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ABSTRACT

Self-supervised learning (SSL) has attracted widespread research in-
terest since many successful SSL approaches such as wav2vec 2.0
and Hidden-unit BERT (HuBERT) have achieved promising results
on speech-related tasks such as automatic speech recognition (ASR).
However, few works have been conducted to improve the noise ro-
bustness of SSL models. In this paper, we propose HuBERT-AGG,
a novel method that learns noise-invariant SSL representations for
robust speech recognition by distilling aggregated layer-wise rep-
resentations. Specifically, we learn an aggregator that computes
the weighted sum of all hidden states of a pretrained vanilla Hu-
BERT by fine-tuning it on a small portion of labeled data. Then a
noise-robust HuBERT is trained on the simulated noisy speech by
distilling from the aggregated representations and layer-wise hid-
den states produced by a pretrained vanilla HuBERT with parallel
original speech as input. Experiments on LIBRISPEECH simulated
noisy test sets show 13.1%-17.0% relative word error rate (WER)
reduction with very slight degradation on the original test sets. On
CHiME-4 1-channel real speech test sets, we have surpassed the best
results achieved by all published fully supervised ASR models as
well as other SSL approaches adopting the same data usage as ours.

Index Terms— robust speech recognition, self supervised learn-
ing, knowledge distillation, HuBERT

1. INTRODUCTION

The performance of automatic speech recognition (ASR) systems
has been greatly boosted since the advance of deep neural networks
and end-to-end (E2E) ASR architectures. Previous works have
shown that training a neural ASR system with large-scale speech-
text paired data is very effective [1, 2]. However, neural ASR sys-
tems, especially E2E models, are susceptible to the overfitting prob-
lem when the training data is limited.

Recently, a great many self-supervised learning (SSL) meth-
ods [3, 4, 5, 6, 7] have been proposed to tackle this problem by lever-
aging the abundant unlabeled speech to learn contextualized speech
representations that benefit downstream tasks like ASR. For exam-
ple, wav2vec 2.0 [3] and w2v-BERT [4] apply contrastive learning
to representations in intermediate layers. Speech SimCLR [5], Sim-
Siam [8] and c-siam [6] learn to match higher-level representations
between different versions of speech input using siamese networks.
HuBERT [7] iteratively optimizes the model’s ability to classify ran-
domly masked frames in speech to pseudo labels obtained by clus-
tering Mel-frequency cepstral coefficients (MFCC) or latent embed-
dings from another model.

† corresponding author

Although these SSL methods have shown promising results on
various ASR benchmarks, there is little work investigating their
noise robustness. To improve the robustness of conventional super-
vised ASR models, previous works often integrate a speech enhance-
ment (SE) module as a pre-processing front-end to suppress the noise
from noisy speech [9, 10, 11, 12, 13]. However, it has been observed
that the enhanced signals with the better auditory quality might not
always yield better results for ASR systems [14, 15, 16] partially
due to over-suppression of speech signals. Although a cascaded
framework [17] was proposed to optimize SE module and ASR mod-
ule with ASR objectives, such paradigms increase the complexity
of noise-robust ASR systems. To combat the vulnerability of SSL
models to background noise for the ASR task, wav2vec-Switch [18]
feeds the wav2vec2.0 network with original-noisy speech pair and
predicts the quantized representations of each other. Wav2vec-
C [19] and [20] incorporate a reconstruction loss with the contrastive
wav2vec2.0 loss. PASE+ [21] reconstructs distorted speech to vari-
ous versions of transformed acoustic features.

In this work, we propose a novel method that builds noise-robust
SSL models for the ASR task based on the HuBERT framework. Un-
like previous works that train a robust SSL model from scratch, we
start with a pretrained vanilla HuBERT and boost its noise robustness
with limited training steps. Specifically, we first fine-tune a well-
trained vanilla HuBERT with the connectionist temporal classifica-
tion (CTC) criterion following the scheme applied in SUPERB [22].
The fine-tuning scheme learns a vector of weights that computes the
weighted sum of multiple hidden states from the pretrained HuBERT
as the final representation for the ASR task. The learned vector of
weights is referred to as an aggregator. Then we train a noise-robust
HuBERT on original-noisy speech pairs via knowledge distillation
guided by the aggregator. Specifically, we feed the robust HuBERT
with simulated noisy speech and feed a pretrained vanilla HuBERT
with the corresponding original speech. The last layer of the ro-
bust HuBERT is supervised by the aggregated representation pro-
duced by the vanilla HuBERT. Meanwhile, other layers of the robust
HuBERT receive supervision from the original representations pro-
duced by the corresponding layers of the pretrained HuBERT (i.e.,
representations produced by the last layer of the pretrained HuBERT
are ignored). By doing this, the SSL representations learned by the
robust HuBERT is not only noise-invariant, but also more suitable
for the ASR task since the aggregator is trained on the ASR Task.
Besides, the robust HuBERT is initialized with the pretrained vanilla
HuBERT and enjoys fast convergence.

