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ABSTRACT

Neural speech separation has made remarkable progress and its in-
tegration with automatic speech recognition (ASR) is an important
direction towards realizing multi-speaker ASR. This work provides
an insightful investigation of speech separation in reverberant and
noisy-reverberant scenarios as an ASR front-end. In detail, we ex-
plore multi-channel separation methods, mask-based beamforming
and complex spectral mapping, as well as the best features to use
in the ASR back-end model. We employ the recent self-supervised
learning representation (SSLR) as a feature and improve the recog-
nition performance from the case with filterbank features. To fur-
ther improve multi-speaker recognition performance, we present a
carefully designed training strategy for integrating speech separa-
tion and recognition with SSLR. The proposed integration using
TF-GridNet-based complex spectral mapping and WavLM-based
SSLR achieves a 2.5% word error rate in reverberant WHAMR!
test set, significantly outperforming an existing mask-based MVDR
beamforming and filterbank integration (28.9%).

Index Terms— speech separation, speech recognition, self-
supervised learning, joint training, beamforming

1. INTRODUCTION

Speech separation and enhancement (SSE) is a crucial front-end for
various applications such as speaker diarization, automatic speech
recognition (ASR), and spoken language understanding [1–3]. The
speech separation field has been revolutionized by the invention of
deep clustering [4] and permutation invariant training (PIT) [5],
which allow us to train deep neural networks (DNNs) for speech
separation in a supervised manner. Previous speech separation
methods based on time-frequency (T-F) masking [4–7] used a DNN
to estimate the T-F mask for each speaker from the short-time
Fourier transform (STFT) of the observed mixture. Meanwhile,
time-domain methods [8–10] have demonstrated promising results
by directly processing time-domain signals in an end-to-end (E2E)
manner. Recently, fully complex STFT-domain methods have been
proven to be extremely effective [11–13]. In particular, TF-GridNet
[13] has achieved state-of-the-art (SotA) performance on several
SSE benchmarks [4, 6, 14], including both monaural and multi-
channel cases. Despite these impressive recent improvements in
separation performance, it is still unclear how and when they can
also lead to better ASR performance.

Most conventional SSE models are trained to minimize signal-
level differences between the separated and target speech [8, 9].
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Figure 1: Overview of our E2E integration. We pre-train speech
separation, SSLR, and ASR models separately, and fine-tune the
speech separation and ASR models jointly while freezing WavLM.

This could lead to mismatches with respect to the subsequent ASR
task. To address this issue, several attempts [15–22] have been made
by integrating SSE and ASR models with joint optimization. For
robust ASR, a neural beamformer and a joint connectionist tempo-
ral classification (CTC)/attention-based encoder-decoder were in-
tegrated and optimized with the ASR objectives [18]. This inte-
gration was extended to multi-speaker settings including MIMO-
Speech [20]. It aims to directly improve the performance of multi-
speaker ASR while preserving the modularity of the entire system,
as opposed to a fully E2E black-box approach [23–25]. The inter-
mediate separated speech achieves a good separation quality [20],
although any signal-level criteria are not used for training.

Self-supervised learning (SSL) models such as Wav2Vec
2.0 [26], HuBERT [27], and WavLM [28] have shown consider-
able potential in a wide range of speech processing tasks [29, 30].
Recently, IRIS [31] demonstrated impressive results with an E2E
model that integrates monaural speech enhancement, WavLM, and
ASR models. MultiIRIS [32] expanded IRIS to perform multi-
channel speech enhancement and demonstrated the effectiveness of
the joint training under noisy and reverberant conditions.

Building upon MultiIRIS, this paper investigates MIMO-IRIS:
an E2E integration of speech separation, SSLR extraction, and ASR
for multi-channel multi-speaker overlapping scenarios. We explore
the combination of SSLR-based ASR models [33] with TF-GridNet
[13] as well as well-established beamforming techniques as illus-
trated in Fig. 1. We perform an extensive experimental validation on
the spatialized WSJ0-2mix [6] and WHAMR! [14] datasets, assess-
ing both separation and ASR performance. Interestingly, our ex-
periments show that the correlation between speech separation and
ASR performance is not precisely positive. The separation perfor-
mance after fine-tuning degraded the separation performance while
the word error rate (WER) decreases. This is especially true for TF-
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GridNet-based complex spectral mapping, while mask-based beam-
forming [34, 35] results in less degradation. Despite this, our best
MIMO-IRIS model after joint training achieves SotA ASR perfor-
mance on the WHAMR! dataset with a WER of 2.5%, comparable
to SotA results on clean single-speaker WSJ evaluation sets [33].

