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Abstract—Significant advances in end-to-end (E2E) automatic
speech recognition (ASR) have primarily been concentrated on lan-
guages rich in annotated data. Nevertheless, a large proportion of
languages worldwide, which are typically low-resource, continue to
pose significant challenges. To address this issue, this study presents
a novel speech synthesis framework based on data splicing that
leverages self-supervised learning (SSL) units from Hidden Unit
BERT (HuBERT) as universal phonetic units. In our framework,
the SSL phonetic units serve as crucial bridges between speech
and text across different languages. By leveraging these units, we
successfully splice speech fragments from high-resource languages
into synthesized speech that maintains acoustic coherence with text
from low-resource languages. To further enhance the practicality
of the framework, we introduce a sampling strategy based on
confidence scores assigned to the speech segments used in data
splicing. The application of this confidence sampling strategy in
data splicing significantly accelerates ASR model convergence and
enhances overall ASR performance. Experimental results on the
COMMONVOICE dataset show 25-35% relative improvement for
four Indo-European languages and about 20% for Turkish using
a 4-gram language model for rescoring, under a 10-hour low-
resource setup. Furthermore, we showcase the scalability of our
framework by incorporating a larger unsupervised speech corpus
for generating speech fragments in data splicing, resulting in an
additional 10% relative improvement.

Index Terms—Low-resource speech recognition, text-to-seech,
data splicing, self-supervised learning.

I. INTRODUCTION

END-TO-END (E2E) models for automatic speech recogni-
tion (ASR) have attracted considerable attention in recent

years due to their streamlined design and promising output [1],
[2], [3], [4]. However, the effectiveness of E2E ASR models
heavily relies on the availability of large quantities of transcribed
audio data, which is often lacking in low-resource settings [5].
This scarcity of data poses a substantial challenge to deploying
E2E ASR models for languages with limited resources. To
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address this challenge, researchers have proposed various solu-
tions, including strategies such as multilingual transfer learning
(MultiASR), multilingual meta-learning [6], [7], [8], [9], [10],
[11], and self-supervised learning techniques [12], [13], [14],
[15], [16], [17].

Both multilingual transfer learning and multilingual meta-
learning are approaches that leverage labeled data to pre-train
a foundational model using data from multiple languages. This
pre-trained model serves as a starting point during the fine-tuning
phase [6], [18], [19], [20], [21]. By constraining the parameter
search space, these approaches facilitate faster convergence
when working with low-resource languages [8], [22]. To further
enhance the performance of low-resource ASR, [20] introduced
an auxiliary speech-to-text translation task that converts labeled
speech from a resource-rich language into text in a resource-
poor language. Additionally, [21] proposed fine-tuning the base
model’s parameters using meta-learning techniques to enable
rapid adaptation to various languages. However, it is important
to note that both multilingual transfer learning and meta-learning
require paired data for both the pre-training and fine-tuning
stages.

Recently, the utilization of unlabeled data has emerged as a
promising strategy, leading to the development and deployment
of semi-supervised and self-supervised techniques. Two semi-
supervised methods, namely iterative pseudo-labeling and noisy
student training, leverage language model (LM) insights and
data augmentation on extra unlabeled data [23], [24], [25]. These
methods involve a repetitive process of decoding the model to
generate hypotheses on unlabeled data, aided by an external lan-
guage model. The model is then trained on augmented data using
pseudo-labels, incorporating both unmatched speech and text
samples. Simultaneously, self-supervised learning (SSL) has
gained prominence for various tasks, leveraging readily avail-
able unpaired speech data to derive semantic information [12],
[26], [27], [28]. Inspired by masked language models [29],
masked acoustic models have been designed for self-learning,
predicting the masked segment of speech [30], [31], [32]. These
models can be fine-tuned with a modest quantity of annotated
data in low-resource scenarios, resulting in competent ASR
models [33]. For example, XLSR-53 [34] and XLS [35], pre-
trained on 56 k and 500 k hours of speech data, respectively, have
demonstrated notable performance across multiple languages,
highlighting the efficacy of SSL models.