Our contributions can be summarized as follows: (1) we incor-
porate noise-invariant training into HuBERT SSL framework with
knowledge distillation. (2) We guide the distillation with aggregated
representations that are optimized for the ASR task. (3) We vali-IC
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Fig. 1: Left: HuBERT-NIT incorporates noise-invariant training with HuBERT in a straightforward way. Distance between latent encodings
as well as output distribution produced from origin-noisy speech pairs is regularized in a layer-wise manner. Right: Different from HuBERT-
NIT, the last layer of the HuBERT-AGG encoder is supervised by the aggregated original representations which are trained to benefit the ASR
task. Note that we do not apply masks to the encoded original waveforms.

date through experiments that the proposed HuBERT-AGG frame-
work improves the noise robustness of learned representations and
yields significant WER improvement for LIBRISPEECH simulated
noisy speech. (4) Our approach surpassed the published best re-
sults achieved by the fully supervised ASR systems on CHiME-4
real noisy speech as well as other SSL approaches adopting the same
data usage as ours.

2. METHODOLOGY

2.1. HuBERT
We first revisit HuBERT on which our method is based. HuBERT
is an SSL approach that exploits an offline clustering step to provide
aligned target labels for a BERT-like prediction loss [23]. HuBERT
applies the prediction loss only over the masked regions, forcing the
model to learn a combined acoustic and language model over the
continuous inputs. The backbone used in HuBERT is a convolutional
waveform encoder followed by a BERT mask predictor comprised of
many identical Transformer blocks [24]. Given a speech embedding
sequence encoded by the convolutional encoder X = [x1, . . . , xT ],
the mask predictor of HuBERT takes as input its masked version X̃
and predicts a distribution over the target codewords at each timestep
t. The distribution over codewords is parameterized with

p(c | X̃, t) =
exp(sim(ϕ(X̃)tW, ec)/τ)∑C

c′=1 exp(sim(ϕ(X̃)tW, ec′)/τ)
(1)

where C is the total number of codewords and ec is the embedding
for codeword c. W is a projection matrix. ϕ(X̃)t denotes the output
feature sequence at step t. sim(·, ·) computes the cosine similarity
and τ scales the logit.

Denoting discrete target sequence for X as Z = [z1, z2, . . . , zT ],
where zt ∈ [C] is a C-class categorical variable, the prediction loss
for masked regions in HuBERT is formulated as

Lm(X̃) =
∑
t∈M

log p
(
zt | X̃, t

)
(2)

where M ⊂ {1 . . . T} denotes the masked timesteps for X .
HuBERT refines the assignment of clustered codewords itera-

tively. That is, in the first iteration, the codewords are assigned by

clustering the MFCC features of the training data; In subsequent it-
erations, new codewords are assigned by clustering the latent repre-
sentations produced by the model trained in the previous iteration.

2.2. HuBERT-NIT

We first introduce a straightforward way to incorporate noise-
invariant training into HuBERT (HuBERT-NIT) with original-noisy
speech pairs as illustrated in the left part of Fig 1. Denote the en-
coded original speech as X , the masked version of the correspond-
ing encoded noisy speech as X̂ . We adopt a regularization term pro-
posed in [25] that penalizes L2 and the cosine distance between the
encodings produced by the pretrained vanilla HuBERT using origi-
nal speech encodings ϕl(X) and HuBERT-NIT using masked noisy
speech encodings ϕl

NIT (X̂) at layer l. The regularization term is
applied in a layer-wise manner:

Ld

(
ϕl(X), ϕl

NIT(X̂)
)
=

∥∥∥ϕl(X)− ϕl
NIT(X̂)

∥∥∥2

− ϕl(X) · ϕl
NIT (X)

∥ϕl(X)∥ ·
∥∥∥ϕl

NIT

(
X̂
)∥∥∥

(3)

Ld−NIT =

L∑
l=1

Ld

(
ϕl(X), ϕl

NIT(X̂)
)

