage longer history to achieve performance
improvements.

In terms of FNT, shown in the second block of Table I,
including the decoded/oracle long-content transcription history
in the text input (‘+ long text’) does very limited help on both
LibriSpeech and GigaSpeech. When the factorized predictor
V is trained with extra text data (+external text), the system
can obtain small but consistent improvements on all test sets. It

TABLE I
PERFORMANCE (WER) (%) COMPARISON ON LIBRISPEECH TEST SETS AND

GIGASPEECH DEV/TEST SETS UNDER THE NON-STREAMING SCENARIO

demonstrates that the FNT architecture can factorize and model
the language knowledge more accurately and can be benefited
from a powerful language model. However, the long-content text
history also does not further improve system upon the external
text, which indicates that it is non-trivial to explore how to
better leverage long-content information in the neural trans-
ducer. Additionally, while the normal speech encoder is indeed
capable of handling long-form speech, our experiment ‘FNT
+ long speech’ reveals that directly integrating long-content
speech with the FNT results in a performance drop across all
sets. This underscore the need to find a more optimal approach
for leveraging long-content speech.

In the last, the newly proposed LongFNT model is evaluated
and the results are shown in the last block of Table I. Compared
to the previous C-T and FNT systems, all the proposed mod-
els using long information can get significant improvements,
which demonstrates the better utilization of long-content history
information with the new model. In contrast to ‘FNT + long
speech’, LongFNT-Speech exhibits superior performance. This
enhancement can be attributed to our strategy of confining the
gradient back-propagation. To further validate the efficacy of
LongFNT-Text, we replicated the cross-utterance transformer
LM as detailed in [49], [61] in the third block of Table I.
Nonetheless, it is worth noting that these methods aren’t entirely
analogous to LongFNT-Text. The primary distinction arises
from their reliance on shallow fusion, whereas LongFNT-Text
operates independently of such a fusion mechanism. Shown in
Table I, it is evident that cross-utterance LM fusion (hyp) garners
an improvement over conventional fusion and baseline. Mean-
while, LongFNT-Text outperforms cross-utterance LM fusion
on GigaSpeech, possibly due to its enhanced robustness. Further-
more, when LongFNT-Text is applied with shallow fusion, its
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TABLE II
PERFORMANCE (WER) (%) COMPARISON OF SUCCESSIVE HISTORICAL

UTTERANCE COUNTS ON GIGASPEECH DEV/TEST SETS FOR LONGFNT SERIES

performance notably surpasses that of ‘+cross-utterance LM fu-
sion (hyp)’. Such a synergy effectively captures the long-content
textual information. Furthermore, it is observed that both two
types of historical information, i.e. text and speech, are both
helpful for long-content speech recognition, and LongFNT-Text
is slightly better than the LongFNT-Speech. The final LongFNT
model integrating historical knowledge from both text and
speech achieves the best system performance, and compared to
the limited gain from the naive long text usage in C-T and FNT,
the proposed LongFNT obtains around 20% and 10% relative
WER reductions on LibriSpeech and GigaSpeech respectively.

B. Ablation Studies on the Non-Streaming LongFNT Model

1) The Number of Historical Utterances: Performance com-
parison of successive historical utterance counts are evaluated
with the proposed LongFNT model, and the results are shown
in Table II. The correlation between the number of historical
utterances and the recognition error rate can be observed, and
Nhis = 0 means no historical utterance is used, i.e. the FNT
baseline. As Nhis grows, the WER of the current utterance is
reduced gradually with the increased historical lengthNhis. After
Nhis > 2, the improvement is limited but training resources are
very consumed. So the previous two utterances history are the
most appropriate trade-off point between accuracy and cost in
LongFNT, and we setNhis = 2 to learn appropriate long-content
information for all the following experiments.

2) Effectiveness of Different Components in LongFNT-Text:
In this subsection, we evaluate the effectiveness of the proposed
LongFNT model and explore the impact of each module on the
final performance. Table III presents the results of our analysis
on the efficiency of different integration methods for LongFNT-
Text.