The aforementioned approaches rely on paired or unpaired
real-world data from various languages, either pretraining a
seed model for fine-tuning in low-resource target languages or
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iteratively optimizing the model with pseudo-labels. In con-
trast, this study addresses the data scarcity issue through an
optimized text-to-speech (TTS) framework based on data splic-
ing. Our framework generates additional paired data in low-
resource languages by exploiting unpaired speech and text from
rich-resource languages. The effectiveness of neural TTS
models in improving ASR performance has been well-
documented [36], [37], [38], [39], [40], [41], [42], [43]. For
instance, previous studies have successfully applied neural TTS
models to adapt the recurrent neural network transducer (RNN-
T) [44] model from the source domain to the target domain [36],
[37]. Similarly, researchers have utilized the machine speech
chain framework to achieve mutual adaptation between TTS
and ASR models from the audiobook to the presentation do-
mains [39]. The work presented in [45] encompasses data
augmentation techniques rooted in TTS methodologies, along
with dual transformation operations, specifically tailored to im-
prove performance in both automatic speech recognition and
speech synthesis under low-resource conditions. To address
the reduction in recognition accuracy for out-of-vocabulary
(OOV) words, previous studies have trained ASR models on
audio synthesized from text that includes OOV words [40],
[41]. Additionally, researchers have improved the efficacy of a
children’s ASR system by enhancing the quality of synthesized
children’s speech using various filtering algorithms [43]. How-
ever, neural TTS models typically require a significant amount
of high-quality data for effective training. Despite the reduction
in the need for high-quality single-speaker paired data for these
models [45], [46], [47], [48], synthesizing consistent speech for
multiple speakers guided by noisy ASR data in low-resource
conditions remains a challenging task. Moreover, the substantial
computational costs associated with the training and inference
stages of neural TTS models pose a significant barrier to training
an ASR model using dynamically synthesized speech.

In [49], a TTS method based on word-level splicing data
generation (SDG) was proposed. The method demonstrated
favorable performance compared to neural TTS methods in
text-only domain adaptation tasks in ASR, while maintaining
minimal computational costs. The approach introduced in [49]
establishes a correspondence between words and speech frag-
ments using a tailored RNN-T model. This enables the associa-
tion of text from the target domain with speech fragments from
the source domain, which are then spliced to create coherent
speech. It’s highlighted in [49] that E2E models like RNN-T
make decisions after processing segments of speech rather than
frame-by-frame. Therefore, discontinuities at word transitions
in spliced speech, while noticeable to humans, might not impact
ASR models similarly. However, the word-level SDG presented
in [49] is limited to monolingual scenarios, as universal word
tokens across languages do not exist.

In response to this limitation, this study introduces a novel data
splicing framework specifically designed for cross-lingual sce-
narios. The framework involves concatenating speech fragments
from rich-resource languages to synthesize coherent speech
that aligns with the text from a low-resource language. To
achieve this, we leverage denoised clustering units (Hunits)
extracted from the latent representations of a pretrained Hid-
den Unit BERT (HuBERT) [13] model as universal phonetic

units that transcend language boundaries. We establish a cor-
respondence, referred to as HuDict, between Hunit n-grams
and speech fragments. Additionally, we develop a lightweight
Grapheme-to-Hunit (G2H) conversion model. During the speech
synthesis process, the G2H model maps text samples from the
low-resource language to Hunits, which are then mapped to
corresponding speech fragments using the HuDict. These speech
fragments are concatenated to generate synthesized speech
that acoustically aligns with the input text. A comprehensive
overview of the proposed framework is presented in Fig. 1 and
detailed in Section II-B.

The contributions of this study are as follows:
1) We propose a cross-lingual data splicing framework based

on self-supervised learning (SSL) units that enables train-
ing of low-resource ASR model using on-the-fly synthe-
sized speech.

2) We validate the feasibility of adopting HuBERT units (Hu-
nits) as phonetic units by comparing them with phonemes
in monolingual scenarios.

3) Experimental results conducted on multiple low-resource
languages consistently demonstrate a reduction in word
error rate (WER) by incorporating cross-lingually spliced
data into the training of low-resource ASR models, show-
casing the effectiveness of our approach.

4) The scalability of the proposed framework is validated by
incorporating a larger unsupervised speech corpus as the
source of speech fragments for data splicing.

II. CROSS-LINGUAL DATA SPLICING WITH SELF SUPERVISED

PHONETIC UNITS

In this section, we provide a comprehensive description of the
principles and design of speech synthesis based on data splicing.
We begin by addressing the specific scenario of monolingual
data splicing, where the target text and available speech frag-
ments belong to the same language. This serves as a demonstra-
tion to highlight the challenges and limitations when applying
the methodology in a cross-lingual context. The complexities of
cross-lingual scenarios arise from the absence of a universally
shared phonetic framework and the significant discrepancies in
linguistic structures across different languages.

To navigate these challenges, we introduce a novel framework
that enables cross-lingual data splicing using self-supervised
phonetic units. These units offer a practical solution in cross-
lingual scenarios, even though they may be less precise com-
pared to phonemes within the same language, as universal
phonemes do not exist.

Additionally, we detail an approach that incorporates confi-
dence sampling to enhance the quality of synthesized speech.
This technique plays a pivotal role in further boosting ASR
performance, expediting model convergence, and substantially
enhancing the overall efficacy of the proposed framework.

A. Data Splicing Within the Same Language

A feasible approach to speech synthesis through data splic-
ing [50] typically involves the selection and concatenation of
specific speech segments corresponding to phoneme sequences
in the desired text. This approach, referred to as phoneme-guided

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 06,2024 at 09:06:56 UTC from IEEE Xplore.  Restrictions apply. 



