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ABSTRACT
In recent years, target speaker extraction (TSE) has drawn
increasing interest as an alternative to speech separation in
realistic applications. While time-domain methods have been
widely used in recent studies to achieve high performance, the
potential of time-frequency (T-F) domain methods have been
less explored. In this paper, we try to fill this gap and propose
to incorporate the top-performing T-F domain speech sepa-
ration method into the TSE framework. We first explore dif-
ferent speaker information fusion methods for the proposed
model. In addition to the commonly-used concatenation-
based fusion, we propose a novel speaker token-based fusion
method to fuse the target speaker information. Second, we
show that the proposed model can be easily extended for
causal processing with strong performance. Experiments
on the WSJ0-2mix and LibriMix benchmarks show that our
proposed model outperforms the widely-used time-domain
models in both causal and non-causal settings by a large
margin.

Index Terms— Target speaker extraction, speech separa-
tion, time-frequency domain, dual-path modeling

1. INTRODUCTION

Humans are known to have the capability of listening to, fol-
lowing and recognizing one target speaker in the presence of
interference speakers and background noise. This process
is usually termed the cocktail party problem [1, 2], a well-
known and important problem proposed by Cherry in his fa-
mous paper [1]. More specifically, the task of separating all
speech sources in a mixed signal is known as speech separa-
tion. With the advances in deep learning, two representative
methods have been developed and widely used to solve the
permutation problem, i.e., deep clustering [3] and permuta-
tion invariant training [4]. On the other hand, we may be
interested in only extracting a specific speaker in the mixture
instead of separating all speech signals. This task is called
target speaker extraction (TSE), where an additional clue in-
dicating the identity of the target speaker is provided. In most

†Yanmin Qian is the corresponding author.

existing works, the clue is often a reference speech signal (or
the enrollment) spoken by the target speaker.

In recent years, more and more TSE methods have been
proposed, starting with time-frequency (T-F) domain meth-
ods [5–10]. Later, inspired by the success of time-domain
models in speech separation [11–14], similar structures are
also adopted in time-domain TSE methods [15–22], which
have shown superior performance over T-F domain methods
due to their strong modeling capability. While time-domain
models are favored in most recent TSE works, it has been
shown [23] that the small kernel size in the time-domain
encoder may be detrimental to the performance in some re-
alistic conditions with reverberation. On the other hand,
recently proposed T-F domain models [24, 25] have shown
very promising performance on the speech separation task,
but their effectiveness on the target speaker extraction task
has not been explored.

In this paper, we aim to revisit the T-F domain model
for TSE and show that it can achieve state-of-the-art perfor-
mance in both non-causal and causal settings. We propose a
dual-path target speaker extraction network that operates in
the T-F domain. Different from the dual-path time-domain
models [12–14] with inter-chunk and intra-chunk modeling,
our proposed model defines the two paths along the temporal
and frequency dimensions in the short-time Fourier transform
(STFT) spectrum. We further explore two different fusion
approaches to incorporate the target speaker information into
the model. One straightforward method is to concatenate the
speaker features in a frame-wise manner. In addition, we also
propose a novel speaker token-based fusion method that natu-
rally fits our proposed model. Furthermore, we show that the
proposed model can be easily configured to operate in either
causal or non-causal mode. To evaluate the performance of
the proposed model, we conduct experiments on two widely-
used benchmarks, i.e., WSJ0-2mix [3] and LibriMix [26].
The experimental results show that our proposed model sur-
passes the state-of-the-art time-domain TSE approaches in
both causal and non-causal settings, with over 1 dB signal-
to-distortion ratio (SDR) improvement in all settings.
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Fig. 1: Overview of the proposed T-F domain target speaker extraction model.

2. T-F DOMAIN TARGET SPEAKER EXTRACTION

2.1. Overview

We base our proposed approach on a recently proposed dual-
path network called time-frequency domain path scanning
network (TFPSNet) [24], which is one of the top-performing
speech separation models. The overview of the proposed
model is depicted in Fig. 1, where the feature maps and
kernel sizes of convolutional layers are annotated in gray.
It consists of an encoder, a pooling module, an extraction
module, and a decoder.