2. END-TO-END MULTI-CHANNEL MULTI-SPEAKER
ASR WITH SPEECH SEPARATION AND SSLR

Given an L-sample, M -channel mixture signal X = (xm)Mm=1 ∈
RM×L consisting of K speakers and noises N = (nm)Mm=1, we
formulate the mixing process as follows:

xm =

K∑
k=1

sk,m + nm, (1)

where sk,m ∈ RL is the source image of speaker k at microphone
m. The transcription sequence for speaker k is denoted as Rk. This
section describes each part of the proposed E2E system, depicted in
Fig. 1, including speech separation, SSLR extraction, and ASR.

2.1. Speech Separation

The goal of speech separation is to estimate each speaker’s signal
ŝk,r at a reference microphone r ∈ {1, . . . ,M} from the mixture
X, which can be written as:

{ŝ1, . . . , ŝK} = SS(X). (2)

Depending on the number of input microphones, the task can be
divided into monaural and multi-channel speech separation.

2.1.1. Monaural speech separation

While our main focus is on multi-channel speech separation, we
briefly explain monaural speech separation as TF-GridNet was orig-
inally proposed for the monaural case. In monaural speech separa-
tion, masking and mapping are two popular approaches [7]. Both
can be performed in the complex T-F domain or in the time domain.

In masking-based approaches, a DNN is trained to estimate a
mask for each speaker, and the mask is point-wisely applied to the
encoded representation of the mixture X:

Z = SSEnc(X), (3)

{Ĝ1, . . . , ĜK} = MaskEstimationNet(Z), (4)

Ŝk = Ĝk ⊙ Z, (5)

ŝk = SSDec(Ŝk), (6)

where Ĝk denotes the estimated mask for speaker k, and ⊙ denotes
the Hadamard product. In T-F masking, SSEnc and SSDec are
STFT and inverse STFT, respectively. Meanwhile, they are usually
trainable one-dimensional convolutional layers and deconvolutional
layers in the time-domain methods.

In mapping-based approaches, a DNN is trained to directly pre-
dict the encoded representation of each speaker. In detail, (4) and
(5) are replaced by

{Ŝ1, . . . , ŜK} = MappingNet(Z). (7)

The mapping-based approaches in the T-F domain, or complex
spectral mapping, have gained increasing attention due to the ap-

pearance of powerful DNN architecture called TF-GridNet [13].
TF-GridNet predicts the real and imaginary components of each
speaker from those of the observed mixture. It has outperformed
the best time-domain masking-based methods [10]. Furthermore, it
has been successfully adapted to multi-channel speech separation.

2.1.2. Multi-channel speech separation

Multi-channel speech separation takes advantage of spatial infor-
mation afforded by multiple microphones and has been used in ro-
bust ASR [2, 34, 35]. For the purpose of robust ASR, two popu-
lar approaches have been developed multi-channel separation: us-
ing DNN estimates to derive a conventional beamformer and using
DNN to directly estimate each speaker’s signal.

In the first approach, the minimum variance distortionless re-
sponse (MVDR) beamformer has been widely used due to its dis-
tortionless property and generalization capability [34–37]. It incurs
few processing artifacts by using the constrained time-invariant lin-
ear filters and is a preferable front-end of ASR backends [20, 21].
Neural mask-based beamforming estimates a T-F mask for each
speaker Ĝk and computes a spatial covariance matrix as follows:

V̂k[f ] =
1∑

t Ĝk[t, f ]

T∑
t=1

Ĝk[t, f ]z[t, f ]z[t, f ]
H, (8)

where z[t, f ] = [Z1[t, f ], . . . , ZM [t, f ]]T, Zm[t, f ] is the STFT
coefficient of xm, (·)T denotes the transpose, and (·)H denotes the
Hermitian transpose. An MVDR beamformer ŵk[f ] is given by

ŵk[f ] =
V̂−1

\k [f ]V̂k[f ]

trace
(
V̂−1

\k [f ]V̂k[f ]
)u, (9)

where V̂\k[f ] denotes the sum of the spatial covariance matrices
of the noise and all the speakers except for speaker k, and u ∈
RM is a one-hot vector indicating the reference microphone. The
beamforming output is computed as:

Ŝk[t, f ] = ŵH
k [f ]z[t, f ], (10)

and converted to the time domain via inverse STFT as in (6).
In the second approach, a DNN directly estimates the encoded

representation of each speaker by replacing the input of (7) to
the concatenation of the encoded representation of microphone m.
Compared to the output of linear beamformers, the output of the
second approach tends to have fewer non-target signals but more
distortion on the target speech. Although earlier studies suggested
that linear beamformers would be preferable for robust ASR [20,
21], modern ASR back-ends and separation front-ends have become
much more powerful nowadays. Hence, we expect that modern
back-ends could handle speech distortion in separated signals, and
modern front-ends can produce much less distortion in separated
signals. We will compare their performance in our experiments,
where TF-GridNet [13] and the joint CTC/attention-based encoder-
decoder [38] are used for speech separation and ASR, respectively.

2.2. SSLR Extraction and E2E-ASR

We extract SSLR from each separated signal ŝk in (2) and pass it to
E2E-ASR in the same way as in previous studies [31, 32]:

R̂k = ASR(SSLR(ŝk; θ
ssl); θasr), (11)
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where θssl and θasr represent the parameters of the SSLR extrac-
tor SSLR(·) and ASR model ASR(·), respectively. Specifically,
WavLM [28] is used to extract robust SSLR by applying the
weighted sum of all transformer encoder embeddings. The weights
are optimized with the following ASR model. E2E-ASR is based
on the joint CTC/attention-based encoder-decoder framework [38].

2.3. MIMO-IRIS: Integration of Separation, SSLR and ASR

To recognize multi-speaker speech, one can directly send the out-
puts of the speech separation model to a pre-trained ASR model.
This solution is, however, not optimal because ASR models are
typically trained with single-speaker speech, while the separated
speech usually contain residual interference. Following IRIS [31]
and MultiIRIS [32], we integrate the speech separation model,
SSLR extractor, and E2E-ASR model into a single model as shown
in Fig. 1. The speech separation model can generate multiple
streams, one for each speaker, and the ASR model is shared among
all separated streams along with the SSLR extractor. During the
training, PIT is applied to the CTC loss in the ASR model to de-
termine the optimal permutation. The following attention-based de-
coder uses this permutation to select the corresponding reference
transcript for each input stream in the teacher-forcing training. Our
E2E model can be extended from (11) as:

{R̂1, . . . , R̂K} = ASR(SSLR(SS(X; θss); θssl); θasr), (12)

where θss represents the parameters of the speech separation model,
as discussed in Section 2.1. The loss function of the ASR task is the
same as in MIMO-Speech [20]. We omit the details here.

The E2E model could be trained from scratch with multi-task
learning, including speech separation and ASR objectives. Such
training, however, requires intensive computation. In addition, pre-
vious studies on the integration of speech enhancement, SSLR ex-
traction, and E2E ASR reported that the integrated model resulted
in sub-optimal performance when trained from scratch [31, 32].
We thus propose a two-stage approach. First, the speech sepa-
ration model is pre-trained on commonly-used speech separation
datasets, e.g., spatialized WSJ0-2mix [4, 7] and WHAMR! [14].
Second, the ASR model is pre-trained on monaural clean speech
datasets, e.g., the WSJ corpus. Finally, the entire integrated model
is fine-tuned with the ASR objective, as shown in Fig. 1. Following
previous studies, we freeze the WavLM, which is pre-trained on a
large amount of external data. This strategy is efficient and requires
only a few optimization epochs to achieve excellent performance in
speech enhancement [31, 32].

3. EXPERIMENTS

We validate the effectiveness of our integration on two-speaker mix-
tures under anechoic/reverberant and clean/noisy conditions. Our
experiments were conducted using the ESPnet-SE++ toolkit1[3].

3.1. Datasets

We evaluated our systems on the spatialized WSJ0-2mix [6] and
WHAMR! [14] datasets, both of which support anechoic and re-
verberant two-speaker mixture simulations. The training, valida-
tion, and test sets of both datasets contain 20,000, 5,000, and 3,000

1Our source codes and configurations will be available through ESPnet:
https://github.com/espnet/espnet.

mixtures, respectively. Room impulse responses were simulated
and convolved with dry source signals from WSJ0-2mix [4]. The
signal-to-distortion ratio (SDR) [39] with respect to the input mix-
ture is 0.07 dB in spatialized WSJ0-2mix. WHAMR! [14] is one of
the most challenging datasets for speech separation, as it contains
two-channel real-recorded environmental noise. For WHAMR!, the
SDR with respect to the input mixture is -4.61 dB. To leverage the
pre-trained WavLM [28], which was trained on 16 kHz, we used the
16 kHz version of both datasets in our experiments. We combined
both anechoic and reverberant conditions of the training and valida-
tion sets to form the new training and validation sets, respectively.