(4)

where L is the number of encoder layers. Note that the param-
eters of the pretrained vanilla HuBERT are frozen when training
HuBERTNIT. The output distribution from HuBERTNIT Ô is also
supervised by that from the pretrained vanilla HuBERT O via Kull-
back–Leibler Divergence (KLD):

LKLD =
T∑

t=1

Ot

(
logOt − log Ôt

)
(5)

The final loss for training HuBERTNIT is a weighted sum of
Ld−NIT and Lkld:

LNIT = λ1Ld−NIT + λ2LKLD (6)
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2.3. HuBERT-AGG

Compared to HuBERT-NIT, HuBERT-AGG improves the learned
noise-invariant representations by distilling aggregated representa-
tions that are optimized exclusively for the ASR task as illustrated
in the right part of Fig 1, where the aggregator is effectively a frozen
well-trained vector used to compute the weighted-sum representa-
tions of all encoder layers in the pretrained vanilla HuBERT. Specifi-
cally, the aggregator used for distillation has been trained on labelled
speech data with CTC criterion following the fine-tuning scheme
used in [22] that feeds the aggregated representations to a linear pro-
jection layer of which the input is mapped to output tokens (char-
acters). In this way, the trained aggregator is capable of extract-
ing aggregated representations that are beneficial for the ASR task.
Denote the representations produced by L layers of the pretrained
vanilla HuBERT as H = [h1,h2, . . . ,hL]. Denote the aggregator
as a vector a = [a1, a2, . . . , aL] where al is the weight correspond-
ing to hl for weighted-sum. The aggregated representation can be
formulated as h̄ = aHT . We modify Ld−NIT and use h̄ as the
target for the last encoder layer of HuBERT-AGG:

Ld−AGG =

L−1∑
l=1

Ld

(
ϕl(X), ϕl

AGG(X̂)
)

+
∥∥∥h̄− ϕl

AGG(X̂)
∥∥∥2

− h̄ · ϕL
AGG (X)∥∥h̄∥∥ ·

∥∥∥ϕL
AGG

(
X̂
)∥∥∥

(7)

Besides, we replace the Lkld with the original HuBERT loss in
Eq (2) since the last layer of HuBERT-AGG is supervised by aggre-
gated representations rather than the encodings from the last layer of
the pretrained vanilla HuBERT. The final loss for training HuBERT-
AGG is a weighted sum of Ld−AGG and Lm:

LAGG = λ1Ld−AGG + λ2Lm (8)

3. EXPERIMENTAL SETUP

3.1. Datasets

We validate the effectiveness of our proposed method with both sim-
ulated and real-world noisy data. The data preparation involves 4
well-known corpora in ASR: LIBRILIGHT [26], LibriSpeech [27],
MUSAN [28] and the 1-channel track of CHiME-4 [29]. The train-
ing procedure is comprised of 3 stages, and we introduce data
usage for each stage: (1) Labelled data used to train the rep-
resentation aggregator is denoted as DAGG (For HuBERT-AGG
only). (2) Unlabelled speech data used to pretrain HuBERT-NIT and
HuBERT-AGG is denoted as DP . (3) Labelled data used to fine-tune
HuBERT-NIT and HuBERT-AGG is denoted as DF . We investi-
gate the impact of using different DAGG and specify the choice for
DAGG later in each experiment. DP is synthesized by mixing full
960 hours of LIBRISPEECH with noise randomly sampled from mu-
sic and noise categories of MUSAN [28] and SNRs uniformly sam-
pled between 5 to 10 dB. speech category in MUSAN is not used
during training to avoid confusion with actual speech when learning
speech representations. We fine-tune models on different DF for
testing on simulated noisy data and real noisy data.

For testing on simulated noisy data, the original LIBRISPEECH
train-clean-100 partition is used for DF . We prepare origi-
nal test-clean and test-other for testing. Besides, follow-
ing [18], by mixing the original test sets with different categories in
MUSAN we synthesize several simulated noisy test sets. The SNRs
of all simulated test sets are uniformly sampled from 5 to 10 dB.

For testing on real noisy data, all CHiME-4 data are used for DF

excluding the second channel due to its low quality. We adopt the
official CHiME-4 1-channel real dev and eval sets for testing.