The encoder first extracts the complex-valued STFT
spectrum from the input waveform, where the real and imag-
inary parts are stacked as the channel dimension. Each T-F
bin in the spectrum is then projected to a D-dimensional
embedding via a subsequent 2D convolutional layer with a
3 × 3 kernel1. The resultant representations are more flex-
ible than the original STFT spectrum, while enjoying the
robustness of STFT in different conditions. This encoder is
shared among the mixture and enrollment waveforms, and
the generated representations are denoted as H ∈ RD×F×T

and He ∈ RD×F×T ′
, respectively. Here, T and T ′ are the

number of frames, and F is the number of frequency bins.
The pooling module generates a fixed-length speaker rep-
resentation Ĥe from the variable-length enrollment feature
He, which will be introduced in Section 2.3. The extrac-
tion module takes as input the mixture feature H and the
speaker representation Ĥe, and produces a high-dimensional
mask MD×F×T . The estimated mask is then element-wisely
multiplied with the mixture feature H to extract the target
speaker’s speech. The extracted feature is finally processed
by the decoder. It first projects the feature to the STFT spec-
trum via a point-wise convolutional layer, and then transforms
the spectrum to the waveform via inverse STFT (iSTFT).

1We zero-pad the feature in a causal manner (only padding to the left)
along the time dimension before convolution.
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Fig. 2: Architecture of the dual-path block.

2.2. T-F domain dual-path modeling

The extraction module is the core component of the proposed
model, which extracts the target speech via dual-path mod-
eling in the T-F domain. Different from the original dual-
path modeling in the time-domain approaches [12–14], we
consider the frequency and temporal dimensions in the en-
coded feature as two different paths. The architecture of the
extraction module is illustrated in Fig. 1-D. The input fea-
ture is first processed by channel-wise layer normalization
and projected to a bottleneck dimension N via a point-wise
convolutional layer. The bottleneck feature is then processed
by K consecutive dual-path blocks for fine-grained frequency
and temporal sequence modeling. As shown in Fig. 2 (a), the
dual-path block has a similar structure to [24], consisting of
a transformer layer for frequency sequence modeling and an-
other for temporal sequence modeling. However, it should
be noted that we replace all T-F path modeling (along the
anti-diagonal direction) proposed in [24] with the temporal
sequence modeling, which simplifies the structure while pre-
serving strong performance. Each transformer layer has the
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(v1) Frame-wise concatenation (v2) Speaker token-based fusion

Linear 
projection

Fig. 3: Two different fusion methods for incorporating the
speaker information (denoted by the white blocks).

same architecture as in [13, 24], which is depicted in Fig. 2
(b). The output of the final dual-path block is projected back
to D-dimensional by another point-wise convolutional layer.
Following [24] and [13], we adopt a two-way mask estimation
structure, where two parallel point-wise convolutional layers
followed by Tanh and Sigmoid activations respectively are
used. The outputs from the two parallel streams are multiplied
and further processed by the Tanh activation to produce the
final mask M for target speaker extraction.

2.3. Speaker information fusion
Following the design in SpeakerBeam [7, 16], we adopt a
speaker encoder module that is jointly trained with the ex-
traction module. This allows us to train the TSE model with-
out using external data for speaker recognition. To extract
the speaker information from the enrollment, we first use the
same STFT-based encoder to extract hidden features He. In
practice, the enrollment length is often variable and may not
be equal to the length of the mixture waveform. As a result,
the corresponding hidden feature He will also have a differ-
ent number of frames. In order to obtain a fixed-dimension
representation for speaker information fusion, we introduce a
pooling module after the encoder.

As shown in Fig. 1-C, we consider two kinds of pooling
methods, each corresponding to a different fusion method.
The first pooling approach (denoted as v1) is the commonly-
used averaging operation along the time dimension. Thus, the
resultant representation Ĥe has a fixed shape of D × F × 1.
The second pooling approach (denoted as v2) is inspired by
the Perceiver IO [27], where an arbitrary input dimension can
be mapped to a fixed dimension via cross-attention with a la-
tent query. We devise a group of learnable speaker tokens of
shape D × F × G in the latent space, where G is the group
size. These speaker tokens are used as a query to conduct
cross-attention with the input speaker feature He. The output
speaker tokens are then of a fixed shape D×F ×G. The intu-
ition of the second approach is that more fine-grained speaker
representations can be learned compared to simply averaging
along the time dimension.

