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ABSTRACT

Automatic speech recognition (ASR) has suffered great performance
degradation when facing low-resource languages with limited train-
ing data. In this work, we propose a series of training strategies
to exploring more effective data utilization for low-resource speech
recognition. In low-resource scenarios, multilingual pretraining is
of great help for the above purpose. We exploit relationships among
different languages for better pretraining. Then, the knowledge ex-
tracted from the language classifier is utilized for data weighing on
training samples, making the model more biased towards the tar-
get low-resource language. Moreover, dynamic curriculum learning
as a warm-up strategy and length perturbation as data augmentation
are also designed. All these three methods form a newly improved
training strategy for low-resource speech recognition. Meanwhile,
we evaluate the proposed strategies using rich-resource languages
for pretraining (PT) and finetuning (FT) the model on the target lan-
guage with limited data. The experimental results show that on the
CommonVoice dataset, compared with the commonly used multi-
lingual PT+FT method, the proposed strategies achieve a relative
15-25% reduction in word error rate on different target languages,
which shows the significant effects of the proposed data utilization
strategy.

Index Terms— low-resource speech recognition, curriculum
learning, data augmentation, data utilization.

1. INTRODUCTION

Automatic speech recognition (ASR) systems need numerous hours
of transcribed speech to achieve a fine performance. However, there
are more than 6,000 languages in the world. Most of them have been
suffering from the insufficiency of the annotated data. For many
languages, only a little annotated data are available.

In low-resource scenarios, cross-lingual transfer learning is
broadly adopted in many works for hybrid systems [1, 2, 3] and
end-to-end systems [4]. Meanwhile, end-to-end ASR models avoid
the pronunciation modeling required for hybrid systems.

Then, modeling units and data augmentation for low-resource
scenarios have been extensively studied. Articulatory attributes are
general for all human languages so that they are adopted as model-
ing units in works [5, 6]. Transliterations of different languages have
been treated as training samples for multilingual data augmenta-
tion [7]. LRSpeech [8] has also adopted text-to-speech (TTS) based
data augmentation and dual transformation.

†Yanmin Qian is the corresponding author.

On the other hand, self-training and self-learning methods have
been proposed to exploit unlabeled data. Noisy student training [9,
10] has predicted hypotheses on unlabelled data. Then they trained
the model on augmented data with pseudo labels. Masked acoustic
models [11, 12] utilized self-learning for predicting the masked part
of speech samples. Recently, in wav2vec 2.0 [13], contrastive learn-
ing and masked acoustic models were both utilized for self-learning.

The existing methods above mainly focus on different training
paradigms and the utilization of unlabeled data. However, training
strategies or ways such as weighing, scheduling, and augmentation
are also important perspectives. For multilingual ASR pretraining,
previous works only combined the data simply from different lan-
guages without considering correlations among languages. In this
work, we make three main contributions as follows. Firstly, the
data weighing method based on utterance level language similarity
is proposed and evaluated. Such similarities are exploited for better
adaptation of low-resource ASR. Secondly, novel warm-up strategy
based on dynamic curriculum learning method is designed to exploit
the data scheduling scheme for making the model be better opti-
mized. The order and usage of training samples are revised, and
sample difficulties and model competence are taken into consider-
ation. Thirdly, a novel data augmentation approach named “length
perturbation” is developed for end-to-end low-resource ASR. It gen-
erates new samples based on utterance fragments and can also be
combined with the existing data augmentation methods.

Experimental results show the integration of our methods out-
performs the multilingual pretraining + finetuning baseline with a
relative 15-25% word error rate reduction.

2. MULTILINGUAL PRETRAINING AND FINETUNING
FOR LOW-RESOURCE ASR

2.1. Transformer-based E2E ASR

Transformer is a sequence-to-sequence (S2S) network constructed
with an encoder and a decoder network. Each transformer module
consists of a multi-head self-attention and several fully connected
feed-forward layers [14]. The transformer model is trained under the
joint connectionist temporal classification (CTC)/attention (ATT)
framework to improve robustness and achieve fast convergence [15].
Denote by Lctc and Ls2s the CTC and S2S objectives, the loss
function of the joint CTC-attention is defined as:

Ljca = λLctc + (1− λ)Ls2s (1)

The tunable coefficient λ ∈ [0, 1] controls the contribution of losses.
Joint CTC/ATT decoding is adopted to predict the output sequence.
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TDNN Language Classifier

Transformer Based ASR

Fig. 1: The proposed data weighing pipeline

2.2. Multilingual Pretraining and Finetuning

Due to the similarities of pronunciation and grammars among human
languages, the multilingual pretrained models can learn common
speech and language knowledge well [4]. Since many languages al-
ready have had a large amount of data, the E2E ASR model has been
firstly pretrained on several rich-resource languages. Hereafter, we
finetune the ASR model on a low-resource language. The modeling
units are from both rich- and low-resource languages. The common
knowledge among different languages can be transferred to the low-
resource ASR model by the pretrained parameters.

