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ABSTRACT

We develop an end-to-end system for multi-channel, multi-speaker
automatic speech recognition. We propose a frontend for joint
source separation and dereverberation based on the independent
vector analysis (IVA) paradigm. It uses the fast and stable iterative
source steering algorithm together with a neural source model. Un-
like conventional neural beamforming, the number of speakers can
be dynamically changed during or after training. The parameters
from the ASR module and the neural source model are optimized
jointly from the ASR loss itself. We demonstrate competitive perfor-
mance with previous systems using neural beamforming frontends
with only one-ninth of the trainable parameter. First, we explore
the trade-offs when using various number of channels for training
and testing. Second, we demonstrate that the proposed IVA frontend
performs well on noisy data, even when trained on clean mixtures
only. Third, we demonstrate recognition of mixtures of three and
four speakers with a model trained on mixtures of two only.

Index Terms— end-to-end, multi-speaker, automatic speech
recognition, independent vector analysis, multichannel

1. INTRODUCTION

Automatic speech recognition (ASR) technology provides a nat-
ural interface for human-to-machine communication [1]. De-
spite tremendous progress in the last decade, ASR systems are
still severely challenged by reverberation, overlapped speech, and
noise [2]. Microphone arrays are a powerful tool to fight these degra-
dations. In particular, linear spatial filtering, i.e., beamforming, has
been shown to reliably decrease the word error rate (WER) of ASR
systems [2]. While optimal beamforming formulations exist [3],
e.g. the famous minimum variance distortionless response (MVDR)
beamformer, their use has been traditionally limited by the difficulty
of estimating the target and noise statistics. These limitations have
been recently practically solved by using trained neural networks
to estimate these statistics [4]. The resulting neural beamformers
(NBF) are highly effective [5]. However, training these networks
requires a large amount of parallel speech data, e.g. reverberant
mixtures and the isolated anechoic sources they contain. Such data
is notoriously difficult to collect. Instead, most works rely on simu-
lation [6, 7]. However, the simulation is often insufficient, and some
fully unsupervised approaches have been proposed [8, 9].

The situation for ASR systems is much different since transcripts
of actual recordings may be collected by skilled annotators [1]. In-
deed, a large amount of annotated speech data has been collected
for academic and commercial purposes, e.g., [10, 11, 12]. One

Frontend PIT ASR
Loss

shared

AFTER THE CLOSE...

NOW WHATEVER THEIR...

update by backpropagation/gradient descent

M input signals K extracted sources K transcripts

Fig. 1: The MIMO-speech E2E system for K sources and M microphones.

can thus bypass the necessity of parallel speech data by cascad-
ing enhancement and ASR systems, and training directly from the
ASR loss [13, 14]. Building on this approach, an end-to-end (E2E)
paradigm for multi-channel, multi-speaker ASR called MIMO-
speech [15] has been proposed (see Fig. 1). This approach has
demonstrated not only competitive ASR, but also decent separation
performance, trained from the ASR loss only. It has been extended
to include several advanced joint dereverberation and beamforming
methods [16, 17]. Despite all these progresses, the challenge of
domain mismatch remains. NBF typically relies on a single in-
put multiple output (SIMO) network to estimate multiple separated
source spectrograms, usually two, from a single mixture spectro-
gram. While NBF can accomodates inputs with different number of
channels, the number of output sources is obviously limited to the
number of outputs of the SIMO network. In addition, if the test data
is sufficiently different from the training data, the SIMO separation
network may fail, impeding the beamforming performance.

An alternative line of research builds upon independent vector
analysis (IVA) [18, 19]. In addition to a statistical model of the
sources, their mutual statistical independence is leveraged to help
the separation. Vanilla IVA is a blind method, requiring no training
data, that can be solved iteratively [20, 21], and rivals sophisticated
NBF [22]. Extensions to joint dereverberation and separation have
been proposed [23]. In particular, time-decorrelation iterative source
steering (T-ISS) [24] is a stable and fast algorithm that avoids ma-
trix inversion. Recently, combining IVA with a neural source model
(neural IVA) has attracted attention [25, 26]. One particular ap-
proach proposes to train a neural source model end-to-end through
T-ISS [21, 27]. Unlike in NBF, the neural source model is a single
input single output (SISO) network with parameters shared by all
separation outputs. This allows to maintain the high performance of
NBF while being agnostic to the number of sources and channels,
and robust to a fair amount of data mismatch [27]. The conceptual
difference between conventional NBF and neural IVA is illustrated
in Fig. 2. On the one hand, T-ISS, as proposed in [24] for joint sep-
aration and dereverberation, is limited to the determined case with
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Fig. 2: Illustration of (a) neural beamforming and (b) neural IVA. Gray and
green blocks are trainable and non-trainable, respectively.

the same number of sources and microphones. On the other hand,
overdetermined ISS [28] is limited to separation only.