Subsequently, the pooled speaker representation will be
incorporated in the extraction module using the correspond-
ing fusion method. For the first method (v1), we follow
the widely-used frame-wise concatenation-based fusion ap-
proach. The time-averaged representation Ĥe is repeated T
times to match the length of the mixture feature and concate-
nated frame-wisely to the inputs of the first K − 1 dual-path
modules. As shown in Fig. 3 (v1), the concatenated feature

zero paddings

Fig. 4: Time-restricted attention with only lookbacks.

is projected back to D-dimensional via a linear layer. For
the second method (v2), we take inspiration from the mem-
ory transformer [28] and rely on the transformer layers in the
dual-path blocks to exploit the speaker information implic-
itly. We concatenate the speaker tokens and the mixture fea-
ture along the time dimension right before the first dual-path
blocks, resulting in a feature of shape D×F × (G+T ). This
feature is then fed into K dual-path blocks for processing.
The first G frames in the output will be discarded, and the
rest T frames correspond to the extracted target-speaker rep-
resentation. This novel fusion approach has not been explored
before and it fully leverages the sequence modeling capability
of transformer layers to utilize the speaker information.

2.4. Extension for causal processing
In order to extend the proposed model for causal process-
ing, we make two modifications only to the transformer lay-
ers (in each dual-path block) for temporal sequence model-
ing. (1) We replace all bidirectional long short-term mem-
ory (BLSTM) with unidirectional LSTM. (2) We replace the
global multi-head self-attention (MHA) with time-restricted
MHA [29, 30], where only a fixed number of history samples
are attended to, as shown in Fig. 4.

3. EXPERIMENTAL SETUP
3.1. Data preparation
To evaluate the TSE performance of our proposed model, we
conduct experiments on the commonly-used WSJ0-2mix [3]
and LibriMix [26] two-speaker mixture datasets. We adopt
the min versions of both datasets for training. In WSJ0-2mix,
the training, development, and evaluation subsets contain
20000, 5000, and 3000 mixture samples, respectively. The
signal-to-interference ratio (SIR) in each clean mixture ranges
from -10dB to 10dB. In LibriMix, the training, development,
and evaluation subsets contain 647002, 3000, and 3000 mix-
ture samples, respectively. The signal-to-interference ratios
(SIRs) in the mixtures are normally distributed with a mean
of 0 dB and a standard deviation of 7 dB. A random noise
from the WHAM! [33] corpus is added to each sample. The
signal-to-noise ratios (SNRs) are normally distributed with a
mean of -2 dB and a standard deviation of 4 dB. For experi-
ments on WSJ0-2mix, we use the exiting enrollment lists3 for
all subsets. For experiments on LibriMix, we randomly select

2The train-100 subset only contains 13900 mixture samples.
3https://github.com/gemengtju/SpEx_Plus
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Table 1: Evaluation of the proposed methods on the WSJ0-2mix test set (min version). WER is evaluated on the max version.
∗ denotes the reproduced result.

Model Att. Lookback PESQ ↑ STOI (×100) ↑ SI-SNR (dB) ↑ SDR (dB) ↑ WER (%) ↓ #Params (M) #MACs (G/s)
Original mixture - 2.01 73.80 0.0 0.2 62.4 - -

Non-causal setting
TD-SpeakerBeam [16]∗ - 3.46 96.35 17.1 17.5 10.4 16.21 13.52
SpEx+ [18] - - - 17.4 17.4 - 11.1 -
SpExpc [31] - - - 19.0 19.0 - 28.4 -
X-SepFormer [21] - 3.75 - 19.1 19.7 - - -

+ Data augment. [21] - 3.80 - 19.5 20.1 - - -
VEVEN [22] - - - 19.0 19.0 - 2.6 -
Proposed (v1) - 3.89 98.07 20.7 21.1 10.3 3.48 27.11
Proposed (v2, G = 1) - ——————————– cannot converge ——————————– 3.46 26.93
Proposed (v2, G = 5) - 3.86 97.70 20.5 21.0 10.6 3.50 27.33
Proposed (v2, G = 10) - 3.86 97.79 20.5 20.9 10.6 3.54 27.84
Proposed (v2, G = 20) - 3.87 97.80 20.6 21.0 9.8 3.62 28.85

