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ABSTRACT

End-to-end automatic speech recognition (ASR) systems have
gained popularity given their simplified architecture and promis-
ing results. However, text-only domain adaptation remains a big
challenge for E2E systems. Text-to-speech (TTS) based approaches
fine-tune ASR models by synthesized speech with an auxiliary TTS
model, thus increase deployment costs. Language model (LM)
fusion based approaches can achieve good performance but are
sensitive to interpolation parameters. In order to factorize out the
language component in the AED model, we propose the factorized
attention-based encoder-decoder (Factorized AED) model whose
decoder takes as input the posterior probabilities of a jointly trained
LM. Moreover, in the context of domain adaptation, the domain
specific LM serves as a plug-and-play component for a well-trained
factorized AED model. In-domain experiments on LibriSpeech and
out-of-domain experiments adapting from LibriSpeech to a variety
of domains in GigaSpeech are conducted to validate the effectiveness
of our proposed methods. Results show 20% / 24% relative word
error rate (WER) reduction for LibriSpeech test sets and 8∼34%
relative WER reduction for 8 GigaSpeech target domains test sets
compared to the AED baseline.

Index Terms— text-only, domain adaptation, factorized AED,
end-to-end speech recognition

1. INTRODUCTION

End-to-end automatic speech recognition (ASR) systems such as
connectionist temporal classification (CTC) [1], attention-based
encoder-decoder (AED) [2, 3, 4] and recurrent neural network trans-
ducer (RNN-T) [5] simplify the whole ASR procedure and bring a
huge development in recognition accuracy [6]. However, the per-
formance of end-to-end ASR degrades dramatically when there is a
domain mismatch, which is a huge challenge compared with hybrid
systems. Domain adaptation methods have been explored a lot in
recent years [7, 8, 9, 10]. Conventional domain adaptation such as
regularization methods [11], teacher-student learning [12], adver-
sarial learning [13], domain vector [14], adapter [9] and mixture of
experts [10] and so on usually require speech-text pairs for the target
domain. However, it is known to all that collecting a large amount
of speech-text matching data from the target domain is difficult, so
text-only adaptive methods have been widely proposed and studied.
For the hybrid DNN-HMM system, the acoustic model and language
model (LM) are optimized independently, so text-only data can be
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easily used to adapt the LM part. In contrast, there are not many
efficient methods recently in end-to-end systems.

One intuitive solution to the text-only adaptation is to utilize
the text-to-speech (TTS) synthesized speech, and then fine-tune the
ASR model with the synthesized speech. Although TTS-based ap-
proaches have shown promise in [15, 16, 17, 18, 19], they can be
computationally expensive (require well-trained TTS models, new
synthesized speech data and fine-tuned ASR models).

LM fusion is another possible adaptation way using text-only
data, where a target LM is trained from target domain text. The sim-
plest LM fusion is shallow fusion [20], which jointly computes the
target LM score and the end-to-end model score during the beam
search stage. To eliminate negative effects from source domain text,
the density ratio [21] method is proposed, which subtracts the source
LM score besides shallow fusion. However, the interpolation weight
is task-dependent and needs to be tuned on dev data. Further more,
structural LM fusion methods, such as deep fusion [22], cold fu-
sion [23] and component fusion [24] learn the combination of E2E
ASR system and an external LM. However, these methods have lim-
ited improvements and need multiple adaptation steps before usage.
In recent years, researchers find that the decoders in AED and RNN-
T systems play an important role in text modeling. Internal LM es-
timation [25] and hybrid autoregressive transducer [26] which try to
make the decoder behave like an LM, however, is somehow against
the design philosophy of transducer [27] and transformer [2].

