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ABSTRACT

Building a single universal speech enhancement (SE) system that

can handle arbitrary input is a demanded but underexplored research

topic. Towards this ultimate goal, one direction is to build a sin-

gle model that handles diverse audio duration, sampling frequen-

cies, and microphone variations in noisy and reverberant scenar-

ios, which we define here as “input condition invariant SE”. Such a

model was recently proposed showing promising performance; how-

ever, its multi-channel performance degraded severely in real condi-

tions. In this paper we propose novel architectures to improve the

input condition invariant SE model so that performance in simulated

conditions remains competitive while real condition degradation is

much mitigated. For this purpose, we redesign the key components

that comprise such a system. First, we identify that the channel-

modeling module’s generalization to unseen scenarios can be sub-

optimal and redesign this module. We further introduce a two-stage

training strategy to enhance training efficiency. Second, we pro-

pose two novel dual-path time-frequency blocks, demonstrating su-

perior performance with fewer parameters and computational costs

compared to the existing method. All proposals combined, experi-

ments on various public datasets validate the efficacy of the proposed

model, with significantly improved performance on real conditions.

Recipes with full model details will be released for reproducibility1.

Index Terms— Universal speech enhancement, sampling-

frequency-independent, microphone-number-invariant

1. INTRODUCTION

Speech enhancement (SE) aims to remove undesired signals in noisy

and reverberant environments, thus enhancing desired speech qual-

ity [1]. While SE can be divided into many subtasks, this paper

primarily focuses on denoising and dereverberation as they are most

common in real world scenarios. The past decade has witnessed

tremendous advancement of deep learning-based SE techniques with

impressive performance in various scenarios. Spectral mapping [2],

time-frequency (T-F) masking [3–5], time domain approaches with

learnable convolution-based models [6–8], and sophisticated archi-

tectures [9–11] all brought significant advances in the SE literature.

However, the majority of existing works mainly consider a single

input condition, such as fixed single or multi-channel input, or in-

put with a fixed sampling frequency. Thus, the designed SE models

cannot be directly used in different scenarios, e.g., when switching
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from one input condition to another. The mismatch between input

conditions is also known to degrade the model performance.

Recently, an unconstrained speech enhancement and separation

network (USES)2 has been proposed to handle diverse input condi-

tions with a single model [12]. With careful design and integration

of several key components, the USES model becomes independent

of 1) the sampling frequency; 2) the number (and geometry) of

input microphone channels; and 3) the input signal length. The

first independence is achieved leveraging the nature of short-time

Fourier transform (STFT) and the adopted dual-path time-frequency

model architecture [13]. The second is achieved by using the well-

developed transform-average-concatenate (TAC) technique [14].

The last is achieved by introducing the memory tokens [12], which

enable the model to perform segment-wise processing while main-

taining the history information. In this paper, we term this type of

SE model as “input condition invariant SE”, which is an important

direction towards universal SE — our ultimate goal.

Although USES demonstrated promising performances on di-

verse datasets, we observe significant degradation in some real con-

ditions, e.g., CHiME-4 multi-channel real recordings. We analyze

that this can be partly due to the sub-optimal architecture. In particu-

lar, the adopted TAC modules perform channel modeling by concate-

nating the channel-averaged representation to each channel-specific

representation. While this may be effective in many cases, it can-

not well handle the microphone failure or channels with very differ-

ent signal-to-noise ratios (SNRs). In addition, the TAC modules are

used for processing both single- and multi-channel signals. Such a

coupled processing makes it difficult to tune the single- and multi-

channel performance separately. Hence, we argue that USES can be

further developed to generalize better across various conditions.

In this paper, we aim to improve the model design of USES and

enhance both performance and generalization in diverse conditions.