WANG AND QIAN: UNIVERSAL CROSS-LINGUAL DATA GENERATION FOR LOW RESOURCE ASR 975

Fig. 1. Data splicing framework proposed in this study consists of the following steps. (a) An Hunit extractor takes the raw waveform as input and derives denoised
clustering units, referred to as ‘Hunits’ from latent representations. (b) Given a source Sr , the Hunit extractor generates Hr and establishes associations between
Hunit n-grams within Hr and their corresponding speech fragments in Sr . These mappings are then incorporated into the Hunit Dictionary (HuDict). (c) A small
set of paired data, represented as {Sl, Tl}, are processed by the Hunit extractor. After removing any duplications, this data is used to train a Grapheme-to-Hunit
(G2H) model. (d) During the synthesis stage, the G2H model transforms T ′

l into H ′
l, which are then mapped to their corresponding speech segments using HuDict.

The resulting speech fragments are concatenated to form the synthesized speech.

data splicing, relies on phonemes as the fundamental units of
speech to identify the appropriate speech segments for gener-
ating synthetic speech. By utilizing phonemes, this approach
offers a more extensive range of speech segment options and en-
sures a higher fidelity to the acoustic characteristics of the target
text. An essential component of this technique is the construction
of a phoneme dictionary, which involves mapping phonemes to
their corresponding speech segments. This dictionary is built
by employing forced alignment on a corpus of paired speech
and text. Additionally, a language-specific lexicon is required
to convert the text into a phoneme sequence during the forced
alignment process.

While this approach has proven effective for data splicing in
monolingual scenarios, its application to cross-lingual synthesis
faces several challenges. One of the primary challenges is the
absence of a universal phonetic system that encompasses all
languages, making it difficult to map text from different lan-
guages to a sequence of universal phonemes. This limitation
hinders the direct transferability of the approach across linguistic
boundaries. Although the International Phonetic Alphabet (IPA)
may seem like a potential solution, constructing an IPA table for
each language is a manual and specialist-dependent process.
Furthermore, while IPA is universal, it may not accurately
capture subtle pronunciation differences influenced by specific
linguistic variations. Another limiting factor is the requirement
for paired speech-text corpora to build the phoneme dictionary.
This constraint prevents the utilization of a significantly larger
volume of unpaired speech data, thereby limiting the scope and
scalability of the phoneme-guided data splicing approach in a
cross-lingual setting.

B. Data Splicing Across Different Languages

To navigate the challenges inherent in cross-lingual data
splicing, we have devised a novel strategy that relies on Hu-
nits, which are phonetic units extracted from the pretrained

self-supervised model HuBERT. Hunits serve as universal coun-
terparts to language-specific phonemes and form the foundation
of our cross-lingual approach, allowing us to overcome linguistic
barriers in our work.

By leveraging a pretrained HuBERT model to extract Hunits
from unpaired speech, we construct an Hunit dictionary, elimi-
nating the requirement for large speech-text paired corpora that
were previously essential for building a phoneme dictionary in
the monolingual data splicing framework.

For converting text from different languages into Hunits, we
employ a lightweight Grapheme-to-Hunits model, trained on a
limited amount of supervised data for each target low-resource
language. By establishing a shared phonetic unit representation,
Hunits, we successfully create a connection between the speech
and text modalities across diverse languages, enabling seamless
integration through data splicing.

1) Framework Overview: Our proposed framework, de-
picted in Fig. 1, consists of three interconnected components,
illustrated in Fig. 1(a), (b), and (c), with the audio synthesis
process demonstrated in Fig. 1(d). The framework requires the
following datasets:

i) Dr: Unlabelled speech samples extracted from the rich-
resource language, with samples denoted as Sr.

ii) Dl: A limited quantity of speech-text pairs avail-
able in the low-resource language, consisting of pairs
{Sl, Tl}.

iii) D′
l: Text-only samples T ′

l available in the low-resource
language.

2) Hunit: We begin by providing a brief overview of Hu-
BERT to introduce Hunits. HuBERT is a self-supervised learn-
ing (SSL) approach that incorporates an offline clustering step
to establish aligned target labels for a BERT-like prediction
loss [29]. The backbone of HuBERT consists of a convolutional
encoder, followed by multiple identical Transformer blocks [51]
within a BERT mask predictor. HuBERT learns a combined
acoustic and language model by applying the prediction lossAuthorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 06,2024 at 09:06:56 UTC from IEEE Xplore.  Restrictions apply. 
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exclusively to the masked regions within the continuous in-
put sequence X = [x1, . . . , xT ]. The mask predictor, given the
masked version X̂ , predicts a distribution over the target code-
words at each time step t. Here, we denote C as the number
of clustered codewords, ec as the embedding for codeword c,
and At as the output feature at step t. The distribution over
codewords is formulated as follows:

p(c | X̂, t) =
exp(sim(AtW, ec)/τ)∑C

c′=1 exp(sim(AtW, ec′)/τ)
(1)

In Equation (1), W represents a projection matrix, sim(·, ·)
computes the cosine similarity, and τ scales the logit.