We propose a factorized attention-based encoder-decoder (Fac-
torized AED) model to solve the text-only domain adaptation prob-
lem without destroying the decoder design, inspired by factorized
neural transducer [28], which factorizes the blank and vocabulary
prediction part, and the vocabulary predictor works as a standalone
LM in the transducer manner. The proposed method needs an in-
ternal LM besides the AED model. Then the LM posterior proba-
bility (LM information) is incorporated into the factorized decoder
with different integration methods. LM information can be used as
the text-part input of the factorized decoder, which is named as Fac-
torized Input. Also, we can integrate LM information into the output
projection layer of the decoder (Factorized Output), which is simi-
lar to component fusion but in the AED manner. Moreover, we in-
tegrate the LM information using contextual source-attention (Fac-
torized Attention) inside each transformer layer to achieve an inten-
sive adaptation. As a standalone LM is used in our model, differ-
ent language model adaptation methods can be applied to do fast
text-only domain adaptation, which is similar to the hybrid system.
Our experiments show that the Factorized Attention achieves the
best performance. The proposed method is validated on in-domain
scenario (LibriSpeech) and out-of-domain adaptation scenario (Gi-IC
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gaSpeech) and results show that the proposed method consistently
outperforms the baseline and shallow fusion method. Furthermore,
the performance can be boosted by combining the proposed factor-
ized AED and shallow fusion.

2. RELATED WORK

2.1. Joint CTC and Attention-based Encoder-Decoder ASR

Basically, E2E ASR models map speech X = [x1, · · · ,xT ]
⊺, xt ∈

RF to a token sequence y = [y1, · · · , yL]⊺, yl ∈ U , where F is the
speech feature dimension and U denotes the vocabulary set.

After years of development, the attention-based encoder-decoder
(AED) model has gradually formed a transformer-based struc-
ture [2, 4]. The transformer encoder is composed of basic trans-
former layers, and finally get output HEnc. Then for the decoder,
one more multi-head context attention combines the encoder out-
put HEnc is combined with y<l to estimate the whole posterior
probability p(y|HEnc):

HEnc = Encoder(X), HDec = Decoder(y<l,HEnc), (1)
pAED(yl|y<l,HEnc) = Softmax · Linear · ReLU(HDec[l]), (2)

pAED(y|HEnc) = pAED(y1)

L∏
l=2

pAED(yl|y<l). (3)

Connectionist temporal classification (CTC) [1] acts as a good
supplement to AED model by introducing a many-to-one function
η from the frame-level alignment Z = [z1, · · · , zT ]⊺, zt ∈ U ∪
{<B>} to the token sequence y, by merging same labels and re-
moving the token <B> in Z. The sequence probability is repre-
sented as:

pCTC(y|HEnc) =
∑

Z∈Ψ−1(y)

∏
t

pCTC(zt|HEnc), (4)

where η is a many-to-one function from Z to y.
The joint CTC/attention architecture [3] is widely used in mod-

ern architectures with a multi-task learning loss function:

LJCA = −α log pCTC(y|X)− (1− α) log pAED(y|X), (5)

where α ∈ [0, 1] is a hyper-parameter.

2.2. Language Model Fusion Methods

The shallow fusion (SF) [20] method is developed based on beam
search decoding of the E2E model, which uses a score combina-
tion with additional target LM score, and the density ratio (DR) [21]
method subtract the source LM score:

s(yl) = sJCA(yl) + γstLM(yl)− βssLM(yl), (6)

where β, γ > 0 are hyper-parameters, sLM and tLM denotes
source/target LM.

Deep fusion (DF) [22] take one step forward by fusing external
LM with pre-trained ASR output, according to the following proce-
dure:

p(yl) = Softmax · Linear([HDec[l];ϕ]), (7)
ϕDF (h) = σ(Linear(h)) ∗ h, (8)

where ϕDF is a coarse gating function and h = HLM [l]. By fixing
ASR and LM parameters, DF achieves a lower cost and expedites
the convergence process.

Language 
Model

Factorized
Decoder

Conformer 
Encoder

Fig. 1. The proposed factorized attention-based encoder-decoder
(Factorized AED) architecture contains factorized decoder and a
source language model.
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Fig. 2. Three different factorization architectures.

Cold fusion (CF) [23] and component fusion [24] on the other
side, extend DF using another ϕ function as below:

ϕCF = σ(Linear(HDec[l];HLM [l]))⊙HLM [l]. (9)

The difference with DF is that CF uses LM logits and trains the ASR
model from scratch with a pre-trained LM.

3. FACTORIZED ATTENTION-BASED
ENCODER-DECODER SPEECH RECOGNITION

3.1. Factorization Architectures

The proposed factorized attention-based encoder-decoder (factor-
ized AED) is shown in Figure 1. At first, a transformer language
model is added to the network. The LM contains a vanilla trans-
former encoder and an output linear layer to match the token size.

pLM(yl|y<l) = LM(y<l) = Softmax · Transformer(y<l). (10)

The language information can be used in later factorizing integra-
tions. Typical information features can be implemented as the hid-
den states HLM or the posterior probability pLM. To make the LM a
replaceable component, we use the posterior probabilities instead of
the hidden states of LM to integrate into the AED model as P LM,<l,
where ≥ l positions are masked. An auxiliary linear layer maps U
to the feature dimension as below: D<l = Linear(P LM,<l).

