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ABSTRACT

The deep learning based time-domain models, e.g. Conv-TasNet,
have shown great potential in both single-channel and multi-channel
speech enhancement. However, many experiments on the time-
domain speech enhancement model are done in simulated condi-
tions, and it is not well studied whether the good performance can
generalize to real-world scenarios. In this paper, we aim to provide
an insightful investigation of applying multi-channel Conv-TasNet
based speech enhancement to both simulation and real data. Our
preliminary experiments show a large performance gap between
the two conditions in terms of the ASR performance. Several ap-
proaches are applied to close this gap, including the integration
of multi-channel Conv-TasNet into the beamforming model with
various strategies, and the joint training of speech enhancement
and speech recognition models. Our experiments on the CHiME-
4 corpus show that our proposed approaches can greatly reduce
the speech recognition performance discrepancy between simula-
tion and real data, while preserving the strong speech enhancement
capability in the frontend.

Index Terms— multi-channel speech enhancement, time do-
main, beamforming, automatic speech recognition

1. INTRODUCTION
With the development of deep learning, speech enhancement (SE),
as well as speech separation, has witnessed remarkable advances
in both single-channel and multi-channel scenarios [1–4]. Since
surprisingly good performance has been achieved in the simulated
conditions, more and more researches have drawn their interests in
more realistic environments, such as noisy and reverberant speech
recorded in various real-world scenarios.

When multiple microphones are available, the capacity of deep
learning based speech enhancement models can be further boosted
by leveraging the additional spatial information between different
channels. A straightforward way is to apply single-channel speech
enhancement techniques to the multi-channel speech by extract-
ing the spatial feature as an auxiliary input [5–7]. However, such
approaches inevitably introduce artifacts to the enhanced signal,
which can be harmful to the downstream automatic speech recogni-
tion (ASR) task [8], even though the artifacts are imperceptible to
human listeners. Another widely adopted method is known as the
neural beamformer [9, 10]. It usually consists of a mask estimation
network for predicting time-frequency masks and a conventional
beamformer module such as the minimum variance distortionless

†Yanmin Qian and Shinji Watanabe are the corresponding authors.

response (MVDR) [11] beamformer. The neural beamformer is fa-
vored for its good compatibility with the downstream ASR task, as
it explicitly constrains the enhanced output to be distortionless and
thus enjoys better generalizability in realistic scenarios.

More recently, the time-domain audio separation network (Tas-
Net) [1, 12] was proposed for speech separation, and was later ex-
tended for denoising [13]. Different from conventional frequency-
domain approaches, TasNet directly operates on the input waveform
and performs speech enhancement on the learned representation
space. It shows very promising results on several benchmarks in
both single-channel speech enhancement and separation [1,13–15].

While the aforementioned time-domain approaches bring sig-
nificant performance improvement to speech enhancement, the per-
formance gap between real and simulation conditions is still widely
observed [13, 16, 17]. In this paper, we aim to reduce the gap be-
tween time-domain multi-channel speech enhancement on real and
simulation conditions, which has not been well studied yet. One
interesting direction is the combination of TasNet and neural beam-
forming. TasNet has strong modeling capability, and MVDR beam-
forming has the benefit of enhancement without distortion. But how
these two methods can benefit from each other in the multi-channel
speech enhancement task is not well studied. Previous work [8] pro-
posed the Beam-TasNet to estimate the beamformer filter on the out-
put of a multi-channel Conv-TasNet (MC-Conv-TasNet) [8, 18] for
speech separation, which demonstrates superior performance over
the vanilla MC-Conv-TasNet and oracle MVDR beamformer. How-
ever, the experiments were conducted only on simulated mixture
data, without any background noise. Therefore, the performance
and robustness of this approach on realistic data are still unknown.