To this end, we propose to decouple the single-channel / multi-

channel processing and redesign key components including new

time-frequency modeling and channel modeling modules. Based

on the two proposed new architectures, USES2-Comp and USES2-

Swin, we also adjust the technique combination accordingly to

achieve the capability of handling diverse input conditions. Ad-

ditionally, we propose a two-stage training strategy to improve

the training efficiency of the model, which allows improving the

single- and multi-channel processing capabilities separately. This

also enables us to avoid data balancing between single- and multi-

channel data. Following [12], we experiment with the combination

of five commonly-used public corpora (VoiceBank+DEMAND [15],

DNS1 [16], CHiME-4 [17], REVERB [18], and WHAMR! [19]) to

demonstrate the model’s capability. Extensive results across datasets

underscore the proposed single model’s substantial improvement of

SE performance and generalization, outperforming the conventional

USES model in diverse conditions.
2“Unconstrained” here means that the model is not constrained to be only

used in a specific input condition.
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2.3. Channel modeling module 6

In addition to the improved T-F modeling module, we further im-

prove the channel modeling module 6 in Fig. 1 (a) to boost the

spatial processing capability. The vanilla TAC module has limited

capability in handling scenarios where different microphone chan-

nels have significantly different signal-to-noise ratios (SNRs) as ob-

served in [12]. We conjecture that the design choice of the TAC mod-

ule incurs this limitation because it simply averages the representa-

tions from different channels. The channel-wise attention [27] also

handles different microphone numbers and permutations, achieving

impressive performance in matched conditions. However, this tech-

nique suffers from overfitting according to our preliminary experi-

ments, violating our goal to build an input condition invariant SE

model with good generalization. (c.f. rows 5–6 in Table 2)

We propose a novel channel modeling module by combining

the best of both approaches, named transform-attention-concatenate

(TAttC). It maintains the channel independence and generalization

while being capable of filtering noisy channels with attention. Given

an input feature X ∈ R
N×C×(FT ), the channel modeling process of

the proposed TAttC module is formulated as follows:

Y = PReLU
(

FC(X)
)

∈ R
H×C×(FT )

, (1)

Ȳ = PReLU
(

FC
(

Attn(Y)
))

∈ R
H×C×(FT )

, (2)

X̂ = LN
(

PReLU
(

FC([Y, Ȳ])
)

)

∈ R
N×C×(FT )

, (3)

where [Y, Ȳ] ∈ R
2H×C×(FT ) denotes concatenating two features

along the embedding dimension. H is the projected embedding di-

mension. FC(·) and LN(·) respectively denote the linear projection

and layer normalization, both operating along the embedding dimen-

sion. Attn(·) denote the channel-wise attention as defined below:

Q = Reshape
(

LN
(

ReLU
(

FC(Y)
)

))

∈ R
1×C×(HFT )

, (4)

K = Reshape
(

LN
(

ReLU
(

FC(Y)
)

))

∈ R
1×C×(HFT )

, (5)

V = LN
(

ReLU
(

FC(Y)
)

)

∈ R
H×C×(FT )

, (6)

A = LN

(

ReLU

(

FC

(

Softmax

(

QKT

√
HT 2

)

V

)))

, (7)

where A ∈ R
H×C×(FT ) is the output of the Attn module. Note

that the Attn module merges the time and frequency dimensions

into the embedding dimension when calculating the attention map

Softmax
(

QKT

√
HT2

)

∈ R
1×C×C in Eq. (7), which makes it indepen-

dent of the size of F and T .

2.4. Two-stage training strategy

We propose a two-stage training strategy to improve the training ef-

ficiency of the proposed SE model. Since we have decoupled the

single- and multi-channel processing in Section 2.1, it is now possi-

ble to separate the optimization of these two capabilities with single-

and multi-channel data, respectively. Specifically, in the first stage,

we update all parameters except for the TAttC modules 6 in Fig. 1

(a) on diverse single-channel data. This allows the model to focus on

improving the single-channel SE performance. In the second stage,

we train the TAttC modules 6 while freezing all other parameters

on diverse multi-channel data. This ensures to improve the multi-

channel SE performance on top of the well-trained single-channel

SE function with better generalization. The benefits of the pro-

posed two-stage training strategy include: 1) it is more flexible as we

can use single- and multi-channel data separately for training with-

out caring about the data balance issue; 2) we can optimize multi-

channel processing independently without affecting single-channel

SE capabilities, which is preferable in some practical applications.