Denote discrete target sequence for X as Z = [z1, z2,
. . . , zT ], the prediction loss is formulated as:

L =
∑
t∈M

log p
(
zt | X̂, t

)
(2)

where M ⊂ {1 . . . T} are the masked timesteps for X .
The clustered codewords, which are iteratively refined and

exhibit correlation with the underlying acoustic units, serve as
universal phonetic units in our approach. We refer to these units
as Hunits.

3) Hunit Extractor: As illustrated in Fig. 1(a), the Hunit ex-
tractor consists of three modules: a pretrained HuBERT model,
a K-Means clustering module, and a denoising module. The de-
noising module incorporates a series of mode filters, commonly
used in image segmentation tasks, to replace noisy elements
within the clusters of HuBERT latent representations. By apply-
ing these filters, we reduce the noise in the Hunit sequence and
produce reasonable articulatory boundaries.

4) Hunit Dictionary (HuDict): HuDict serves as a mapping
from Hunit n-grams to speech fragments sourced from Dr. To
establish frame-level alignment between each unpaired speech
sample Sr in Dr and its corresponding HunitsHr, we utilize the
Hunit extractor. This alignment process, illustrated in Fig. 1(b),
enables us to map Hunit n-grams to triplets (utterance id, start
frame, end frame), indicating the procedure for retrieving the
corresponding speech fragment. These mappings are extracted
from the frame-level alignment and added to HuDict. For prac-
tical implementation, we chose the n-gram mappings within
the range 4 = nmin ≤ n ≤ nmax = 8 based on several obser-
vations. Adhering to Theorem 1’s constraint nmin ≤ 2nmax

was primary. Additionally, a nmin ≥ 5 resulted in increased
synthesis failures due to insufficient short speech segments. In
contrast, a range of nmin = 3 ≤ n ≤ nmax = 6 led to reduced
performance as shown in Table III, likely from overuse of short
speech segments.

5) Grapheme-to-Hunit (G2H): Our G2H model leverages
the lightweight SoundChoice [52] Grapheme-to-Phoneme
(G2P) model built on the Conformer-Transformer architecture
to train at the sentence level. As depicted in Fig. 1(c), paired
speech data {Sl, Tl} ∈ Dl allows us to generate training data
{Tl, Hl} for the G2H model by extracting the Hunit sequence
Hl from Sl via the Hunit extractor. A key distinction is that Hl

does not contain consecutive duplicates, unlike Hr from Fig.
1(b).

6) Audio Synthesis: The audio synthesis stage of our
pipeline, illustrated in Fig. 1(d), begins by converting a text
sample T ′

l ∈ D′
l into its corresponding Hunit sequence H ′

l using
the G2H model. Our objective is to decompose this sequence H ′

l

into an ordered collection of Hunit n-grams. To achieve this, we
employ a divide-and-conquer strategy outlined in Algorithm 1.
Such a strategy is designed to optimize the average length of
the resulting Hunit n-grams, thereby facilitating the generation
of synthesized speech with improved fluency. However, a direct
implementation of the divide-and-conquer approach can lead to
excessive redundant computations, which impede the efficiency
of the algorithm, particularly for longer Hunit sequences.

To address this inefficiency, we introduce a caching sys-
tem that utilizes a fixed-size priority queue. This cache stores
the optimal decompositions of previously computed Hunit se-
quences, with priorities determined by the frequency of se-
quence occurrence. When the cache reaches its capacity, the
least frequently occurring sequence is discarded to make space
for new entries. This caching mechanism effectively prunes the
divide-and-conquer procedure, accelerating the audio synthesis
process while maintaining manageable memory consumption.

Mathematical induction shown in Theorem 1 guarantees that
Algorithm 1 always returns Hunit n-gram sequences with the
maximum averaged n if nmax ≤ 2nmin, if such sequences exist.
The ⊕ denotes the concatenation. Hunit sequences that cannot
be decomposed into Hunit n-grams in HuDict are discarded
during this process. The final step involves mapping the resulting
H ′

l n-gram sequences to speech fragments using HuDict and
concatenating these fragments to generate the complete speech.

Theorem 1: Given an Hunit sequence H = {h1, h2, . . ., hm}
and a set of Hunit n-grams S with nmin ≤ n ≤ 2nmin, a greedy
divide-and-conquer algorithm D, which selects the first longest
available n-gram from S present in H , guarantees a partition
of H into a minimal number of Hunit n-grams, each of which
belongs to S.

Proof: Let p(H) denote the minimal partition number of a
sequence H . We prove by induction on m.

Base case: For an Hunit sequence H , where |H| = nmin, the
algorithm D will directly select H if H ∈ S.

Induction Hypothesis: Assume that for all H , where |H| < k
for somek > nmin,D guarantees a partition ofH into a minimal
number of n-grams {s1, s2, . . . , sp(H)}, with si ∈ S.