In this work, we show that both MC-Conv-TasNet and Beam-
TasNet trained on simulated noisy data can suffer from severe per-
formance degradation on the real data. To alleviate such degrada-
tion, we propose two training schemes to improve the performance
and robustness of MC-Conv-TasNet and Beam-TasNet: (1) Ex-
ploring different integration approaches in the Beam-TasNet frame-
work; (2) Joint training of MC-Conv-TasNet and ASR models. We
evaluate different methods on the CHiME-4 [16] corpus, which con-
sists of real and simulation data for both training and testing, allow-
ing us to verify the performance gap in different conditions. For
real data, since it is hard to measure the speech enhancement met-
rics directly due to the lack of reference signals, we instead evaluate
the ASR performance. The experimental results show that the pro-
posed methods can greatly improve the overall performance of both
MC-Conv-TasNet and Beam-TasNet. More than 42% relative word
error rate (WER) reduction is achieved on the evaluation set, while
a comparable speech enhancement performance is preserved.
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Figure 1: Schematic diagram of the Beam-TasNet architecture for multi-channel speech enhancement. Gray lines denote different channel-
rotated input signals, which are fed into the MC-Conv-TasNet* module separately to form the multi-channel enhanced signal x̂(1).

2. PROPOSED METHODS
2.1. Beam-TasNet
We first review the Beam-TasNet approach proposed in [8] and re-
formulate it in the context of speech enhancement. The Beam-
TasNet system makes use of the MC-Conv-TasNet to estimate
speech and noise covariance matrices based on its output signal, and
then performs beamforming on the original multi-channel input.

To build this system, the MC-Conv-TasNet model is first trained
on simulated multi-channel speech data. As shown in the left part
of Figure 1, it consists of the multi-channel encoder1, separator,
and decoder. The multi-channel encoder aggregates multiple input
channels into one hidden representation, which is then processed
by the separator and decoder to generate a single-channel enhanced
signal. In order to generate enhanced signals for all input chan-
nels, the MC-Conv-TasNet is trained in a channel-aware manner,
which is hereafter referred to as MC-Conv-TasNet*. That is, the
original C-channel training data is augmented by rotating the input
channels anti-clockwise, so that each channel c can be placed as the
first channel while preserving the original array geometry. Then,
the MC-Conv-TasNet* model is trained to enhance each input sig-
nal with the first channel as the reference channel. In the inference
phase, the multi-channel output can be obtained by rotating the in-
put channels C times and feeding all channel-rotated signals into the
MC-Conv-TasNet*. The above process can be formulated below:

y(c) = [yc, yc+1, · · · , yC , y1, y2, · · · , yc−1]
T , (1)

wc = MC-Conv-Encoder
!
y(c)" , (2)

[mc,X, mc,N] = Separator(wc) , (3)
x̂c = Conv-Decoder(mc,X ⊗wc) , (4)
n̂c = Conv-Decoder(mc,N ⊗wc) , (5)

where y(c) is the channel-rotated input signal with the c-th
original channel placed at the first channel, c = 1, 2, · · · , C.
MC-Conv-Encoder(·) is the multi-channel encoder and wc is its
output representation. mc,X and mc,N are the predicted speech
and noise masks, respectively. ⊗ denotes element-wise multipli-
cation. x̂c and n̂c are the estimated speech and noise waveforms,
respectively. For training the MC-Conv-TasNet and MC-Conv-
TasNet*, we use the combination of time-domain signal-to-noise
(SNR) losses on estimated speech and noise signals [13]:

Lenh = − SNR(xc, x̂c)− SNR(nc, n̂c) , (6)
where xc and nc are the reference speech and noise signals, respec-
tively. SNR(xc, x̂c)=20 log10

‖xc‖2
‖xc−x̂c‖2

, and ‖ ·‖2 is the L2 norm.
After training, the Beam-TasNet system is built upon the

MC-Conv-TasNet* by calculating the speech and noise covari-
ance matrices based on the enhanced multi-channel speech x̂(1) =

1Also called parallel encoder in [18].

[x̂1, x̂2, · · · , x̂C ]
T and then estimating the MVDR filter ĥf :

ĥf =

!
ΦN,f

"−1
ΦX,f

Trace
#!