In the first block of Table III, experiments indicate that
token-level integration is more significant than utterance-level
integration. When considering only utterance-level integration,
the system achieves a WER reduction of 0.2/0.1 absolute on the
LibriSpeech and 0.3/0.1 absolute on the GigaSpeech datasets.
However, when token-level integration is utilized, the WER re-
duction improves to 0.2/0.3 absolute on the LibriSpeech corpus
and 0.8/0.6 absolute on the GigaSpeech corpus. A similar trend
can be observed in the second block, token-level integration
outperforms utterance-level integration by ∼0.4 absolute WER
reduction on LibriSpeech and 0.2∼0.5 on GigaSpeech, after

TABLE III
PERFORMANCE (WER) (%) COMPARISON OF DIFFERENT COMPONENTS IN

LONGFNT-TEXT (THE FINAL LONGFNT-TEXT SYSTEM IS THE LINE DENOTED

WITH *)

adding external text (i.e. with large LM, ‘+ external text’) and
after using RoBERTa model (‘+++ RoBERTa’).

As mentioned previously in Section V, in the real scenario,
ground truth (oracle) text can not be accessed, and we evaluate
the above methods using decoded transcriptions (hypotheses)
to get real performance and explore the importance of those
two types in different LongFNT-Text modes. Shown as the 1st
block of Table III, experiments indicate that models decoded
using hypotheses experienced a relative 1%∼5% performance
drop compared to those decoded using oracle text, and the
degradation on the GigaSpeech is larger compared to the that
on the LibriSpeech. This may be attributed to the fact that the
basic error rate influences the performance of hypotheses, and
a system with low WER is necessary to achieve performance
improvements in long-content speech recognition. Additionally,
we observe that the utterance-level integration is more sensitive
to the long-content transcriptions quality compared to the token-
level one, as it drops more 0.1%∼0.2% absolute WER.

This indicates the shortcoming of statistical averaging pooling
for utterance-level integration.

Then we discovered that long-content transcriptions can be
effectively utilized in conjunction with external text, thereby
leveraging the advantages of FNT. Results in the 2nd and 3 rd
blocks of Table III demonstrate a relative performance increase
of at least 2% across all datasets for different textual integration
methods (‘+token-level’, ‘+ utterance-level’, ‘+ utterance-level
+ token-level’). These results highlight the effectiveness of em-
ploying a external-text-boosted vocabulary predictor to further
enhance the performance of our models.

Furthermore, We also investigated the importance of replac-
ing the train-from-scratch context encoder with a pre-trained
RoBERTa model, and found that the importance varied across
the LibriSpeech and GigaSpeech datasets. For LibriSpeech,
the performance only improves by 0.1% absolute WER re-
duction, and in some cases, no improvement was observed in
the test-clean set for the LongFNT-Text model. In contrast, for
GigaSpeech, we observed a consistent improvement in perfor-
mance of at least 0.3%∼0.5% absolute WER reduction. This

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 06,2024 at 09:06:47 UTC from IEEE Xplore.  Restrictions apply. 



GONG et al.: ADVANCED LONG-CONTENT SPEECH RECOGNITION WITH FACTORIZED NEURAL TRANSDUCER 1811

TABLE IV
PERFORMANCE (WER) (%) COMPARISON ON LIBRISPEECH TEST SETS AND

GIGASPEECH DEV/TEST SETS UNDER THE STREAMING SCENARIO

phenomenon is interesting because the impact of the RoBERTa
model was minimal in the LibriSpeech dataset. This may be
attributed to the fact that the influence of transcriptions is
relatively smaller in this dataset, and the context encoder has
a similar ability to model the long-content textual information.

C. Evaluation on Streaming SLongFNT Model

Table IV presents the performance comparison in streaming
scenario, and here we no longer explore the performance of C-T
with the long-term history (the specific reasons can be seen in
Section VI-A). We first set a benchmark based on the impact of
long-content text on the original FNT model, which the basic
streaming FNT (SFNT) has obvious performance drop com-
pared with the non-streaming FNT model in Table I. The results
presented in lines 1-3 of the first block of the Table IV align
with the conclusions drawn in Section VI-A for non-streaming
system with oracle/hypotheses historical condition. With the
help of external text, whether there is long-content text or not, the
streaming FNT model has been improved consistently, although
the improvement is relatively small.

In the second block of Table IV, it shows the perfor-
mance of our proposed SLongFNT models individually. For
the utilization of long-content transcriptions, i.e. SLongFNT-
Text, it achieves 11/8% relative WER reduction on Lib-
riSpeech/GigaSpeech, which is a comparable improvement with
non-streaming LongFNT-Text. As for the utilization of long-
content speech, i.e. SLongFNT-Speech, the downsampling rate
is set to K = 4 to consider the balance between the inference
speed and accuracy, and 15/14% relative WER reduction on
LibriSpeech/GigaSpeech are observed. It is found that the im-
provement of SLongFNT-Speech is larger than that of LongFNT-
Speech, which may be due to the greater importance of speech
encoder in the streaming condition. Finally, the SLongFNT
system combining historical knowledge from both text and
speech achieves ∼25% relative WERR on LibriSpeech and
∼17% relative WERR on GigaSpeech, compared to the baseline
streaming FNT system.