3.2. Training Configurations

The ASR model (ASR(·) in (11) and (12)) consists of a Conformer-
based encoder of 12 layers and a Transformer-based decoder of 6
layers by following a previous study [32]. The encoder and de-
coder have 2,048 hidden units and 4 attention heads. We reduced
the dimensions of the speaker-wise SSLR from 1,024 to 80 by a
fully-connected layer before feeding it to the ASR model. The ASR
model and the learnable weight for the WavLM embeddings were
pre-trained on the clean WSJ corpus. We used the Adam optimizer
with a warm-up and the peak learning rate of 1.0×10−3. During in-
ference, we also used a Transformer-based character-level language
model. On the clean single-speaker WSJ evaluation set, the ASR
model achieved a WER of 1.3%.

As the speech separation model (SS(·) in (2) and (12)), our
mask-based MVDR beamformer employed a 3-layer bidirectional
long short-term memory of 512 units with a projection layer to es-
timate the T-F masks as in [20, 40]. STFT was implemented with
the Hann window of 512 samples with a 128-sample shift. The
mask estimation network was optimized with the convolutive trans-
fer function invariant signal-to-distortion ratio (CI-SDR) loss [41]
on beamforming outputs. Meanwhile, TF-GridNet consists of 6
blocks, where the TF-unit embedding dimension was 48. To reduce
the computation, we increased the window shift size to 256 samples
in STFT. TF-GridNet was optimized with a sum of the L1 loss on
the waveform and on the STFT magnitude2 following [42], where
the weight for the waveform loss was 0.99. Both mask estimation
network and TF-GridNet were pre-trained with the Adam optimizer.
Then, the joint fine-tuning of the speech separation and ASR models
was performed using the stochastic gradient descent method with a
learning rate of 1.0×10−3 and momentum of 0.9. We used the max
condition of the spatialized WSJ0-2mix and WHAMR! datasets,
mixtures of the non-trimmed utterances, in the joint fine-tuning.

3.3. Results on Clean Multi-channel Speech Separation

Table 1 presents the results on the spatialized WSJ0-2mix dataset.
First, we show the results of the cascaded monaural TF-GridNet
and ASR performance, an SDR of 19.4 dB and a WER of 4.8%.
It outperformed an existing cascaded system with a time-domain
masking-based method [43]. We then show the results in multi-
channel cases, where the speech separation models were fine-tuned
with the ASR objective. The TF-GridNet model consistently out-
performed the MVDR beamformer not only in terms of SDRs but
also in terms of WERs. This result demonstrates that the un-
constrained complex spectral mapping is advantageous as an ASR

2In our preliminary experiments, we also used the loss presented in [42]
to train the mask-based beamformer. This resulted in worse WERs on the
validation sets than using the CI-SDR loss [41].
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Table 1: Separation and WER results on single-channel WSJ0-2mix
and spatialized WSJ0-2mix.

SDR [dB] PESQ STOI WER (%)

Monaural

Time-domain⋆ [43] 13.8 - - 22.9
TF-GridNet⋆ 19.40 3.41 0.976 4.8

Anechoic eight-channel

MVDR (proposed) 12.83 3.86 0.987 2.1
- w/o fine-tuning 14.53 3.90 0.989 7.8
TF-GridNet (proposed) 15.28 3.14 0.983 1.7
- w/o fine-tuning 26.43 4.09 0.995 3.2
- w/o WavLM 6.3

Reverberant eight-channel

MVDR (proposed) 4.56 2.76 0.859 3.6
- w/o fine-tuning 5.11 2.76 0.864 30.5
TF-GridNet (proposed) 12.32 3.17 0.956 1.8
- w/o fine-tuning 18.81 3.89 0.983 2.4
- w/o WavLM 28.2

⋆ The monaural models were not jointly fine-tuned.

front-end when using modern speech separation models. Further-
more, even the monaural TF-GridNet is more effective than the
MVDR beamformer without joint fine-tuning.