ΦN,f

"−1
ΦX,f

$u , (7)

where the subscript f is the frequency bin index. ΦX,f and ΦN,f de-
note the speech and noise covariance matrices, respectively, which
will be discussed in detail in Section 2.2. Trace(·) is the matrix
trace operator. u is a one-hot vector denoting the reference channel
q. Then the beamformed signal x̂BF

q can be derived as follows:

X̂BF
f,q = ĥHY

(1)
f , (8)

x̂BF
q = iSTFT

!
X̂BF

q

"
, (9)

where Y
(1)
f and X̂BF

f,q are the input noisy spectrum and beam-
formed spectrum, respectively. (·)H denotes conjugate transpose.
iSTFT(·) denotes the inverse short-time Fourier transform (STFT).

2.2. Integration approaches for Beam-TasNet

Following the introduction in Section 2.1 and [8], there are two
main strategies to integrate the MC-Conv-TasNet into the Beam-
TasNet architecture, i.e. sig-MVDR and mask-MVDR. The sig-
MVDR uses the enhanced signals in Eq. (4) to calculate the co-
variance matrices in Eq. (7) directly:

ΦX,f =
1

T

%

t

X̂
(1)
t,f

!
X̂

(1)
t,f

"H
, (10)

ΦN,f =
1

T

%

t

!
Y

(1)
t,f − X̂

(1)
t,f

"!
Y

(1)
t,f − X̂

(1)
t,f

"H
, (11)

where X̂
(1)
t,f is the speech spectrum enhanced by MC-Conv-TasNet.

The mask-MVDR estimates time-frequency masks from the en-
hanced signals for calculating the covariance matrices:

Φα,f =
1

T

%

t

Mα,t,fY
(1)
t,f

!
Y

(1)
t,f

"H
, (12)

where α ∈ {X,N}. Mα,t,f is the estimated speech / noise mask.
In this section, we would like to put more emphasis on the

mask-MVDR strategy, as the sig-MVDR based method may un-
expectedly corrupt the appropriate spatial correlation in the multi-
channel signal, while the mask-MVDR based method can mitigate
such corruption, which will be shown later in our experiments.
Since the speech mask is estimated from the enhanced signal, var-
ious types of masks can be investigated, including the well-known
phase-sensitive mask (PSM) [19], and the voice activity detection
(VAD) like 1-D mask. The PSM takes into account the phase infor-
mation explicitly, which can be beneficial to the covariance matrix
estimation. The VAD-like 1-D mask is shown to be robust against
noise or interference signals [20–22], and it is calculated by averag-
ing the power mask MX along the frequency dimension:

M 1-D
X,t =

1

F

%

f

MX,t,f . (13)
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Figure 2: Joint training of SE and ASR models with truncated back-
propagation through time. The blue and gray chunks denote the
enhanced signal with and without the backward graph, respectively.

2.3. Joint training of MC-Conv-TasNet and ASR

Another direction is to jointly optimize the MC-Conv-TasNet fron-
tend and the end-to-end ASR backend, which implicitly mitigates
the mismatch between speech enhancement and ASR systems.

Since MC-Conv-TasNet directly operates on the raw waveform,
the memory consumption can be very large when processing a full-
length waveform, making it impractical for joint training. In order
to jointly optimize MC-Conv-TasNet and end-to-end (E2E) ASR,
we adopt the approximated truncated back-propagation through
time (TBPTT) strategy used in [23]. That is, the backward graph
is only retained for a randomly selected chunk instead of the full-
length waveform, while the other part of the waveform is used only
for the forward pass. Then, the full-length enhanced signal with the
partially retained backward graph is fed into the ASR backend. This
enables us to jointly train both frontend and backend with a flexibly
adjustable memory cost, which is determined by the chunk size K.