In this work, we investigate the use of a T-ISS frontend for
MIMO-speech E2E ASR. Our contributions are as follows.

1. We extend T-ISS to the overdetermined case, where more
channels than sources are present.

2. We implement the T-ISS frontend in ESPnet [29] and cascade
it with an E2E transformer-based ASR backend [30]. The
whole system is trained E2E by joint CTC/attention loss [31].

3. In experiments, we explore how the number of channels at
training affects test performance (spoiler: more is better). We
demonstrate the robustness of T-ISS to mismatch between
training and test domains. Finally, we showcase the flexi-
bility of the system by transcribing mixtures of three and four
speakers with a system trained on mixtures of two speakers.

2. BACKGROUND

We use the following notation. Bold lower and upper case letters
are for vector and matrices, respectively. Furthermore, A⊤ and AH

denote the transpose and conjugate transpose, respectively, of matrix
A. The norm of vector v is ∥v∥ = (vHv)

1/2. We index sources,
microphones, frequency bands, and time with k, m, f , and n, respec-
tively, running from 1 to K, M , F , and N , respectively. The sets of
complex and real positive numbers are C and R+, respectively.

2.1. MIMO-Speech and Its Extensions

We are concerned with multi-channel, multi-speaker ASR systems.
The MIMO-Speech method [15, 32] proposes a fully end-to-end
framework that jointly optimizes the entire system with only the final
ASR criterion. The model consists of a beamforming-based frontend
for speech separation and an E2E ASR backend. It takes M chan-
nels, as inputs, and outputs K text hypotheses, corresponding to K
concurrent speakers. First, the frontend extracts K source signals
from the input mixture. Second, each extracted signal is processed
by the same E2E ASR backend in parallel. This produces K text hy-
potheses that are evaluated against the K reference transcripts with
a utterance-level permutation invariant training (PIT) loss [33]. The
process is illustrated in Fig. 1.

2.2. Multichannel Speech Separation and Dereverberation

Physically, the signals from the K sources propagate and reflect on
the walls of a room, and mix additively with various amplitudes and
time delays at the M microphones. This process can be approxi-
mated in the short-time Fourier transform (STFT) domain as follows,

xfn = Afsfn +Zf x̄fn + bfn, ∈ CM , (1)

where sfn ∈ CK is a vector containing the source signals. The
matrix Af ∈ CM×K contains the transfer functions from sources
to microphones in its entries. Late reflections from the room are
accounted for by x̄fn =

[
x⊤

f,n−D, . . . ,x⊤
f,n−D−L

]⊤ mixed by the
matrix Zf ∈ CM×ML. The reverberation length is given by L,
and D is a delay necessary due to the overlap between frames of the
STFT. Finally, bfn ∈ CM is a noise term. The role of the frontend
is to reduce the second and third terms, and invert Af , if feasible.

2.2.1. Neural Dereverberation and Beamforming

Conventionally, dereverberation and beamforming are done in dis-
tinct steps. While several dereverberation methods exist, weighted
prediction error (WPE) [34] has been widely adopted for ASR. Ig-
noring the noise term bfn, the dereverberated mixture Afsfn can be
obtained if we know Zf . Provided with a neural network producing
a mask rWPE

fn hiding the target signal from the spectrogram, the dere-
verberation filters are given by the minimizer of

∑
n rWPE

fn ∥xfn −
Zf x̄fn∥2.

The beamforming filters are computed from the spatial covari-
ance matrices of target speech and noise. Since these are typically
not available, a SIMO neural network is trained to estimate masks
that extract individual sources from a mixture spectrogram. Let rkfn
be the kth source mask. Then, the corresponding spatial covariance
matrix is

Φkf = 1/N
∑
n

rkfnx̆fnx̆
H
fn, (2)

where x̆fn is the output of the dereverberation step. Several ways
of combining or sharing masks between steps have been proposed
and give rise to different NBF such as MVDR, WPD [35], and wM-
PDR [36]. See [16] for the details. We emphasize here that after
the masks are estimated, the beamforming filters are estimated inde-
pendently. Thus, if the mask estimation fails, it cannot be corrected
during the filter computation step.