To clarify the effectiveness of WavLM as a robust SSLR extrac-
tor, we evaluated the ASR model using filterbank features without
joint fine-tuning. According to the bottom row of Table 1, its WER
was degraded to 28.2% from 2.4% with WavLM in the reverberant
condition. This result confirms the importance of the robust SSLR
even with the powerful complex spectral mapping. In the weighted
sum for extracting SSLR, the weight concentrated on the last layer,
around 0.83, similar to previous studies [31, 32].

As an interesting finding, joint fine-tuning further reduced the
WERs in both anechoic and reverberant conditions while degrad-
ing the separation performance. This degradation was less se-
vere for the MVDR beamforming as its output is constrained to be
distortion-less. Meanwhile, TF-GridNet-based unconstrained com-
plex spectral mapping faced severe performance degradation, de-
spite the better WER. In the anechoic case, the multi-channel TF-
GridNet can achieve an SDR of 26.43 dB and a WER of 3.2% with-
out fine-tuning. However, the separation performance dropped to
15.28 dB after joint fine-tuning. In detail, we observed buzzy arti-
facts in the intermediate separated signals3.

3.4. Results on Noisy Multi-channel Speech Separation

In this section, we present our experimental results of the WHAMR!
dataset, which are summarized in Table 2. In the top panel, we re-
port the performance of monaural TF-GridNet on both noisy ane-
choic and reverberant conditions. As with the results on the spa-
tialized WSJ0-2mix, the monaural TF-GridNet outperformed the
mask-based MVDR beamformer integrated with weighted predic-
tion error dereverberation [44]. The difference is even more sig-
nificant due to the limitation of the number of microphones and
noisy/reverberant characteristics of the data.

The best model overall is again the multi-channel TF-GridNet,
which reached the best signal-level metrics before fine-tuning. Af-
ter joint fine-tuning, the SDR decreased significantly, but the WER

3Examples of spectrograms and audio signals are available online:
https://yoshikimas.github.io/mimo-iris.

Table 2: Separation and WER results on WHAMR!.

Noisy/Anechoic Noisy/Reverberant

SDR [dB] WER (%) SDR [dB] WER (%)

Monaural

TF-GridNet⋆ 9.27 14.5 9.07 18.3

Two-channel

MIMO-Speech [40] - - -2.27 28.9
Time-domain [45] - - - 20.9
MVDR (proposed) -1.42 42.2 -1.30 44.4
TF-GridNet (proposed) 9.11 2.3 7.84 2.5
- ASR-only fine-tuning 13.12 4.4 11.05 6.5
- w/o fine-tuning 6.5 10.5

⋆ The monaural TF-GridNet was not jointly fine-tuned.

improved by over 400% relative factor in the noisy/reverberant con-
dition. The performance is outstanding with WERs of 2.3% and
2.5% in anechoic and reverberant conditions, respectively, which
are close to the performance achieved on the clean WSJ dataset. We
also fine-tuned the ASR model while freezing the separation model,
and its results are in the second bottom row of Table 2. While it
outperformed the model without fine-tuning, its WER did not reach
that of the joint fine-tuning model. This result confirms the advan-
tage of the joint fine-tuning of both front-end and back-end. We
emphasize that the ASR performance without fine-tuning still out-
performed the previous MIMO-Speech [44] and the cascade combi-
nation of the time-domain speech separation and ASR models [45].

4. CONCLUSION

In this paper, we investigated the integration of speech sepa-
ration, SSLR extraction, and ASR with well-established beam-
forming techniques as well as the latest SotA techniques includ-
ing TF-GridNet. Our experiments were perfromed under ane-
choic/reverberant and clean/noisy conditions using the spatialized
WSJ0-2mix and WHAMR! datasets. In detail, we explored how
both separation performance and WER are affected by joint fine-
tuning. Our experimental results show that the purely DNN-
based speech separation method, TF-GridNet-based complex spec-
tral mapping, can considerably outperform the mask-based MVDR
beamforming preferred as an ASR front-end. Joint fine-tuning de-
graded the separation performance while significantly improving
the WER, which is inconsistent with the tendency reported in a
speech enhancement paper [32]. Our future work should focus
on how this degradation can be prevented, e.g. by using continual
learning strategies. Overall our best system, based on multi-channel
TF-GridNet, WavLM, and E2E ASR, was able to reach performance
on par with the one achieved on clean, single-speaker WSJ [33].
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