When simulated and real data with transcripts are available for
training, our proposed framework allows exploiting both data for
optimizing the SE and ASR models. As illustrated in Figure 2, the
final loss L in the joint training is composed of two parts, i.e. the
speech enhancement Lenh and the ASR loss Lasr. For real data, the
final loss is equal to Lasr, i.e. we train the SE and ASR models end-
to-end without the need of signal-level references. For simulated
data, the final loss is defined as L = Lenh + Lasr.

Furthermore, the clean speech data can be additionally utilized
to train only the ASR backend. The above multi-condition training
strategy provides a flexible way for the MC-Conv-TasNet model to
adapt to both simulated and real data, which is shown to greatly im-
prove the ASR performance on real evaluation data in Section 3.2.

3. EXPERIMENTS
3.1. Experimental Setup
We conducted experiments on the 6-channel track of the CHiME-
4 [16] corpus to evaluate our proposed methods. The CHiME-4
corpus consists of both real recordings and simulated speech data,
so that we can easily evaluate the robustness and generalizability
of our proposed approaches in unseen conditions. There are 42828
(9600), 1640 (1640), and 1320 (1320) simulated (real) samples for
training, development and evaluation, respectively. The sample rate
is 16 kHz for all speech data. We adopt the 5-th channel (CH5) as
the reference channel for both training and evaluation. For evaluat-
ing the performance of frontend models on the real data, we adopt
an E2E ASR model pretrained on the CHiME-4 dataset, which was
also used in Section 4.1 in [24]. For the joint training of frontend
and backend, we optionally include an additional dataset from the
Wall Street Journal (WSJ) corpus [25] for training, which consists
of 37416 clean speech samples. SpecAugment [26] is applied to the
ASR input feature during the joint training. The chunk size K men-
tioned in Section 2.3 is set to 3 seconds. We use the Adam optimizer

for model training, and all models are trained until convergence.
All our models are built based on the ESPnet toolkit [24, 27].

The MC-Conv-TasNet model uses a Conv1D layer with 5 input
channels and 256 output channels for the multi-channel encoder,
with a kernel size of 20 and stride of 10. The separator consists of 4
stacked dilated convolutional blocks, each composed of 8 Conv1D
blocks with 256 bottleneck channels and 512 hidden channels. The
decoder is a transposed Conv1D layer with 256 input channels and
1 output channel, and the kernel size and stride are the same as the
multi-channel encoder. The E2E ASR model is a joint connectionist
temporal classification (CTC)/attention-based encoder-decoder [28]
model, which consists of 12 and 6 transformer blocks with 2048
hidden units and four 64-dimensional attention heads for the en-
coder and decoder, respectively.

For speech enhancement performance, we adopt the short-time
objective intelligibility (STOI) [29], perceptual evaluation of speech
quality (PESQ) [30], and signal-to-distortion ratio (SDR) for evalu-
ation. For ASR performance, the WER is evaluated.
3.2. Performance evaluation on simulation and real data
The performance of the baseline methods (No. 1∼No. 5) and pro-
posed methods (No. 6∼No. 13) are listed in Table 1. Here we take
the official result [16] as the ASR baseline, which uses a DNN-
HMM acoustic model with language model rescoring. The speech
enhancement baselines include the BeamformIt [32], neural beam-
former (denoted as “BLSTM MVDR”) from [24], and the time-
domain filter-and-sum network (FaSNet)2 [31]. The speech recog-
nition performance is evaluated using the same pretrained E2E ASR
model on CHiME-4 for models from No. 2 to No. 10.