Causal setting
SkiM + LCC SISO [32] - 3.13 95.19 15.5 15.9 - 9.3 9.6
Proposed (v1) 5 frames 3.57 96.71 17.5 17.9 11.9 2.84 20.78
Proposed (v1) 10 frames 3.56 96.64 17.3 17.7 11.6 2.84 20.81
Proposed (v1) 20 frames 3.57 96.71 17.5 17.9 12.4 2.84 20.87
→ D = 64, N = 32 20 frames 3.43 95.89 16.2 16.7 15.0 2.00 14.59

Proposed (v1) 40 frames 3.57 96.59 17.5 17.9 11.6 2.84 20.98

an utterance from Librispeech [34] that is spoken by the same
speaker as the enrollment for each speaker in each mixture
sample. The enrollment selection is fixed for the development
and evaluation subsets4, while it is dynamically sampled on
the fly for the training subset. All mixture samples in the
training data are chopped into 4-sec segments, while the en-
rollments are randomly chopped into 2-sec segments. The
sampling rate of all data is 8 kHz in our experiments.
3.2. Model and training configurations
In all experiments, our proposed model consists of K = 6
dual-path blocks. The window and hop sizes for STFT/iSTFT
are 256 and 128, respectively. The resultant STFT spec-
trum has 129 frequency bins in each frame. Following TF-
PSNet [24], we by default set the embedding and bottleneck
dimensions to D = 256 and N = 64, respectively. The
transformer layers have the same configuration as in [13, 24],
with 4 attention heads and a cell state dimension of 128 in the
BLSTM / LSTM layer. When the first fusion approach (v1)
in Section 2.3 is used, an additional linear projection layer
is added to the first 5 dual-path blocks, as shown in Fig. 3
(v1). When the second fusion approach (v2) is used, a 4-head
cross-attention layer is adopted in the pooling module. We
evaluate the effect of different group sizes G ∈ {1, 5, 10, 20}
for the learnable speaker tokens. For the causal setting, we
compare the performance of using different numbers of look-
back frames (5, 10, 20, 40) in the time-restricted attention
described in Section 2.4.

Our models are built based on the ESPnet toolkit [35]. All
models are trained using the scale-invariant signal-to-noise
ratio (SI-SNR) [36] loss. The non-causal (causal) models are
trained up to 100 (130) epochs5 using the Adam optimizer,
while an early stop will be triggered if the loss is not reduced

4The enrollment lists are taken from https://github.com/
BUTSpeechFIT/speakerbeam.

5For the experiment on LibriMix (train-100 + train-360), we only
train the model for 40 epochs as it is enough for convergence.

for 20 epochs on the development set. The learning rate in-
creases linearly in the first X steps to 4e-4, and then de-
creases by a factor of 0.98 after each epoch. We set X to
4000 and 8000 for experiments on WSJ0-2mix and LibriMix,
respectively. The batch size is set to 4 and 8 on WSJ0-2mix
and LibriMix, respectively.

4. EXPERIMENTAL RESULTS
We evaluate the performance of TSE models with sev-
eral objective measures, including SDR [37], SI-SNR [36],
PESQ [38], and short-time objective intelligibility (STOI) [39].
In addition, we evaluate the ASR performance (word error
rate, WER) on the 8kHz6 max version of each dataset using
the open-source Whisper Large v2 model7 [40] without ex-
ternal language models. The number of multiply–accumulate
operations (MACs) of our models is computed using the
thop Python package8 on a 4-sec mixture sample with a
2-sec enrollment. Note that the original thop toolkit does
not count the computation in the multi-head self-attention
module, so we modify the script to take it into account.
4.1. Performance evaluation on WSJ0-2mix
In this section, we evaluate the performance of the proposed
methods on the WSJ0-2mix benchmark, where the average
enrollment length is 7.35s. We first compare our models with
existing top-performing time-domain TSE methods in the
non-causal setting in Table 1. It can be observed that our
proposed models outperform existing TSE models by a large
margin, with more than 1 dB SI-SNR and SDR improvement.
It is worth noting that our models do not apply data augmenta-
tion, multi-stage training, or complicated loss combinations.
In contrast, the SpEx+ [18] and SpExpc [31] models use an
additional speaker recognition loss to boost the performance,
which requires speaker labels in the training data. The X-
SepFormer [21] models adopt a two-stage training strategy to