To factorize out the language part from the AED model, we
propose three different approaches to integrate the language context
with the transformer decoder shown in Figure 2.

Factorized Input: Shown in Figure 2(a), the token input of the
decoder y<l can be replaced with D<l:

HDec = Transformer Decoder(D<l,HEnc), (11)

where no more positional encoding or embedding layer is needed.
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Factorized Attention: Another integration method Shown in
Figure 2(b) is to behave as a context-attention module:

HDec
′
i = Factorized-Attention(HDeci,D<l,D<l), (12)

where HDeci is the i-th transformer layer’s hidden states, D<l is
used as key and value and HDeci is used as query. As mentioned
before, there are different positions to inject the factorized attention
module inside the three modules of the decoder layer: before self-
attention (pos 0), before source-attention (pos 1), or before feed-
forward layer (pos 2) to explore better performance.

Factorized Output: Shown in Figure 2(c), Also the factoriza-
tion can be done after the transformer module of the AED decoder,
and there are two positions to integrate the information. If the LM in-
formation is injected after the linear layer, then this method is similar
to shallow fusion, but the joint decoding score is optimized during
ASR training: p′AED = pAED + β′pLM , where β′ is a train-able
parameter. If the LM information is injected before the linear layer,
then there is an auxiliary transformation matrix from vocabulary size
to the attention dimension, which is similar to cold/component fu-
sion: p′AED = Softmax · Linear([HDec;DLM,<l]).

3.2. Training and Adaptation Strategies

As the LM part is factorized out by the above methods, the LM part
is jointly trained with the ASR model from scratch using Equation 5:

LFactorized = LJCA − η log pLM(y), (13)

where η is a hyper-parameter, and the LM loss is the standard token-
level cross-entropy loss.

Although we can use a pre-trained source LM similar to deep
/ cold fusion, we find that joint training is more stable. The main
reason is that the source LM has a little mismatch if it is pre-trained
by a larger source text corpus. Another reason is that joint training
makes the LM decouples from the ASR part synchronously.

The factorized architecture can be applied to improve the in-
domain ASR performance by replacing the source LM with another
source LM, which is trained in a larger source text corpus to improve
the recognition accuracy. During text-only out-of-domain adapta-
tion, the source LM can be replaced by any other language model
type, such as n-gram, or recurrent neural network LM. Meanwhile,
we could apply popular language model adaptation techniques on
the target domain transcriptions. The important is that the new LM
is fully plug-and-play, which means the adaptation step is to only
train a new LM with large in-domain text or target domain text with-
out fine-tuning the AED module.

4. EXPERIMENTS

4.1. Experimental Setups

Our experiments are conducted on in-domain and out-of-domain
scenarios. The source domain data is LibriSpeech [29]. Different
target domains in GigaSpeech [30] are adapted. LibriSpeech has
around 960 hours of audiobook speech train set with test-clean /
other used for testing. For experiments on the in-domain scenario,
an auxiliary text corpus is used to train a new in-domain LM which
contains ∼803 million words. GigaSpeech is a recently published
multi-domain ASR corpus comprised of 10,000 hours of transcribed
speech. In this work, we use the youtube and podcast partition of
the GigaSpeech train-XL subset. 4 out of 5 different domains in
youtube (education, news, people, science) and 4 out of 5 different

domains in podcast (arts, health, people, science) are selected and
shown in Table 1 1. Around 5 hours of dev set and 10 hours of test
set are split and evaluated for the following experiments.

For acoustic feature extraction, 80-dimensional mel filterbank
features are extracted with global level cepstral mean and variance
normalization, frame length equal to 25ms and frame shift equal
to 10ms. When it comes to data augmentation, standard SpecAug-
ment [31] is used. 5,000 sentence pieces [32] are trained using
LibriSpeech 960 hours paired text. The attention-based encoder-
decoder (AED) baseline follows the basic settings of ESPnet
recipe [33]. The subsampling layer is a two-layer convolution
neural network, whose down-sampling rate is 4. The encoder has
12 conformer layers, in which the inner size of the feed-forward
layer is 2,048, and the attention dimension is 512 with 8 heads. The
decoder has 6 transformer layers with the same attention setup. The
hyper-parameters are set as α = 0.3, η = 0.4, and β = 0.6 for
shallow fusion method for most sets with beam size equal to 20.