Now, consider an Hunit sequence H of length k.
Let N ∈ S be the longest n-gram appearing in H . The

selection of N partitions H into three subsequences H1,
N , H2, where |H1|, |H2| < k. The resulting n-grams are
{s1, s2, . . . , sp(H1)+p(H2)+1}.

Assume another algorithm D′ first selects M , where M /∈
H1,M /∈ H2. The original N is thus separated into at least
two parts N1, N2. The number of resulting n-grams P ≥
p(H1)− 1 + p(H2)− 1 + 2 = p(H1) + p(H2). The inequal-
ity holds with equality if and only if s′ = sp(H1) ⊕N1 ∈ S
and s′′ = N2 ⊕ sp(H1)+2 ∈ S. However, this is not possible
since either s′ or s′′ is longer than |N | in this case for nmin ≤
n ≤ 2nmin, contradicting the assumption that N is the longest
n-gram. Therefore, the number of resulting n-grams is at least
p(H1) + p(H2) + 1, the same as the result produced by D. �
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Algorithm 1: Decompose a Hunit Sequence Into Hunit N-
Grams With Cache Pruning.

C. Confidence Sampling for Improved Data Splicing

The fidelity of the selected speech segments to the target
Hunits greatly impacts the quality of the synthesized speech
in data splicing. To enhance this fidelity, we introduce a confi-
dence sampling strategy that estimates the likelihood of speech
segments given a Hunit n-gram and biases the selection towards
segments with higher likelihood.

The likelihood of a Hunit n-gram c corresponding to a speech
segment X ′ of a speech sequence X is computed as the average
of the likelihoods of all the Hunits{c1, c2, . . . , cn} in the n-gram.
It can be formulated as:

L(c | X ′) =
1

n

n∑
i=1

p(ci | X, t+ i) (3)

Here, ci represents the i-th Hunit in the n-gram, and t+ i is
the timestamp corresponding to ci in the original speech X of
the speech segment X ′.

To select a speech segment for a given Hunit n-gram, we
calculate the likelihoods of all speech segments corresponding
to that n-gram and apply a softmax function controlled by the

TABLE I
NUMBER OF WORDS IN D′

l FOR DIFFERENT LANGUAGES

temperature parameter τ ′ to create a probability distribution over
these segments. The probability of selecting X ′(i) among all
speech segments X corresponding to Hunit-ngram c is thus:

f(X ′(i) | c) = exp(L(c | X ′)/τ ′)∑
X ′(i)∈X exp(L(c | X ′(i))/τ ′)

(4)

Finally, we perform sampling from this distribution to select
a speech segment, ensuring that segments with a higher corre-
spondence to the Hunit n-gram are more likely to be chosen. The
introduction of confidence sampling to the data splicing pipeline
improves the quality of synthesized speech, thereby enhancing
the performance of ASR and expediting model convergence.

III. EXPERIMENT SETUP

A. Datasets

Our experimental setup utilizes a fine-tuned HuBERT model
that was pretrained on the LIBRISPEECH dataset, using 10 hours
of paired data from the COMMONVOICE dataset [53]. The COM-
MONVOICE dataset1 is a multilingual speech corpus primarily
sourced from Wikipedia articles. In this study, we focus on five
languages: Frisian, French, Dutch, German, and Turkish.

As a reminder, we defined the notations Dr, Dl, and D′
l in

Section II-B. Specifically, Dr represents unpaired speech data
in the rich-resource language, Dl denotes paired low-resource
data, and D′

l represents the set of available text transcriptions in
the low-resource language.

For the cross-lingual data splicing experiments, we used the
LIBRISPEECH dataset, which comprises 960 hours of speech, as
our unpaired speech datasetDr. Transcriptions were not utilized
for this dataset. To emulate a low-resource scenario, we sam-
pled a 10-hour subset denoted as Dl

2 from the COMMONVOICE

dataset for each of the five chosen languages. Additionally, we
used all available text transcriptions in the original training set
of each language for D′

l. The number of words in each language
in D′

l is provided in Table I. We use the official COMMONVOICE

dev and test sets for performance testing.
To assess the efficacy of Hunit as a phonetic unit for data

splicing, we conducted a monolingual data splicing experiment
in English. We utilized the Libri-Light 10-hour (LL-10 h) setup,
using the 10-hour paired data as Dr to build both the phoneme
and Hunit dictionaries. The LL-10 h dataset was also used as
Dl to train the G2H model. We experimented with different text
sets for D′

l, including the Libri-Light 10-hour text, LibriSpeech
clean 100-hour text, and LibriSpeech 960-hour text.

To validate the scalability of our proposed method, we con-
ducted another cross-lingual data splicing experiment using the

1[Online]. Available: https://commonvoice.mozilla.org/en/datasets
2utterance list released at https://github.com/IceCreamWW/SpliceTTS/tree/

main/examples/assets/CommonVoice
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TABLE II
DECODING HYPERPARAMETERS FOR DIFFERENT LANGUAGES

larger Libri-Light medium dataset (LL-6 k) for constructing the
Hunit dictionary, which contains 6,000 hours of unpaired speech
data.