3. OPTIMIZED DATA UTILIZATION FOR
LOW-RESOURCE SPEECH RECOGNITION

Most works are merely to train the model towards the whole train-
ing set epoch by epoch. In low-resource scenarios, how to better
use data is a key problem worth exploration. To improve the perfor-
mance of low-resource speech recognition, data weighing based on
language similarities, warm-up strategy based on dynamic curricu-
lum learning, and data augmentation based on length perturbation
are proposed in this work.

3.1. Data Weighing Based on Language Similarity

Multilingual data have been simply combined in many works [16,
17]. However, the correlation and similarity among languages are
ignored in those works. For example, the similarity of spelling and
pronunciation between French and Catalan is much greater than
that between French and Chinese. In previous works, language-
level similarity is used from data selection to extract the tandem
feature[18, 19, 20] in hybrid systems and phoneme recognition sys-
tems. The above mentioned idea is further extended to explore the
utterance-level language similarity and it benefits to low-resource
language modeling of end-to-end ASR architecture in this work.

3.1.1. Data Weighing

In order to utilize the similarities among languages for ASR training,
the data weighing method is proposed. The purpose for using lan-
guage similarities is to find more data similar to the target language
in the multilingual dataset for better adaptation. To obtain such sim-
ilarities, a method is to exploit the knowledge from a language clas-
sifier. The posterior of the target language from the classifier can be
considered with language similarities from the model’s perspective,
which is used as weights of utterances in multilingual pretraining.

Figure 1 shows the pipeline of the proposed method. The
weights from the language classifier are firstly extracted on each
utterance shown on the top of the figure. Then the loss of each
utterance is multiplied with weights to make the model pay more
attention to utterances with greater similarities.
3.1.2. Weights Calculation

The posterior of the target language can be considered as the weight
of towards the target language, which can be computed as follows.

wi = P (y = l|xi) (2)

where xi is the input feature of the sample i, l refers to the target
language, and P (y = l|xi) is the posterior from the softmax layer.

The posteriors are sometimes close to one-hot vectors such that
the weights of the non-target languages are too small. Inspired from
the speaker verification task [21], we also try to extract the embed-
dings from hidden layers. Embeddings from languages are aver-
aged as the language center. The weights wi are cosine similarities
between language embedding center and utterance embeddings in
Equation 4.

cos sim(a,b) =
a · b
||a|| ||b|| (3)

wi =
1 + cos sim(si,

∑M
k=1 sk
M

)

2
(4)

where cos sim(a,b) is the cosine similarity, si is the embedding
of sample i. sk ∈ L where L is the set of target language, and
M = |L|. We normalize weights due to its value range.

3.1.3. Stabilizing Gradients

However, due to the existence of weights, the difference of gradients
calculated from two batches can reach several orders of magnitude.
So for weights in each batch, the softmax function is used to make
the gradient norm close to before.

S(wi) =
ewi∑n

k=1 e
wk

(5)

where e is the natural number, wi means the target language’s sim-
ilarity of the ith sample in a batch and n is the batch size. Further-
more, we put together the samples with larger differences in lan-
guage similarity when constructing batches which makes the differ-
ences be more clearly reflected in training. Finally, the weight is
simply multiplied with the original ASR loss.

Lw =

n∑
i=1

S(wi)L(i)
jca (6)

where n denotes batch size and L(i)
jca is the loss of the ith sample.