2.2.2. Independence-based Dereverberation and Separation

This approach to separation builds upon IVA [18, 19]. Unlike, the
NBF approach, the foundational hypothesis of IVA is that multi-
ple statistically independent sources are present. The approach has
been extended to jointly optimize for dereverberation [23, 24] and
include a trainable neural source model [21, 27]. We define the
demixing and dereverberation matrices as W f ∈ CM×M and Uf ∈
CM×ML, respectively. For convenience, we concatenate them into a
unified dereverberation and separation matrix P f = [W f , Uf ] ∈
CM×M(L+1). Further let x̃fn ∈ CM(L+1) be the concatenation of
xfn and x̄fn. The rows of P f are convolutional beamforming fil-
ters but are called demixing vectors in the IVA literature. The kth
row, i.e. pH

kf , extracts the kth target as ykfn = pH
kf x̃fn. Maximum

likelihood estimation of P f can be done by iteratively minimizing

L(P f ) =
∑
k,f,n

rkfn|pH
kf x̃fn|2 − 2 log | detW f |. (3)

This cost function (3) is derived from the likelihood function of the
observed data xfn [23]. The change of variable from xfn to yfn

allows to work on the source signals, rather than the mixture, but
introduces the log-determinant term. Then, since the sources are in-
dependent, the joint probability density function (pdf) is the product
of the marginals. Finally, we assume the log-pdf may be majorized
by that of the Normal distribution to obtain (3) [20]. The weights
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Data: STFT of input channels X1, . . . ,XM

Result: STFT of separated sources Y 1, . . . ,Y K

Compute Rf , Cf for all f (see below (8))
for 1 to max. iterations do

rkfn ← ufn(Y k) for all k, f , and n
for f ← 1 to F do

for ℓ← 1 to M(L+ 1) do

g ←


pℓf if ℓ ≤ K

eℓ if M < ℓ

[Jf , −IM−K ]Heℓ−K+1 else
vℓ ← argmin

v∈CM

L(P f − vgH)

P f ← P f − vℓg
H

Jf ← solution of (8)
for n← 1 to N do

(Y k)fn ← pH
kf x̃fn

Algorithm 1: Pseudocode of Overdetermined T-ISS algorithm.

rkfn are given by a non-linear function rkfn = ufn(Y k), with
Y k being the F × N spectrogram the current estimate of source
k. In [20], the function ufn : CF×N → RF×N

+ is derived from
the majorization step, and guarantees decrease of the negative log-
likelihood. In [21, 27], this exact derivation is abandoned, together
with the guarantees, and ufn is defined as a trainable neural network.

While minimization of (3) does not have a closed-form solution,
algorithms to efficiently decrease its value exist [23, 24]. T-ISS [24]
is particularly suitable for use in E2E training because of low com-
putational cost and lack of matrix inversion. The algorithm proceeds
by finding a sequence of ℓ = 1, . . . ,M(L + 1) optimal rank-1 up-
dates of the form

P f ← P f − vℓp
H
ℓf , vℓ ← argmin

v∈CM

L(P f − vpH
ℓf ). (4)

For ℓ > M , we define pℓf = eℓ, i.e., the vector with all zeros but a
one at position ℓ. The closed-form solution for vℓ in (4) is

(vℓ)q =

1−
(∑

n

rℓfn

N
|yℓfn|2

)−1/2
, if q = ℓ,∑

n rqfnyqfny∗
ℓfn∑

n rqfn|yℓfn|2 , else.
(5)

where yqfn = pH
qf x̃fn for q ≤ M , and yqfn = e⊤

ℓ x̃fn else-
where. In contrast to the NBF in [16, 17], spatial cues are taken
into account when estimating the source masks. Because the neu-
ral network models a single source, the algorithm is easily extended
to different numbers of sources. It was also shown to be robust to
domain mismatch [27].

The approach shares some ressemblance to NBF. For example,
the first term in (3) is a quadratic form involving a weighted spatial
covariance matrix similar to (2) with the mask derived by running
the source estimate through a neural network. However, whereas
NBF uses a single network to estimate all masks, ufn in (3) pre-
dicts the remaining noise in a single source estimates. Then, the
log-determinant term of (3) pushes the demixing vectors pkf of dif-
ferent sources away from each other.