3.2. Aggregator Training
We train the aggregator by fine-tuning the released official check-
point for HuBERT BASE 1, which was pretrained on the full 960-
hour data in LIBRISPEECH. 5 different partitions for DAGG are
considered: Libri-light (LL) 10-minute, 1-hour, 10-hour splits,
LibriSpeech (LS) 100-hour (train-clean-100) and CHiME-4
clean speech. For the first 5 splits, we follow the fine-tuning setups
in [3]. For CHiME-4 clean speech, we use the same setup as LS
100-hour split since they are comparable in size. All encoder layers
are frozen during fine-tuning. Layerdrop is set to zero to make sure
all layers can produce speech representations for aggregation.

3.3. Model Pre-training
We carry out model pretraining with the FAIRSEQ [30] toolkit. We
adopt the same architecture as specified in [7]: 12 transformer blocks
with hidden dimensions 768 and 8 heads. For faster convergence, all
models are initialized with the same released HuBERT checkpoint
as used in aggregator training. We further apply k-means cluster-
ing with 500 clusters on the latent features extracted from the 9th
layer official HuBERT BASE model since it has the highest phone
purity as shown in [7]. The same configuration for training the sec-
ond iteration of HuBERT BASE is adopted except that all models are
pretrained for only 50k steps unless specified otherwise. We disable
layerdrop, dropout and masking for pretrained vanilla HuBERT in
Fig 1 to produce original speech representation with better quality
for distillation. Note that the target sequence Z for the noisy speech
input is obtained with codewords from the corresponding original
speech. λ1 and λ2 in Eq (6) is set to 1 and 10. λ1 and λ2 in Eq (8)
is set to 1 and 1000. The values of these hyper-parameters are deter-
mined by the performance on original LIBRISPEECH development
sets after fine-tuning on the Libri-light 10-hour split.

3.4. Model Fine-tuning
Since the CHiME-4 training set (92.28 hours) and the LIBRISPEECH
100-hour split are comparable in size, we follow the base 100h
setup in the wav2vec 2.0 for both experiments.

3.5. Decoding and Language Models
We use the official LIBRISPEECH 4-gram language model2 and
follow the configuration introduced in [3] for decoding on LIB-
RISPEECH test sets. For decoding on CHiME-4 test sets, an LSTM-
based word-level language model with a vocabulary size of 65,000
is trained on the text portion of the WSJ [31] corpus using the
Espresso [32] recipe, and then the same decoding strategy was per-
formed. Note that the hyper-parameters for decoding are separately
tuned for LIBRISPEECH and CHiME-4 test sets.

4. RESULTS AND ANALYSIS

4.1. Results on Simulated Noisy Speech
Table 1 presents the word error rate (WER, %) results on original
and simulated test sets based on LIBRISPEECH. The music + noise
test sets are synthesized by mixing original test sets with music and
noise categories in MUSAN, which are in a matched condition with
the pretraining stage. Likewise, results on speech test sets show

1https://dl.fbaipublicfiles.com/hubert/hubert_
base_ls960.pt

2https://www.openslr.org/resources/11/
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Table 1: WER(%) comparison of different pretrained models on
LIBRISPEECH original and artificial test sets.

System original music + noise speech
clean / other clean / other clean / other

HuBERT 3.4 8.2 8.7 21.2 32.9 51.6
+ MUSAN 4.1 9.0 5.4 14.1 15.3 36.1

HuBERT-NIT 3.7 8.7 4.6 11.7 13.3 30.8
HuBERT-AGG 3.5 8.5 4.3 11.6 12.4 30.3

mismatched testing conditions. In the first row, it is not surpris-
ing that the HuBERT pretrained on the original LIBRISPEECH data
shows severe degradation on noisy test sets. Besides, degradation on
speech test sets is significantly more severe than on music + noise
test tests. This can be ascribed to the fact that background speech
is more likely to be confused with the target speech than music and
noise. In the second row, the HuBERT is pretrained with augmented
data DP as described in section 3.1. Performance on noisy test sets
is improved at the cost of degradation on original test sets. In the
third row, by simply penalizing the distance between representations
produced by pretrained vanilla HuBERT and HuBERT-NIT, we see
consistent improvements on all test sets. The relative WER reduction
on speech mismatched testing condition (13.1% / 14.7%) is slightly
smaller than on music + noise matched testing conditions (i.e. music
+ noise: 14.8% / 17.0%). In the last row, we train the aggregator on
the Libri-light 10-hour partition as described in section 2.3. The ag-
gregated speech representations are more beneficial to the ASR task
and yield further improvement on all test sets.

4.2. Investigating Choices for DAGG

Table 2: WER(%) comparison of proposed HuBERT-AGG on arti-
ficial noisy test sets. Different DAGG are investigated.