6The audios are upsampled to 16kHz before fed into the Whisper model.
7https://huggingface.co/openai/whisper-large-v2
8https://github.com/Lyken17/pytorch-OpCounter
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Table 2: Evaluation of non-causal models on the noisy LibriMix test set (min version). WER is evaluated on the max version.
Model PESQ ↑ STOI (×100) ↑ SI-SNR (dB) ↑ SDR (dB) ↑ WER (%) ↓ #Params (M) #MACs (G/s)
Original mixture 1.44 64.48 -2.0 -1.8 73.9 - -
TSE-V (train-100) [20] - - - 10.6 - - -
TSE-V (train-360) [20] - - - 11.8 - - -
Proposed (v1, train-100) 2.86 88.76 11.6 12.8 14.3 3.48 27.11

+ train-360 2.93 90.06 12.5 14.4 12.0 3.48 27.11

apply multiple loss schemes. The VEVEN [22] model needs
to apply a multi-stage training procedure to make the model
converge. Comparing different fusion methods in the pro-
posed method, we can see that both fusion methods can work
well with similar performance. For the second fusion method
(v2), it is shown that more speaker tokens generally lead to
better performance, although the relative gain is not large. It
is worth noting that this novel method has the potential for
further extension to achieve more functions at the same time,
such as long sequence modeling as proposed in [28]. We
leave the exploration of this possibility for future work.

Then, we evaluate the performance of the proposed mod-
els in the causal setting. Since it is not straightforward to use
the second fusion approach (v2) for causal processing, we
only evaluate the first fusion approach (v1) here. We compare
the performance with the state-of-the-art causal speech sepa-
ration model [32]. We can observe that the proposed mod-
els with different lookback lengths in the attention module
all show better performance than the existing causal model.
The overall computational cost (#MACs) is also much lower
than the non-causal setting. When decreasing the lookback
length, the TSE performance does not change much. This
is attributed to the K = 6 stacked dual-path blocks that in-
creases the effective reception field in the attention module
by 6 times. The top layer can thus have a reception field of
at least 30 frames (∼500 ms). And the LSTM layer after each
attention module (Fig. 1) further increases the history infor-
mation the model can access. We further investigate the per-
formance of reducing hidden dimensions in the model with
the lookback length of 20 frames. It is not surprising to see
that the performance degrades compared to the default con-
figuration, while both model size and computational costs are
greatly reduced. Nevertheless, the performance is still better
than the existing causal method.

Finally, we evaluate the ASR performance for both set-
tings using the same Whisper model9. All our models achieve
good ASR performance, while the model with G = 20
speaker tokens achieves the lowest WER. We can also see
that a better TSE performance does not always lead to better
ASR results. This is a commonly observed phenomenon [41]
caused by the artifacts introduced by the TSE frontend.

4.2. Performance evaluation on LibriMix
In this section, we evaluate the performance of the proposed
model with the first fusion method (v1) on the noisy Lib-

9We apply text normalization [40] to both decoding outputs and reference
labels before calculating the WER.

riMix data, which is more difficult due to the background
noise. Compared to the reported results of the time-domain
TSE method in [20], our proposed models achieves much
better SDR performance, with over 2 dB improvement when
trained with the same amount of data. Further increasing the
training data by including the train-360 subset results in
better TSE and ASR performances, which demonstrates the
capacity of the proposed model.

5. CONCLUSION
In this paper, we revisit the time-frequency domain approach
for target speaker extraction. We propose a dual-path T-F
domain TSE model inspired by the recent advances in speech
separation. In addition, we explore two different fusion ap-
proaches to incorporate the target speaker information, e.g.,
concatenation-based fusion and speaker token-based fusion.
Finally, we show that the proposed model can be easily ex-
tended to a causal setting with competitive performance. We
evaluate the proposed model in the widely-used WSJ0-2mix
and LibriMix benchmarks. Experimental results show that
our proposed model outperforms the state-of-the-art time-
domain method in both non-causal and causal settings. In
future work, we would like to investigate the performance of
the proposed model on more realistic conditions.
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