TABLE V
ABLATION STUDY OF DIFFERENT COMPONENTS PROPOSED IN SLONGFNT

D. Ablation Studies on the Streaming SLongFNT Model

At first, we follow the Nhis = 2 setup for the exploration of
SLongFNT-Text/-Speech architecture to find optimal architec-
ture setup for SLongFNT.

1) Exploring Different Text Integration Methods for
SLongFNT-Text: In the second block of Table V, we inves-
tigate different components of SLongFNT-Text. First of all,
we explore the external context encoder method (directly use
the same RoBERTa model mentioned in Section III-A), and
the method of extracting context embedding is the same as
LongFNT. RoBERTa (hypotheses) is consistently worse than
RoBERTa (oracle), and the drop is larger for datasets with
worse WER (i.e. 7% relative WER degradation on LibriSpeech
while 14% for GigaSpeech) due to the incorrect textual content.
Similar to LongFNT-Text, with the help of external text, the
RoBERTa-based SLongFNT-Text model achieves>8% relative
WER improvement on both datasets.

However, in real streaming scenario, the CPU is overloaded
for current chunk’s inference, thus computing context embed-
dings by RoBERTa causes higher latency. We then try to utilize
the hidden state from PredV , which does not require external
computing resources. With PredV as the internal context en-
coder, the final SLongFNT-Text also achieves significant im-
provement, and it is smaller than the RoBERTa context encoder
but still obvious.

2) Exploring Different Downsampling Methods for
SLongFNT-Speech: In the third block of Table V, we investigate
different downsampling methods for SLongFNT-Speech
mentioned in Section IV-B, and downsampling rate K = 1
indicates the system without downsampling. We first considered
the corner cases, those are, to calculate the mean vector of all
long-content acoustic representations (mean), and to calculate
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TABLE VI
PERFORMANCE (WER) (%) COMPARISON OF SUCCESSIVE UTTERANCE

COUNTS NHIS ON GIGASPEECH DEV/TEST SETS FOR SLONGFNT SERIES

the mean and standard variance of all long-content acoustic
representations (mean+std). Although these modes are simple,
experimental results show that both methods can be still better
than the SFNT baseline (line 1), and the ‘mean’ performs
slightly better than the model with ‘mean+std’. Thus we choose
‘mean’ as the implementation of statistical downsampling.

The statistical and dilated downsampling with different rates
are then applied. It is observed that the statistical downsampling
with K = 2 gets almost no WER degradation, and the perfor-
mance drop will become obvious whenK > 4. Compared to the
dilated downsampling mode, the statistical mode is consistently
better. Moreover, we tried to combine statistical and dilated
downsampling modes with K = 4, i.e. using the statistical
with dilated downsampling methods during training and using
statistical downsampling only for decoding, SLongFNT-Speech
(shown as the last line in Table V) can achieve better results and
perform the appropriate trade-off point between the accuracy
and computation cost.

3) The Number of Historical Utterances: We study the influ-
ence of different historical information lengths on the recogni-
tion accuracy and delay of the SLongFNT model, and then select
the most suitable number for the following experiments. From
Table VI, it is found that as the number of historical utterances
Nhis increases, the performance of SLongFNT-Text/-Speech
and the final model SLongFNT are gradually improved. The
impact from historical speech is larger than that from historical
text. Similar as the observation for non-streaming LongFNT,
Nhis = 2 also seems be the appropriate trade-off point between
accuracy and computational cost for this streaming SLongFNT,
and it is applied on SLongFNT in the further experiments.

4) Decoding Latency: Decoding speed is another concern
when people deploy the streaming ASR systems. Illustrated in
Fig. 7, we evaluated the end-latency for the proposed SLongFNT
systems with different number of historical utterances (Nhis =
0, 1, 2, 3) and different downsampling rates (K = 1, 2, 4, 8,
16,∞), where∞ denotes mean pooling. The results demonstrate
that as the word error rate decreases, the latency increases. We
can balance the trade-off between latency and model accuracy
(error rate) by choosing Nhis = 2,K = 4, which results in the
latency of 545 ms. In this setup, the latency for SLongFNT-
Text is recorded at 473 ms, while SLongFNT-Speech exhibits a
latency of approximately 497 ms.