Table 1: Information of the datasets. “#Ch” denotes the number of

microphone channels. “(Sim)” and “(Real)” denote the synthetic and

recorded data. “(A)” and “(R)” represent anechoic and reverberant.

Dataset Hours (train / dev / test) SF #Ch

VoiceBank+DEMAND [15] 8.8 / 0.6 / 0.6 48 kHz 1
DNS1 (v1) [16] (A)90 / (A)10 / (R)0.42 & (A)0.42 16 kHz 1
CHiME-4 [17] (Sim)14.7 / (Sim)2.9 / (Sim)2.3 & (Real)2.2 16 kHz 5
REVERB [18] (Sim)15.5 / (Sim)3.2 / (Sim)4.8 & (Real)0.7 16 kHz 8

(R)58.0 / (R)14.7 / (R)9.0
WHAMR! [19]

(A)58.0 / (A)14.7 / (A)9.0
16 kHz 2

3. EXPERIMENTS

3.1. Datasets

We configure a global training set spanning ∼245 hours to train our

USES2 combining five well recognized datasets, identical to [12].

The combined dataset covers diverse input conditions as shown in

Table 1, and more information can be found in [12]. Performances

are individually reported for each dataset’s evaluation partition.

3.2. Configurations

In all experiments, the USES2-Swin / USES2-Comp model com-

prises K = 3 / K = 4 multi-path blocks in Fig. 1 (b) / (c), where

the first Ks = 2 blocks include the channel modeling module 6

in Fig. 1 (a). There are totally 12 transformer layers in both models.

STFT / iSTFT window and hop sizes are respectively set to 32 and 16

ms, regardless of the sampling frequency. Existing sub-modules’ hy-

perparameters, including embedding dimension, bottleneck dimen-

sion, and transformer layer architecture, are identical to [12]. By

default, we take the first channel as the reference channel when pro-

cessing multi-channel data. All experiments were conducted using

the ESPnet-SE [28] toolkit, where the Adam optimizer is used for

training. The learning rate increases linearly to 4e-4 in the first

4000 steps and then decreases by half when the validation perfor-

mance does not improve for two consecutive epochs. Four-second

chunks are used during training for efficiency. We use a batch size

of four. For multi-channel data training, we shuffle the channels of

each sample and randomly select up to four channels. The scale-

invariant multi-resolution L1 loss in the frequency domain with a

time-domain L1 loss term is adopted [29]. We set the STFT window

sizes of the multi-resolution L1 loss to {256, 512, 768, 1024} and the

time-domain loss weight to 0.5.

Metrics. We report performances using five metrics below: wide-

band PESQ (PESQ-WB) [30], STOI [31], signal-to-distortion ratio

(SDR) [32], DNSMOS (OVRL)4 [33], and word error rate (WER).

The OpenAI Whisper model5 [?] is used for WER evaluation.

3.3. Results analysis

Architecture exploration with a single dataset. Table 2 first de-

scribes our incremental exploration with the proposed techniques on

the CHiME-4 dataset. The objective here is to find a model that per-

forms strongly in both simulated and real conditions. Rows 1 and

2 serve as baselines. Conventional USES [12] shows severely de-

graded performance for the real test condition with WER surging to

78.1%. We first explore the proposed decoupled channel process-

ing, 2-stage training, and channel modeling module through rows 3

to 8. It is worth noting that the cascaded structure of channel-wise

attention and TAC (Rows 5–6) cannot generalize well to real con-

ditions despite its strong performance on simulation data, as men-

tioned in Section 2.3. Applying decoupled processing and TAttC for

4https://github.com/microsoft/DNS-Challenge/

blob/master/DNSMOS/DNSMOS/sig_bak_ovr.onnx
5https://huggingface.co/openai/whisper-large-v2
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