3. PROPOSED END-TO-END ARCHITECTURE

Our proposed system builds upon the latest methodology of MIMO-
Speech [17]. We replace the WPD beamforming frontend by an IVA-
based one that performs joint dereverberation and separation. During
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Fig. 3: Block diagram of the proposed frontend and neural source model.

training, multiple iterations of T-ISS are run to obtain the separation
matrix. The same single source mask network is used for all iter-
ations and outputs. The proposed frontend is illustrated in Fig. 3.
The system is trained E2E from the ASR loss as illustrated in Fig. 1.
Both frontend and ASR backend are fully differentiable, and thus
the gradient with respect to the whole system can be computed by
backpropagation.

3.1. ASR Transformer Model

We adopt the joint connectionist temporal classification (CTC) and
attention-based encoder-decoder [31] as the ASR backend, which
consists of four submodules: feature extraction, encoder, CTC, and
attention-decoder. The features used are log-Mel filterbank (LMF)
features with global mean-variance normalization (MVN). For each
separated stream Y k from the frontend, 80-dimensional log-Mel fil-
terbank features Ok are firstly extracted via the feature extraction
module (MVN-LMF). The extracted feature is then fed into the
ASR encoder (Enc) to obtain hidden representations Hk, which are
used in both CTC (CTC) and attention-decoder (AttentionDec)
submodules for recognition. The ASR procedure is summarized as
follows:

Ok = MVN-LMF(Ŷk), Hk = Enc(Ok),

R̂(ctc)
k = CTC(Hk), R̂(dec)

k = AttentionDec(Hk),

where R̂(ctc)
k and R̂(dec)

k are recognition results from CTC and
attention-decoder submodules, respectively. We hide the autore-
gressive nature of the attention-based decoding in the notation. The
ASR loss function is constructed based on multi-task learning,

Lasr = αLctc + (1− α)Ldec, (6)

where 0 < α < 1 is an interpolation factor. The PIT [33] method
is applied in the CTC submodule as in [15, 32] to solve the label
permutation problem that arises with multiple recognition outputs.

3.2. Overdetermined T-ISS Frontend

Our independence-based frontend is a new extension of the T-
ISS [24] algorithm, described in this sub-section, that can be used
when more channels are available than there are sources. When
there are more channels than sources, i.e., K < M , the separation
matrix W f is not square anymore and the algorithm of Section 2.2.2
is not directly applicable. An extension of ISS to the overdetermined
case has been proposed, but for separation only [28]. We extend it
here to include dereverberation.
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First, we write the overdetermined dereverberation and separa-
tion operation as a determined system, i.e., square,yfn

zfn

x̄fn

 =

 W f Uf[
Jf , −IM−N

]
0

0 IML

[
xfn

x̄fn

]
. (7)

The separated target sources are yfn ∈ CK , and zfn ∈ CM−K is a
vector of background noise sources to make the system determined.
The top part contains P f = [W f Uf ] ∈ CK×M(L+1), of Sec-
tion 2.2.2, but with K rows, since we only wish to extract so many
sources. To complete the separation matrix, we add the strict mini-
mum of parameters Jf ∈ CM−K×K . The zeros on the right of the
middle block reflect that we do not need to dereverberate the back-
ground noise. Note that there is an overload of notation for P f with
respect to Section 2.2.2, but everything coincides when K = M , i.e.,
in the determined case. When K < M , the log det in (3) contains
the top-left M ×M part of the separation matrix in (7). Previous
work [37, 38, 39] has shown that a necessary condition for optimal-
ity is that the target sources and the noise vector be orthogonal, i.e.,
E
[
yfnz

H
fn

]
= 0. From this and (7), we obtain an equation for Jf ,

(P fRfE1)J
H
f = P fRfE2, (8)

where Rf = E
[
x̃fnx

H
fn

]
, and E1, E2 are of the appropriate shape,

and such that [E1 E2] = I . Following the methodology of [28], we
update P f = [W f Uf ] and Jf in two steps.

1. We update P f = [W f , Uf ] with (4) and (5), but limit the
size of vℓ to K to match the size of W f , Uf in (7). We let
pH
ℓf be the ℓth row of the matrix in (7) for ℓ > K.

2. Update J by solving (8).

The resulting algorithm maintains the low-complexity of T-ISS
while allowing to use more channels for increased separation power.
Pseudo-code is given in Algorithm 1. We note that one matrix in-
verse is introduced in step 2. However, the size of the matrix to
invert is only K×K, with e.g., K = 2 for two sources. Despite this
small size, we observed some stability issues. The system matrix
is not Hermitian symmetric, and its eigenvalues not always posi-
tive. Thus, straight diagonal loading, as in [17], does not guarantee
stability. Our solution is to replace the d× d system Ax = b by1

(AHD−1A+ ϵI)x = AHD−1b, (9)

where D is a diagonal matrix containing the square norms of the
rows of A. The system matrix is now guaranteed positive definite.
If ϵ = 0, (9) is just the original system multiplied on both sides by
AHD−1, and their respective solutions are the same. Normalizing
the rows of A with D ensures the sum of the eigenvalues of the
system matrix is d. This allows a numerically sensible choice of ϵ.