During adaptation, the target language models are trained from
target domain text shown in Table 1 and the large LibriSpeech lan-
guage model is trained from the auxiliary text corpus which has
∼803 million words for in-domain scenarios, respectively. All lan-
guage models are based on standard transformer encoder with 18
layers, and each layer has 8 heads with 512 self-attention dimension.

4.2. In-domain Situation

In this section, we explore and validate the best factorized AED ar-
chitecture on the LibriSpeech evaluation test sets for in-domain case
by using external LM (ex-LM=✓). At the very beginning, we try to
use log posterior probability log pLM as the LM information. How-
ever, such log probability hurts the transformer decoder because the
rare tokens get low probability, which has a large abs value. Then
the transformer decoder tries to learn the distribution of rare tokens
and those tokens’ probability is unstable in log space for different
LMs where the LM part is not replaceable.

Shown in Table 2, firstly, we compare the recognition accuracy
when the factorized AED model with different factorized methods
mentioned in Section 3. The replaced external LM perplexity (PPL)
is 31.1 on averaging test-clean / other sets, while the internal LMs’
PPL is shown in the Table 2.

Results show that factorized input has a better performance com-
pared with two implementations of factorized output by 0.1∼0.2%.
This is because the transformer decoder can learn more from the
LM information and provide stronger modeling capability compared
with only linear in the factorized output method. Also, we find that
factorized output (after) performs better than factorized output (be-
fore) by 0.1%, which is maybe because the projection might hurt the
effectiveness of LM information. And both factorized input / output
perform worse than the shallow fusion method because the fusion
style is fixed by η but shallow fusion tunes a better β. Finally, when it
comes to the factorized attention (pos 1) in Table 2, we meet the best
performance 2.0 / 4.3. And results shows that the factorized attention
method (pos 2) does not perform well where the factorized attention
hurts the acoustic information HEnc in source-attention. Thus we
choose factorized-attention (pos 1) as our proposed architecture.

Compared with the AED baseline, although the unadapted fac-
torized AED model lags a little by 0.2 on the test-other set, the
adapted factorized AED (Fact. Attn. (pos 1)) (ex-LM=✓) outper-
forms shallow fusion (+SF) or density ratio (+DR) with 0.1∼0.2
absolute (abs.) WER reduction (WERR). Shown in the last line

1To be notified, even if two target domains have the same name (i.e. peo-
ple), the detail text conditions are different.
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Dataset Y-education Y-news Y-people Y-science P-arts P-health P-people P-science

words (M) 17.33 3.74 4.24 3.41 0.69 1.44 1.38 4.08
duration (h) 1665.3 358.8 383.8 313.9 64.3 123.8 122.8 381.0

Table 1. Statistics of GigaSpeech target domains (alphabet order) train sets on their word counts (M, million words) and durations (h, hours).
Y denotes youtube audios and P denotes podcast audios.

Adaptation data Y-education Y-news Y-people Y-science P-arts P-health P-people P-science

Source LM (PPL) 106.8 136.0 135.3 160.0 119.6 112.6 111.2 151.0
Target LM (PPL) 58.7 40.1 46.5 37.1 109.7 40.6 59.3 20.5
PPL reduction 45.0% 70.5% 65.6% 76.8% 8.3% 63.9% 46.7% 86.4%

AED 16.1 / 9.9 18.1 / 16.8 23.3 / 17.7 17.1 / 19.0 11.4 / 14.9 16.3 / 16.1 16.2 / 16.4 17.6 / 16.3
+Shallow Fusion 14.0 / 9.6 16.0 / 14.8 21.6 / 16.2 15.3 / 16.4 11.0 / 12.7 14.4 / 14.2 15.1 / 15.2 14.1 / 13.6
+Density Ratio 13.4 / 9.1 15.3 / 14.5 20.8 / 15.3 14.3 / 15.2 10.8 / 12.5 14.0 / 13.9 14.6 / 14.8 13.4 / 13.0