3.2. Dynamic Curriculum Learning

The second proposed method is a warm-up strategy. The motivation
of curriculum learning [22] is that the neural network can better uti-
lize knowledge from easier examples rather than harder ones at the
beginning. So the samples are ordered from easy to hard according
to difficulty metrics for training. Inspired from the literature [23],
we propose a dynamic curriculum learning method for low-resource
ASR. Models are trained progressively instead of being fed with all
samples.
3.2.1. Difficulty of Samples

For a training sample, lower loss means that the ASR model can
better recognize it. So we adopt the loss of each sample as a measure
of sample difficulty and use the frozen model to calculate the loss of
all training samples after each training phase.

s(x; θt) = L(x; θt) (7)
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Fig. 2: Example of sub-sequence (Boxed part)
where s(x; θt) is the score of the sample x at phase t, and θt de-

notes the model parameters. On the other hand, another candidate
for measuring difficulties is the negative accuracy −a(x; θt) of the
attention output.

s(x; θt) = −a(x; θt) (8)

Samples with smaller scores can be more difficult to be im-
proved after several phases. Hereafter, we can also define the sample
difficulties as the differences in scores of the same sample between
adjacent phases. The sample difficulty based on score decreasing is
expressed as

d(x; θt) = −
s(x; θt−1)− s(x; θt)

s(x; θt−1)
(9)

With this metric, samples with more reductions indicate that the
model learns from them more efficiently. Therefore, they are more
likely to be learned better in the next phase.
3.2.2. Progressive Learning

Generally, the model is weak in the early training stage, and then it
can only learn well from the simple training samples and gradually
learn to process the entire training set. Therefore, during the training
process, we gradually increase the amount of training data to cover
the entire training set. The proportion of training data is calculated
as follows:

a(t) = min

(
1, a0 +

βt

T
(1− a0)

)
(10)

where t means the tth phase, a0 means the initial ratio of data for
training, β is the factor of data increment, and T means the total
number of phases. Then for phase t, the a(t) ∗ |Dtrain| easiest sam-
ples are selected to train the model, where |Dtrain| denotes the total
size of the training set. Benefited from the progressive training, the
newly-updated model can learn samples of appropriate difficulties.
3.3. Length Perturbation

Audios are resampled using different factors, and several additional
copies of the data are created in speed perturbation [24]. Here we
propose a new data augmentation strategy named ”length perturba-
tion” which can be well incorporated with the speed perturbation.
Current end-to-end models learn the mapping of the whole sequence
of input and output. However, there is a valid text sub-sequence cor-
responding to a piece of semantically segmented speech for the ASR
task. Figure 2 shows an example of sub-sequence. The relationship
between speech and text for ”a more detailed study” in Catalan can
be explicitly learned by models when we clip the sample to the boxed
part for data augmentation. Then we can exploit knowledge from the
sub-sequence of speech to improve the model’s performance, espe-
cially in the case of scarcity of data. Subsequently, we first train a hy-
brid ASR system to get word boundaries for each utterance. Then we
slice the utterances according to the word boundaries and create aug-
mented samples. Consequently, explicit modeling of sub-sequences
can help a lot for the ASR task.

4. EXPERIMENTS

4.1. Datasets

We consider five languages, including French (fr), Italian (it),
Basque (eu), Portuguese (pt), and Catalan (ca) from the June

Table 1: WER (%) results of the proposed data weighing

Method Catalan Basque French Portuguese Italian
dev/test dev/test dev/test dev/test dev/test

Baseline 21.7/22.0 20.0/21.2 35.8/35.7 19.8/19.0 23.8/23.6
L.Post 21.5/21.7 19.4/19.9 34.6/34.6 19.6/18.6 22.7/22.6
L.Sim 21.5/21.6 19.3/19.9 34.6/34.7 19.4/18.5 22.7/22.7
U.Post 21.2/21.2 19.0/19.5 34.2/34.3 18.0/17.8 22.0/21.8
U.Sim 20.3/20.4 18.5/19.0 34.1/34.2 17.6/17.0 21.2/21.1

2020 (v5.1) release of CommonVoice Dataset1 [25]. The train-
ing set of 1104 hours in total contains five languages. We rotate
the role of the target ‘low-resource language‘ so that only a 10-hour
subset of the target language will be used. The official evaluation
split of development and test sets is adopted for each language.

4.2. ASR Baseline

We follow the setup of the transformer model and the input in the
literature [26]. The SpecAugment [27] is conducted on speech fea-
tures, and the baseline implementation is from the ESPnet [28]. The
modeling units are 500 byte pair encoding (BPE) units from the
training set. The baseline performance is reported as the first line
in Table 1 for all the five languages. “dev” and “test” means the
word error rate (WER) on development and test sets, respectively.