B. Hunit Extractor and G2H Model

The Hunit extractor in our framework is based on the officially
released HuBERT-base-iter2 checkpoint. 3 We obtained
the latent representations from the ninth layer of the HuBERT
model, which were then used to extract Hunits. These extracted
Hunits were further clustered using a K-Means model trained
on the latent representations from Dr.

For the Grapheme-to-Hunit (G2H) model, we adopted
the Conformer-Transformer encoder-decoder architecture de-
scribed in SoundChoice-G2P [52]. Instead of training the G2H
model from scratch on Dl, we performed fine-tuning on a
pretrained SoundChoice-G2P checkpoint. 4 Since the amount
of data available in Dl is limited, fine-tuning the G2H model
requires less than one hour on a single GPU. To ensure faster
inference, we adopted a greedy decoding scheme.

C. HuBERT Model Fine-Tuning

We utilized the FAIRSEQ [54] toolkit to conduct model fine-
tuning. The HuBERT model, consistent with the one used for
Hunit extraction, comprised 12 transformer blocks with hidden
dimensions of 768 and 8 attention heads. To enable end-to-end
prediction of the output tokens, we introduced a randomly initial-
ized output layer that was integrated with the pretrained encoder.
We used the Connectionist Temporal Classification (CTC) loss
as the optimization criterion. We followed the base_10 h
fine-tuning setup described in HuBERT but extended the number
of training steps from 10 k to 100 k. This adjustment was
made to accommodate the longer convergence time observed
in languages other than English during our experiments.

D. Decoding

We report results for Viterbi decoding and n-gram LM de-
coding. For n-gram LM decoding, we trained a 4-gram LM
on D′

l for each of the five languages. The hyperparameters for
decoding were tuned on the development set of each language.
The decoding process employed a beam size of 500. The weights
assigned to the LM and the word insertion penalty for decoding
across different languages are provided in Table II.

3[Online]. Available: https://dl.fbaipublicfiles.com/hubert/hubert_base_
ls960.pt

4[Online]. Available: https://drive.google.com/drive/folders/
13udm2iAoIlJVp6OqCK0OUZ-oSEN0PUtp

TABLE III
RESULT (WER%) ON LIBRISPEECH TEST SETS OF DATA SPLICING WITHIN THE

SAME LANGUAGE (VITERBI DECODING)

IV. EXPERIMENT RESULTS

A. Self-Supervised Phonetic Units

In this section, we present the findings of our data splicing
experiment conducted within the same language. The primary
objective of this experiment was to validate the effectiveness
of Hunits as practical phonetic units compared to phonemes,
thus enabling their application in cross-lingual data splicing
scenarios. Additionally, we investigated the impact of varying
the number of clusters in the K-Means model (denoted as KM)
during Hunit extraction, as well as the influence of the amount
of text data used for the splicing procedure.

The results are summarized in Table III. The baseline was a
pre-trained HuBERT model fine-tuned on the LL-10 h dataset
without LM rescoring, as indicated in the first line. The exper-
imental findings demonstrated an improvement in performance
as the number of K-Means clusters during Hunit extraction
increased from 100 to 500. With an increase in clusters, WER for
the test set decreased, indicating an enhancement in the quality
of the phonetic units. The increased number of clusters ensured
that the phonetic units became more distinctive.

However, when the text data used for data splicing was limited
to LL-10, the benefits were found to be modest in the case of
KM-500, with degradation observed for KM-100 and KM-200.
We observed that when the LL-10 h dataset was used for both the
target text and the construction of the phonetic unit dictionary,
the data splicing procedure tended to favor the selection of
the original speech segments. This preference was due to the
presence of long Hunit n-grams in the original speech segments
that matched the corresponding text, thus limiting the potential
gains from data splicing.

When comparing the performance of phonetic units, while
the precision of Hunits under KM-500 was not as high as that
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TABLE IV
DATA RATIO AND COMPARISON TO NEURAL TTS

of phonemes, it displayed reasonably comparable performance,
supporting its practical application. This confirmation was cru-
cial for subsequent experiments involving cross-lingual data
splicing using KM-500 units.

The observations from the experiment highlighted a signifi-
cant performance decrement with smaller cluster sizes, such as
those in the KM-100 and KM-200 configurations, especially
when working with limited text data for data splicing. This
phenomenon emphasized an inherent issue related to the quality
of Hunits extracted when the number of clusters in K-Means is
limited. In such scenarios, the generated Hunits lacked adequate
distinctiveness, thereby inhibiting the formation of a reliable
Hunit dictionary that could accurately map each Hunit to its
corresponding speech segment.

Interestingly, the degree of performance improvement on the
test clean set was consistently higher than that on the test other
set across all conditions. This discrepancy can be attributed
to the challenges in splicing noisy speech segments accurately
compared to clean ones. The extraction of precise Hunits from
noisy segments becomes more challenging, leading to generated
speech-text pairs from noisy speech segments with an increased
rate of transcription errors, thereby constraining the improve-
ment seen on noisier test sets.