4. EXPERIMENTS

We conducted several experiments to assess the performance of the
proposed method. We investigate the impact of the number of chan-
nels, iterations, and the presence of noise.

4.1. Experimental Conditions

We evaluate the proposed method on the WSJ1 corpus [10]. We
use two different spatializations of the datasets: S1 with 8 chan-
nels [15], and S2 with 6 channels [21]. In addition to the clean

1To solve (8), take A = P fRfE1 and b = P fRfE2.

Table 1: Performance in terms of WER (%) on the clean test set. Models are
trained on clean data with M channels. The four columns on the right are for
different number of channels at test time.

Algorithm M 2ch 4ch 6ch 8ch

Best in [17]† 2ch 15.01 — 9.02 —

WPD 8ch 25.71 12.56 10.00 9.57
T-ISS 2ch 13.71 23.40 28.88 31.46
T-ISS 4ch 20.57 10.37 10.86 11.16
T-ISS 8ch 25.71 9.98 9.08 9.16
† Included for reference, training and parameters differ.

dataset C = S1, we create two noisy datasets. The first (N1) is ob-
tained by adding noise from CHiME3 [40] to S2. The second (N2) is
used for mismatched testing and remixes S1 with simulated diffuse
noise [6] created from the TUT environmental sound database [41]
with SNR uniformly chosen between 5 dB to 15 dB. For noisy train-
ing, we train on the union of C andN1, i.e., C

⋃
N1. Unlike previous

work [16, 17], we did not do multi-condition training and used only
the reverberant mixtures. All the input speech is sampled at 16 kHz.
The STFT uses a 25ms long Hann window with 10ms shifts. The
FFT is zero padded to length 512 producing 257-dimensional spec-
tral feature vectors. After the frontend, spectrograms are converted
to 80-dimensional log Mel-filterbank features. The training was con-
ducted on an NVidia V100 graphical processing unit (GPU) with
32GB RAM.

All the models are implemented in ESPnet [29] using the Py-
Torch [42] backend. For the baseline, we use the WPD model
described in [16]. It uses a bidirectional long-short term mem-
ory (BLSTM) network with 600 cells in each direction followed by
an output layer producing three masks per target speaker, i.e. 6 in
our case. The number of parameters is 23.15 M. WPE is configured
with L = 5 taps and delay D = 3, and runs for a single iteration.
The neural source model for T-ISS is the same as in [21]. It has
three convolutional layers, with batch-norm, max pooling, and GLU
activations. It has a 256 hidden dimension and dropout set to 0.2.
Its number of trainable parameters is just 2.57 M. For the models
trained on clean data, we preprocessed the input with 5 iterations
of AuxIVA-ISS with a non-trainable source model [43]. This is
followed by 10 iterations of T-ISS with the neural source model. As
it did not seem very effective, we did not apply this preprocessing
when training on the noisy dataset. Instead we ran 15 iterations of
T-ISS straight. After separation, the scale and phase are aligned to a
reference channel by projection back [44]. We used demixing matrix
checkpointing [27] for the model to fit on GPU during training.

We used the Adam optimizer with warmup set to 25000 and
50000 steps on the clean and noisy datasets, respectively, and initial
learning rate of 1. The WPD baseline was always trained with max-
imum M = 8 channels. We trained multiple T-ISS models on the
clean dataset using M ∈ {2, 4, 8} channels. On the noisy dataset,
we only trained on M = 4 channels due to time constraints. At test
time, the number of T-ISS iterations was adjusted to achieve bet-
ter performance. An external word-level recurrent neural network
language model (RNNLM) [45] is applied as shallow fusion in the
decoding stage.

4.2. Experimental Results

Effect of Number of Channels Table 1 reports the ASR evaluation
results on the clean test set in terms of WER. Each row represents
a different trained model. The performance with different numbers
of channels at test time is reported in the four right-most columns.
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Table 2: Performance on matched and mismatched data. A dagger (†) in the
row indicates mismatched conditions between training and testing.