4.3. Data Weighing Based on Language Similarity

The language classifier is trained to extract the language informa-
tion from each utterance. We adopt the Time Delayed Neural Ne-
towork (TDNN) structure from the literature [21]. The input of the
model is the same as that in Section 4.2. The classifier is trained
to identify which language the utterance comes from. We evaluate
and compare the different strategies for data weighing. The system is
firstly pretrained with the proposed data weighing and then finetuned
on the target language.

The results for all the five languages are illustrated in Table 1.
“Sim” means cosine similarity of embeddings, and “Post” means the
posterior of the target language. “L” and “U” represent language-
level and utterance-level, respectively. For example, “L.Post” means
language-level data weighing with posterior strategy, and “U.Sim”
indicates the utterance-level data weighing with similarity strat-
egy. Compared with the language-level methods, the utterance-level
methods have further improvements, indicating that the differences
between utterances cannot be ignored. Due to the historical use
and the existence of foreign words, some utterances in the non-
target language have better benefits for the adaptation of the target
language than that of other utterances. Also, the similarity based
strategies achieve better performance than posteriors. The utterance
level using the similarity strategy has achieved the best performance.

4.4. Dynamic Curriculum Learning

In all experiments, we set a0 = 0.2, β = 1.5 in Eq. 10. And here,
one phase corresponds to five epochs. After each phase, we infer on
the whole training set to get the sample difficulties and reorganize
the training set according to Eqs. 9 and 10.

As shown in Table 2, “DCL L” means that the loss declination
is considered as the metric of sample difficulty, and also “DCL A”
means the accuracy increase. The length normalized version is also
introduced when we adopt loss value as the difficulty metric, which
is denoted as “DCL L*”. For better comparison, the static curricu-
lum learning (CL) is also conducted based on the literature [29].

1https://commonvoice.mozilla.org/en/datasets
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Table 2: WER (%) of different curriculum learning methods

Methods Catalan Basque French Portuguese Italian
dev/test dev/test dev/test dev/test dev/test

Baseline 21.7/22.0 20.0/21.2 35.8/35.7 19.8/19.0 23.8/23.6
CL 22.0/22.2 20.8/21.7 35.9/35.8 19.9/19.0 23.8/23.7

DCL A 20.9/21.1 18.8/19.2 34.0/34.1 18.6/17.4 23.0/22.8
DCL L 21.0/21.0 18.4/19.0 33.6/33.6 18.5/17.4 22.6/22.4

DCL L* 20.4/20.6 17.4/18.3 33.0/33.1 17.8/16.7 21.8/21.6

It is observed from Table 2 that the conventional curriculum
learning does not work well for this low-resource scenario because
it is static and the randomness is lost during training. With both pro-
posed dynamic curriculum learning methods, for either loss-based
or accuracy-based, the better performance is achieved. Also, further
improvements are obtained when the normalized loss is adopted as
the proposed dynamic curriculum learning.
4.5. Length Perturbation

Length perturbation requires the conversation time marked (CTM)
output of training samples to segment them by word boundaries. We
build the chain model of the CommonVoice recipe in Kaldi [30] us-
ing the 10-hour setup and align the training set of each language.
The byte pair encoding units are adopted instead of phones because
pronunciation lexicons of low-resource languages are hard to obtain.

Table 3: WER (%) Results of the proposed length perturbation

Methods Catalan Basque French Portuguese Italian
dev/test dev/test dev/test dev/test dev/test

Baseline 21.7/22.0 20.0/21.2 35.8/35.7 19.8/19.0 23.8/23.6
SP 3fold 20.2/20.6 17.5/18.0 32.5/32.5 18.2/17.2 21.3/21.3
LP 2fold 20.7/20.6 19.7/20.8 35.9/35.8 19.7/19.0 23.5/23.3
LP 3fold 20.1/20.1 18.7/20.6 34.1/34.1 18.8/18.2 22.1/22.7
LP 4fold 20.1/19.8 17.6/17.9 32.4/32.5 18.2/17.5 20.7/20.6
LP 5fold 20.2/20.0 18.1/19.1 33.2/33.3 18.7/18.0 21.2/21.0
SP+LP 18.7/18.8 16.8/17.2 31.4/31.3 17.4/16.3 20.7/20.3