B. Data Ratio and Comparison to Neural TTS

In this experiment, we investigated the optimal balance be-
tween real and synthetic data for ASR training, focusing specif-
ically on the Frisian language. The adjustment of the mixing
ratio between real and synthetic data was achieved by repeating
or subsetting D′

l. For example, a 1:1/2 mixing ratio meant sub-
setting D′

l to half in each epoch before mixing real and synthetic
data into batches. The results in Table IV. indicated a preference
for a 1:1/2 mixing ratio in the case of Frisian. Consequently, this
ratio was adopted for the remaining languages in subsequent
experiments.

We also compare the proposed method with speed perturb data
augmentation in Table IV. We set the perturbation factors to 0.9,
1.0, and 1.1. The results, displayed in the third and fourth rows,
indicate that speed perturbation yields a relative improvement
of approximately 10% in WER.

Another noteworthy finding from this experiment was the
negative impact on overall performance when the proportion of
synthetic data was excessively increased as shown in the fifth and
sixth line of Table IV. This degradation in performance could be
attributed to the mismatch between the synthesized training data
and the real-world test data. Despite the advanced methods used
to create synthetic data, it failed to fully replicate the complex
nature of real speech data, leading to a clear degradation in
performance.

Furthermore, we included results for data synthesis using a
VITS [55] neural TTS system trained on Dl with ESPnet [56]
following the multi-speaker recipe5, with the sample rate set to
16 kHz. The results revealed that the VITS model trained with
10 hours of noisy ASR training data produced low-quality audio
that had a detrimental effect on ASR performance.

C. Data Splicing Across Different Languages

In this series of experiments, we conducted a comparative
analysis across five languages to evaluate the effectiveness of
data splicing using different numbers of KM clusters: KM-200,
KM-500, and KM-1000. The results are presented in Table V.

The baseline model is a pre-trained HuBERT model fine-
tuned on the 10-hour paired data for each of the five languages.
A consistent trend observed across all five languages was the
performance degradation when employing KM-200 for data
splicing compared to the baseline results as shown in the third
line to the sixth line. This highlights the insufficient quality
of phonetic units produced by KM-200, indicating that these
units are not universal enough for the proposed data splicing
framework. On the other hand, KM-500 exhibited a substantial
improvement in performance, demonstrating the effectiveness
of our proposed method. Additionally, it also demonstrated
synergistic compatibility with LM rescoring. The significant
performance gain is preserved even after LM rescoring.

When the number of KM clusters was increased further to
KM-1000, contrary to expectations, no additional gain was
observed. In fact, KM-1000 performed less optimally than KM-
500. We hypothesize that this can be attributed to the overly strict
distinction of acoustic pieces by KM-1000. During data splicing,
this heightened specificity makes it challenging to identify Hunit
n-grams with a larger n, leading to the excessive concatenation
of smaller speech segments as well as an increased amount of
text that failed to be synthesized into speech. Consequently, this
results in disfluency in the synthesized speech and less diversity
in the synthesized dataset.

Notably, the performance improvement observed for Turkish
was relatively lower compared to the other four languages. This
discrepancy could potentially be attributed to the distinction
in language families. While the other four languages belong
to the Indo-European family, which aligns with the English
language used for data splicing, Turkish represents a distinct
language family. The contrasting language family categorization
suggests that Turkish may encounter a greater degree of acoustic

5[Online]. Available: https://github.com/espnet/espnet/tree/master/egs2/
TEMPLATE/tts1#vits-training
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TABLE V
RESULTS (WER%) ON ALL FIVE LANGUAGES, τ ′ IS THE TEMPERATURE PARAMETER IN (4)

mismatch during the data splicing process, consequently placing
limitations on the quality of the synthesized speech.

D. Confidence Sampling

In this series of experiments, we investigated the impact of
confidence sampling on data splicing using different numbers of
KM clusters (KM-200, KM-500, and KM-1000) across five lan-
guages. Additionally, for KM-500, we examined the influence
of different values of τ ′ in (4) (1.0, 0.2, 0.1) used for confidence
estimation.

A notable result was observed with confidence sampling
applied to KM-200. Comparing the third and fourth line with
the fifth and sixth line, confidence sampling effectively mit-
igated the initial performance degradation and even led to
a slight improvement. This indicates that confidence sam-
pling improved the discriminative power of KM-200 HU-
nits, addressing their inherent limitations. For KM-500, con-
fidence sampling consistently improved performance across
all test sets, as presented in the ninth to fourteenth lines of
Table V. However, the benefits of confidence sampling were
less pronounced for KM-1000. We speculate that the highly
distinguishing nature of Hunits generated by KM-1000 con-
tributed to this result. The challenges related to disfluency and
over-reliance on small speech segments during concatenation
cannot be addressed with confidence sampling.