System Aggregator music + noise speech
clean / other clean / other

HuBERT-AGG

LS 100 hr 4.3 11.5 12.5 30.4
LL 10 hr 4.3 11.6 12.4 30.3
LL 1 hr 4.3 11.7 12.4 30.2

LL 10 min 4.4 11.8 12.3 30.1
CHiME-4 4.5 12.0 12.6 30.2

In Table 2 we investigate different choices for DAGG. 5 different
partitions are considered as described in Section 3.2. The LS and LL
partitions are in the same domain as the test sets and the CHiME-4
partition is in a different domain. Surprisingly, the amount of data
used to train the aggregator does not have an apparent impact on the
final ASR performance. Training the aggregator with data from a
different domain (the last row) yields slight performance degrada-
tion on most test sets. We believe that the benefits of introducing the
aggregator are brought by the better correlation between the aggre-
gated speech representations and the downstream ASR task.

4.3. Results on Real-World Noisy Speech

In this section, our proposed methods are evaluated on the CHiME-
4 1-channel real noisy test sets as shown in Table 3. We include
the recent best results achieved by supervised learning with [33] and
without [34] an enhancement front-end. We also include recently
published SSL results [18, 20], which are constructed with the same
data usage as in our experiments (i.e. unlabeled LIBRISPEECH 960-
hour data and labeled CHiME-4 1-channel data). To perform a fair
comparison with [18] and [20] which do not use labeled data in LIB-
RISPEECH, the aggregator for HuBERT-AGG in these experiments

is trained with CHiME-4 clean data in the simulated partition.
By training on simulated noisy data synthesized with LIB-

RISPEECH and MUSAN (the sixth row), the results on CHiME-4
test sets surpass the results obtained with the HuBERT pretrained on
original data (the fifth row) by relatively 18.2% / 23.2% WER reduc-
tion. These results show that the HuBERT pretrained with simulated
noisy data generalizes well to real-world noisy data. No further im-
provement is observed with HuBERT-NIT, which is probably caused
by the gap between LIBRISPEECH and CHiME-4 data.

In previous experiments, we trained HuBERT-AGG for 50k steps
due to limited computational resources. We now investigate how the
number of training steps affects the performance of HuBERT-AGG.
As shown in the last 4 rows in Table 3, increasing training steps from
25k to 150k yields continuous improvement. With 150k training
steps, the proposed HuBERT-AGG achieves obviously better results
than all fully supervised models as well as the other SSL models
with the same data usage. Note that [35] (2022) achieves the state-
of-the-art results on CHiME-4 1-channel real data test sets (2.0%
/ 3.9%) with an SSL model, but it is pretrained on a significantly
larger corpus (94k hours) and thus not compared here.

Table 3: WER(%) of different systems on CHiME-4 real test sets,
including published best fully supervised ASR and SSL models.

System Train Steps CHiME-4 REAL
dev eval

Wang et al. [33] (2020)

NA

3.5 6.8
Yang et al. [34] (2022) 3.4 6.3
wav2vec-switch [18] (2022) 3.5 6.6
wav2vec (recons) [20] (2022) 5.0 9.0

HuBERT 50k 4.4 8.6
+ MUSAN 50k 3.6 6.6

HuBERT-NIT 50k 3.5 6.8

25k 3.8 7.2
HuBERT-AGG 50k 3.3 6.1
(CHiME-4 Aggregator) 100k 3.3 5.9

150k 3.2 5.8

5. CONCLUSIONS

In this paper, we introduce HuBERT-AGG, a novel method for im-
proving the noise robustness of the popular HuBERT SSL approach
for ASR task. We apply noise-invariant training based on encoding
distance regularization between original-noisy speech pairs to boost
the noise robustness. Moreover, we introduce a representation ag-
gregator that computes the weighted-sum representations optimized
for the ASR task and use them to teach the last layer of HuBERT-
AGG. By doing this, the HuBERT-AGG model learns noise-invariant
representations that also fit the ASR task well. Experiments on
simulated noisy LIBRISPEECH test sets show 13.1%-17.0% relative
WER reduction compared to a straightforward data augmentation
SSL method, and also still preserve similar performance on the orig-
inal test sets. On CHiME-4 real-world noisy tests sets, the proposed
HuBERT-AGG surpasses previous best results achieved by fully su-
pervised learning methods as well as other SSL approaches with the
same data usage as ours.
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