Factorized AED 16.0 / 9.8 18.3 / 17.0 23.5 / 17.8 17.5 / 19.4 11.5 / 15.1 16.4 / 16.2 16.3 / 16.5 17.9 / 16.5
+text adaptation 13.3 / 8.9 15.0 / 13.6 20.4 / 15.3 14.0 / 15.1 10.8 / 13.9 13.4 / 13.2 14.5 / 14.6 12.6 / 11.4
++Shallow Fusion 12.5 / 8.4 14.3 / 13.0 19.2 / 14.7 13.3 / 14.4 10.6 / 10.9 12.8 / 12.7 14.1 / 14.3 11.8 / 10.7

Table 3. LM description (perplexity) (PPL) and ASR Performance (WER) (%) comparison for domain adaptation with different methods.
Factorized AED is referred to as the proposed factorized-attention (pos 1) model. Token-level perplexity (PPL) is averaged on dev and test
sets. Source LM is the LM separated from the factorized AED model. Target LM is trained separately using text mentioned in Table 1.

Model ex-LM PPL test-clean test-other

AED
✗ - 2.5 5.4

+SF - 2.2 4.4
+DR 61.7 2.1 4.3

Fact. Input ✗ 62.4 2.5 5.7
✓ 62.4 2.3 4.7

Fact. Output
before ✗ 64.2 2.6 6.0

✓ 64.2 2.4 5.0

after ✗ 63.8 2.6 5.8
✓ 63.8 2.3 4.9

Fact. Attn.

pos 0 ✗ 61.3 2.5 5.7
✓ 61.3 2.4 4.6

pos 1 ✗ 59.8 2.5 5.6
✓ 59.8 2.1 4.3

pos 2 ✗ 67.1 2.8 6.6
✓ 67.1 2.7 6.2

Fact. Attn. pos 1 ✓+SF 59.8 2.0 4.1

Table 2. Source (Internal) LM perplexity (PPL) and ASR Perfor-
mance (WER) (%) Comparison of different factorized methods.

of Table 2, the factorized AED can be further boosted using shal-
low fusion (+SF) to achieve the best performance 2.0 / 4.1, which is
5∼10% relative (rel.) WERR compared to AED +SF / +DR.

4.3. Out-of-domain Adaptation
The target domain language models are trained using different scales
performances are shown in the upper part of Table 3. With at least
50% rel. PPL reduction for most sets, the mismatch between source
and target domain shows a huge potential to the text-only adaptation.

Shown in the 3rd block of Table 3, the factorized AED ar-
chitecture after ‘+text adaptation’ shows great improvement (i.e.
5%∼30% rel. WERR, averaged (ave.) 16% rel. WERR across

all target domains) compared to the AED baseline. The proposed
method demonstrates more potential compared with the shallow
fusion model without fine-tuning the hyper-parameter β, and at the
same time outperforms the baseline+SF method by ave. 6.1% rel.
WERR and baseline+DR method by at most 10% rel. WERR. This
further proves that the improvement of the language model part
could be transferred to the factorized AED model. Meanwhile, the
best performance achieves by 21% compared with the baseline when
both shallow fusion and factorized AED architecture are preferred.

Experiments show that the factorized AED performance is sensi-
tive to the target LM. After text-only adaptation, the improvement is
limited if the target LM performs badly (P-arts, PPL reduction is 8%,
rel. WERR are 5% / 7% while the average value is 16% compared
to the baseline), and is boosted if target LM is advanced (P-science,
PPL reduction is 86%, rel. WERR are 28% / 30%).

5. CONCLUSION

In our work, we propose a novel factorized AED architecture to in-
tegrate the external LM into the ASR model for fast text-only do-
main adaptation. The proposed factorized AED architecture uses
the advanced conformer-based AED model and integrates the source
LM into the transformer decoder using factorized attention. Dur-
ing text-only adaptation, the factorized AED model with plug-and-
play target LMs shows its potential on various datasets. Text-only
adaptation experiments show that the proposed method significantly
outperforms the AED baseline by 20% / 24% relative WER reduc-
tion (rWERR) for in-domain LibriSpeech test sets and 8%∼33% for
out-of-domain GigaSpeech test sets. Compared with density ratio
method, we achieve ∼5% rWERR for in-domain sets and ∼8% rW-
ERR for out-of-domain sets.
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