The influence of the temperature parameter τ ′ on the confi-
dence sampling strategy was investigated using three settings:
1.0, 0.2, and 0.1 as shown in the ninth to fourteenth lines of Ta-
ble V. A high setting of 1.0 results in a smooth distribution, which
does not completely filter out low-confidence segments. Despite
this, a modest performance improvement over the baseline (with-
out confidence sampling) is observed, indicating the potential
benefits of even a moderate level of filtering. Decreasing the

Fig. 2. Convergence Steps (K) with and without confidence sampling.

temperature to 0.2 significantly enhances performance, indicat-
ing effective filtration of low-quality samples. However, further
decreasing τ ′ to 0.1 resulted in diverse outcomes. Although
some instances showed additional performance improvements
compared to τ ′ = 0.2, these improvements lacked consistency
compared to decreasing τ ′ from 1.0 to 0.2. This observation
suggests that the segments retained after filtering at this tem-
perature generally exhibit high quality and suitability for ASR
training. However, the inconsistent gains indicate the existence
of an optimal temperature setting beyond which the performance
enhancements may diminish. In Fig. 3, we also illustrate
the selection probability distribution under these τ ′ settings.
As we decrease τ ′ from 1.0 to 0.1, the proportion of speech
segments with notably low selection probability (specifically
p ∈ [0, 0.01)) rises from 16.4% to 30.5%. This indicates an
effective filtering out of suboptimal segments, consequently
enhancing the quality of the synthesized speech.

Another important observation was the efficiency gain
achieved by incorporating confidence sampling. The data
splicing process demonstrated faster convergence, as illustrated
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Fig. 3. Distribution of selection probabilities of speech segments with different
τ ′.

TABLE VI
RESULT (WER%) ON DIFFERENT SIZES OF SPEECH AND TEXT CORPORA

in Fig. 2. Note that since we run all the experiments for 10 k steps,
the number of convergence steps requried is defined as when
the validation loss reaches its minimum value. The baseline in
Fig. 2 is the convergence steps required when finetuning only
on real data (i.e. first row in Table. V). This improvement can be
attributed to the filtering effect of confidence sampling, which
helps eliminate low-confidence, suboptimal speech segments
and ultimately enhances the quality of synthesized speech.
Notably, the introduction of the confidence sampling strategy
required only approximately 10 k additional steps for conver-
gence, while significantly improving the ASR performance.

These findings highlight the benefits of integrating confidence
sampling into data splicing procedures.

E. Investigation on the Size of Dr and D′
l

This set of experiments aimed to explore the impact of differ-
ent sizes of unpaired speech (Dr) and text corpora (D′

l) on the
data splicing process. Two setups of speech corpora were ex-
amined: the LibriSpeech 960-hour (LS-960) and the LibriLight
medium 6k-hour (LL-6 K). Additionally, for the Frisian lan-
guage, the effects of different text corpus sizes (50 K, 150 K, and
275 K) were investigated. The results are presented in Table VI.
Notably, in the case of the Frisian language, increasing the size
of the D′

l resulted in performance enhancements. However, the
performance gains became less significant when D′

l grew from
150 K to 275 K, indicating the presence of a bottleneck likely
caused by the limited size of Dr. To address this constraint and
validate the scalability of the proposed data splicing framework,
we expanded the unsupervised speech corpus Dr from the
960-hour to the 6k-hour setup. Subsequently, an examination
across all five languages consistently showed about a further
10% relative improvement by incorporating LL-6 K as Dr.

V. CONCLUSION

In this study, we introduce a novel speech synthesis frame-
work to address the enduring challenge of E2E ASR for low-
resource languages. The cornerstone of this framework is self-
supervised learning (SSL) units derived from a pretrained Hu-
BERT model (Hunit), serving as universal phonetic units across
different languages. These Hunits are based on an optimal
setup determined through comprehensive exploratory experi-
ments. Furthermore, our intra-lingual data splicing experiment
using English confirmed the viability of Hunits as reasonable
phonetic units, albeit with slightly less precision compared to
phonemes. In contrast to traditional neural text-to-speech (TTS),
which suffers from training with noisy ASR data and produces
lower-quality speech segments, our framework provides a robust
solution. The novelty of our framework also lies in embedding
a confidence sampling strategy within the data splicing process.
This enables the systematic exclusion of low-quality or impre-
cise speech segments, leading to a substantial enhancement in
ASR model convergence and overall performance. Empirical
results drawn from the COMMONVOICE dataset demonstrate
notable improvements in ASR performance. The relative WER
reduction range from 20% to 35% for multiple languages under
a 10-hour low-resource setup. Furthermore, the scalability of our
framework was validated by successfully incorporating a larger
unsupervised speech corpus as the source of speech fragments,
yielding an additional 10% relative improvement. Moreover, our
proposed framework offers the important advantage of generat-
ing synthesized data in real-time during ASR training without
any adverse impact on the training speed.
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