Meanwhile, the figure also demonstrates that the down-
sampling ratio has a significant impact on latency, and the
increase of historical statements gradually increases overall
recognition delay. When the downsampling ratio is greater than
4, the rate of latency attenuation gradually slows down. At this

Fig. 7. Latency (ms) and word error rate (%) trade-off on dev set of Gi-
gaSpeech.∞ denotes ‘mean’ in Table V. Different downsampling rates K and
Nhis are presented. The numbers on the line are the related downsampling rates
K.

point, the infinity downsampling latency is similar to Nhis = 0,
where we consider ‘mean’ as an approximation that approaches
infinity (∞). Moreover, another basic streaming FNT model
with larger chunk-size = 640 ms is also constructed and shown
in the figure, denoted as SFNT(640 ms). It is observed that
the newly proposed SLongFNT with Nhis = 2&K = 2, has the
similar latency as SFNT (640 ms) but with much better accuracy.
It is worth noting that when taking the RoBERTa context encoder
into consideration, an additional average latency of 200 ms is
added to the current model. This issue can be addressed by using
PredV as the context encoder, as mentioned in Section IV-A.

E. Illustration on the Long-Content Speech Recognition
Results

The Table VII presents several examples that demonstrate
how LongFNT corrects the results of normal FNT by utilizing
long-content textual information. For the first block, when using
ground truth as the history, LongFNT successfully used the
historical word ‘WADIAK’, and makes the appropriate modi-
fication. However, when using hypotheses as history (i.e. ‘WA-
DIAC’) that is incorrectly decoded, the LongFNT utilizes the
wrong historical information and cannot correct the error ‘WA-
DIAC’. For the second and third blocks, when the hypotheses
history are correct, LongFNT is also able to utilize the historical
words and then make successful modifications.

In order to analyze the effectiveness of the LongFNT model
under long-term history, we draw upon the long-content atten-
tion for token-level integration in PredV . An example of the
proposed long-content attention during inference is depicted in
Fig. 8, and the left is the attention in the bottom layer and the
right is the attention in the top layer. As shown in Fig. 8(a), the
attention in the bottom layer exhibits a column-based pattern, in-
dicating that specific inputs in the long-content text play a crucial
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Fig. 8. Long-content attention of token-level integration in PredV (Nhis = 2). The left is the attention in the bottom layer and the right is the attention in the top
layer. The example is the same as the first block in Table VII, where the utterance id is POD1000000004_S0000075 in GigaSpeech dev set. Its historical sentences
are POD1000000004_S0000073 and POD1000000004_S0000074, with sentences separated by the SOS token (<sos/eos>).

TABLE VII
EXAMPLES OF DECODED RESULTS (HYP.) COMPARISION BETWEEN THE

NORMAL FNT AND PROPOSED LONGFNT MODEL

role regardless of their position in the input. Additionally, his-
torical utterance p− 2 has smaller attention scores compared to
utterance p− 1. In Fig. 8(b), the attention in the top layer focuses
more on connecting keywords occurred in history and correcting
the current word ‘WADIAK’, corresponding to Table VII. These
results demonstrate that the proposed long-content attention
mechanism can effectively capture long-range context, thereby
improving the system performance.

VII. CONCLUSION

In this paper, we introduce two novel approaches, LongFNT
and SLongFNT, to incorporate long-content information into
the factorized neural transducer (FNT) architecture, and achieve
significant improvements in both non-streaming and streaming
speech recognition scenarios.

At first, we investigated the effectiveness of incorporating
long-content history into conformer transducer models and
found little improvement. Subsequently, experiments are con-
ducted based on FNT to explore an efficient network for long-
content history utilization. We propose LongFNT, using two

integration methods for utilizing long-content text (LongFNT-
Text) and long-content speech (LongFNT-Speech), and it
achieves 19/12% relative word error rate reduction (relative
WERR) on LibriSpeech/GigaSpeech, outperforming FNT and
CT baselines. We then extended LongFNT to the streaming
scenario with SLongFNT, and it achieves 26/17% relative
WERR on LibriSpeech/GigaSpeech, outperforming streaming
FNT baselines. The experiments demonstrate that incorporating
long-content information can significantly improve ASR per-
formance, and our proposed models offer a promising solution
for improving long-content speech recognition in real-world
scenario with both non-streaming and streaming situations.
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