Similar to the speed perturbation implementation in Kaldi, we
perturb the training data with the proposed length perturbation using
several different augmentation factors. We first select the starting
point with a random word for each utterance and cut out the part of
the text and the corresponding speech segment. By the use of factor
k, we perturb data by t

k
, t ∈ {1, 2, 3, ..., k}. Then we tried different

factors for the proposed length perturbation, and results are shown
in Table 3. In this table, “LP” and “SP” mean length perturbation
and speed perturbation respectively. For speed perturbation, we use
the broadly adopted configuration for speed factors 0.9, 1.0, and 1.1.
It is found that the performance gets better while k is increased, and
the best one is captured when k = 4. In comparison to the normal
speed perturbation, the best length perturbation configuration per-
forms better in most testing sets. More importantly, as shown the
last line of Table 3, these two perturbation methods can be further
combined to get much better performance.
4.6. Evaluation of Integrated Training Strategy
We evaluate and explore the integration of the proposed methods,
including data weighing, dynamic curriculum learning, and length
perturbation, and the results are shown in Table 4.

The last three lines show the results of our integrated methods.
It is revealed that the proposed approaches are complementary with
each other, and all the three methods can be combined into an en-
tire training strategy to obtain the best system performance. There
is a consistently relative 10% to 15% WER reduction compared to

Table 4: WER (%) results of integrated training strategies for all
five langauges. M0: Baseline. M1: M0 + Speed perturbation. M2:
M1 + Length perturbation. M3: M2 + Data weighing. M4 (Final
integrated strategy): M3 + Dynamic curriculum learning.

Methods Catalan Basque French Portuguese Italian
dev/test dev/test dev/test dev/test dev/test

M0 21.7/22.0 20.0/21.2 35.8/35.7 19.8/19.0 23.8/23.6
M1 20.2/20.6 17.5/18.0 32.5/32.5 18.2/17.2 21.3/21.3
M2 18.7/18.8 16.8/17.2 31.4/31.3 17.4/16.3 20.7/20.3
M3 18.0/18.1 16.0/16.7 30.8/30.7 17.0/15.9 20.0/19.8
M4 17.7/17.6 15.0/16.0 30.5/30.4 16.2/15.0 18.9/18.7

the system with speed perturbation. Compared to the baseline multi-
lingual PT+FT, our final integrated data usage strategy incorporated
with speed perturbation has a relative 15% to 25% WER reduction.
4.7. Evaluation on Non Indo-European Lanugages
We adopt five Indo-European languages except Basque for the basic
setup in our experiments. The other non Indo-European languages.
Tatar (tt), Kabyle (kab) and Kinyarwanda (rw) are adopted as tar-
get languages to further evaluate our proposed approach. We use a
10-hour subset of the training set from each language, respectively.
Most setups are the same as the basic experiments. While the model
is first pretrained on 1104 hours of the full validated training set from
five languages (fr, it, eu, pt, ca). Then we finetune the model on the
target language (one of tt, kab, and rw), respectively. We replace
the output layer with a new randomly initialized layer for each target
language due to different modeling units.

Table 5: WER (%) results of integrated data usage strategies for
non Indo-European langauges. The methods M0, M1, M2, M3,
M4 are the same as those illustrated in Table 4.

Methods Tatar Kabyle Kinyarwanda
dev/test dev/test dev/test

M0 26.6/27.1 53.4/53.1 48.3/48.5
M1 23.3/23.9 51.0/51.7 45.7/46.0
M2 18.5/18.7 43.0/42.9 42.6/42.7
M3 17.8/18.1 42.5/42.3 41.5/41.6
M4 16.2/16.2 40.9/40.8 37.4/37.7

The performance of the proposed method is shown in Table 5.
The absolute ASR performance in Kabyle and Kinyarwanda is not
as good as Indo-European languages. It shows that the observation
and conclusion are consistent as those in Table 4, and all the pro-
posed methods still work well on non Indo-European languages. The
proposed entire integrated data usage strategy can obtain a large im-
provement compared to the baseline multilingual PT+FT.

5. CONCLUSIONS

In this paper, we propose methods to explore effective data utiliza-
tion for low-resource speech recognition. We use the language sim-
ilarity for data weighing, dynamic curriculum learning for data allo-
cation, and length perturbation for data augmentation. The experi-
mental results show that on the CommonVoice dataset, all the three
methods achieves better performance compared with the commonly
used PT+FT baseline. The integrated proposed strategies achieve a
15-25% reduction in relative WER on different target languages.
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