Test set Algo. Train set WER SIR SDR PESQ STOI

clean (C) WPD C 9.57 13.9 6.9 1.88 0.855
T-ISS C 9.16 16.8 3.7 1.78 0.830

noisy1 (N1) WPD C † 17.12 12.3 8.7 1.70 0.890
T-ISS C † 12.48 15.6 6.2 1.86 0.913
WPD C

⋃
N1 11.40 14.7 10.8 1.79 0.918

T-ISS C
⋃
N1 11.80 14.4 7.4 1.78 0.924

noisy2 (N2) WPD C † 31.36 6.3 2.7 1.41 0.744
T-ISS C † 14.55 13.7 2.1 1.45 0.787
WPD C

⋃
N1 † 15.17 10.0 5.2 1.57 0.816

T-ISS C
⋃
N1 † 14.75 12.3 2.1 1.43 0.772

We observed that using more channels at training pays off. Mod-
els trained this way had lower WERs, even when testing with fewer
channels. There is however an exception for T-ISS where the behav-
ior differed if trained with two channels, or more. When trained on
two-channel data, the performance was outstanding on two channels
test data, even better than the best result from [17], but did poorly
with more channels. While not reported due to space constraints,
separation metrics increased with the number of channels. This sug-
gests that the ASR backend overfits the artefacts of the separation
stage for two channels. Similarly, T-ISS models trained on more
channels performed poorly on the two-channel test set. The best
performing model was T-ISS trained on 8 channels.

Mismatched Conditions Table 2 reports the ASR performance
under different training and test conditions. When trained and tested
on clean data, both frontends achieved under 10% WER, with T-ISS
slightly better at 9.16%. However, when trained on clean, but tested
on noisy data, T-ISS significantly outperformed WPD by 4.6%.
When trained on noisy data, the performance of WPD recovered. T-
ISS did about 0.4% worse than WPD, but still a little better than in
the mismatched condition. Note that in this case, the noise was from
the CHiME3 dataset both for training and testing. We thus further
tested on the mismatched noisy mixture dataset (N2). For WPD,
the noisy training was effective at improving the robustness, and the
WER did not increase as much as before. Again we found T-ISS
very robust to mismatch with the lowest WER. Interestingly, its per-
formance was similar regardless of the training data including noise
or not. In fact, training on noiseless data had the lowest WER and
highest SIR. Table 2 also shows the regular separation metrics SDR,
SIR [46], PESQ [47], and STOI [48]. T-ISS had consistently high
SIR, but otherwise somewhat lower metrics. The SDR in particular
is much lower than that of WPD. This suggests that it achieves good
separation, but at the expense of more target degradation.

Separation of 3 and 4 speakers Even though the model was
trained on two speaker mixtures, the T-ISS algorithm can be used
to separate more, provided that sufficiently many channels are avail-
able. We tested this on 3 and 4 speakers mixtures from the noisy
dataset using 6 channels. Table 3 shows the results. We note that the
problem becomes much harder than in the two speakers case since
the per-speaker SNR drops significantly. Still, reasonable ASR per-
formance was maintained in this challenging situation. We com-
pared the performance using clean or noisy training data and found
the latter to do better by a few percents.

5. CONCLUSIONS

We have proposed the joint training of a MIMO-speech ASR sys-
tem with an independent vector analysis frontend using the T-ISS
algorithm. T-ISS is an iterative procedure performing joint separa-

Table 3: Performance of T-ISS trained with two speakers on mixtures con-
taining K = 3, 4 speakers.

K Train set WER SIR SDR PESQ STOI

3 8ch / C 17.80 10.2 3.9 1.52 0.862
4ch / C

⋃
N1 16.19 9.9 4.8 1.51 0.872

4 8ch / C 33.06 5.8 1.1 1.34 0.792
4ch / C

⋃
N1 30.44 6.1 2.2 1.34 0.805

tion and dereverberation with the help of a neural source model. We
demonstrate that E2E training of this system, through the iterations,
yields an ASR system robust to data mismatch. The T-ISS frontend
trained on clean data only, did best, or at least well enough, on all
our test sets. In contrast, the NBF baseline required noisy data in the
training set in order to avoid a large performance drop. Furthermore,
T-ISS had only one-nineth of the parameters of the baseline.

Another benefit of the T-ISS frontend over conventional NBF is
that the number of speakers separated can be dynamically changed
without retraining. This is a significant advantage for systems where
a variable number of speakers is expected.

Future work should concentrate on the inclusion of a noise
model in T-ISS, e.g. [49], to improve the separation metrics. Multi-
condition training and curriculum learning are also promising re-
search directions.
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