For the speech enhancement performance on simulated data, it
can be observed that all MC-Conv-TasNet based models outperform
the baselines, and the best performance is achieved by the MC-
Conv-TasNet* model, which is trained using the channel-rotated
data as described in Section 2.1. Compared to No. 2, the WERs of
the MC-Conv-TasNet models on simulated data are also greatly re-
duced. However, the WERs on the real data become worse than the
ASR baseline, which indicates the over-training of the MC-Conv-
TasNet models in simulation conditions. In contrast, the frequency-
domain BLSTM MVDR model shows better generalizability.3

After applying the trained MC-Conv-TasNet* model to the
Beam-TasNet framework (No. 8∼No. 10), we can observe signif-
icant WER reduction on both development and evaluation sets, es-
pecially on the real data. This is attributed to the distortionless
constraint that is explicitly enforced in the design of MVDR beam-
forming. On the other hand, the speech enhancement performance
of Beam-TasNet is worse than the MC-Conv-TasNet*, which could
result from the fact that MVDR beamforming does not fully elimi-
nate the noise and the residual noise level may be higher than that
in MC-Conv-TasNet*. In addition, we can observe that the mask-
MVDR based Beam-TasNet achieves much better speech recogni-
tion performance on real data than the sig-MVDR based one, while
sacrificing some speech enhancement performance. This illustrates
that the masking based integration approach can effectively mitigate
the artifacts introduced in the TasNet output, making it more practi-
cal in realistic scenarios. And the VAD-like 1-D mask shows better
ASR performance than PSM, which can be attributed to the aver-
aging operation in Eq. (13) that further eliminates some inaccurate

2We use the open-source implementation at https://github.com/
yluo42/TAC/blob/master/FaSNet.py#L176.

3Another way to define the performance gap is the relative WER ratio
between Real and Simu conditions, and we observed similar conclusions
with this metric.
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Table 1: Performance (PESQ / STOI / SDR [dB] / WER [%]) on the CHiME-4 6-channel track. The same ASR model pretrained on CHiME-4
is used for evaluating WER on models No. 2∼No. 10. For PESQ, STOI, and SDR, larger is better. For WER (gray cells), smaller is better.

No. Model Dev (Simu) Test (Simu) Dev (Real) Test (Real)
PESQ STOI SDR WER PESQ STOI SDR WER WER WER

1 Official baseline in [16] - - - 6.8 - - - 10.9 5.8 11.5

2 Noisy Input (CH5) 2.17 0.86 5.78 12.6 2.18 0.87 7.54 19.9 10.9 19.5
3 BeamformIt in [24] 2.31 0.88 5.51 8.4 2.20 0.86 6.25 13.9 7.3 13.2
4 BLSTM MVDR in [24] 2.68 0.95 13.40 5.3 2.68 0.95 14.10 8.0 5.9 9.8
5 FaSNet [31] 2.64 0.93 10.56 8.3 2.43 0.89 9.73 18.4 10.3 22.5

6 MC-Conv-TasNet 3.08 0.96 18.32 6.2 2.92 0.95 17.52 10.4 22.1 33.2
7 MC-Conv-TasNet* 3.08 0.97 18.62 6.7 2.90 0.95 17.99 11.4 18.5 41.5
8 → Beam-TasNet (sig-MVDR) 2.57 0.95 15.31 5.3 2.58 0.95 16.17 7.3 11.8 25.7
9 → Beam-TasNet (mask-MVDR, PSM) 2.61 0.95 14.78 5.4 2.65 0.95 15.25 7.4 7.2 13.5

10 → Beam-TasNet (mask-MVDR, 1-D) 2.62 0.95 14.11 5.7 2.66 0.95 15.94 7.7 6.3 10.7

11 Joint MC-Conv-TasNet + ASR 3.06 0.97 18.27 9.3 2.96 0.96 17.52 13.7 19.0 42.5
12 + real training data 3.07 0.96 18.19 8.3 2.93 0.95 17.39 12.1 9.1 17.0
13 ++ clean training data 3.05 0.96 18.10 6.5 2.93 0.95 17.24 10.0 7.3 13.5

(b) Close-talk “reference”
(CH0)

(a) Noisy speech (CH5) (c) MC-Conv-TasNet (d) Beam-TasNet
(sig-MVDR)

(e) Beam-TasNet
(mask-MVDR, 1-D)

(f) Jointly trained
MC-Conv-TasNet + ASR

Figure 3: Spectrograms of a real speech recording randomly selected from the CHiME-4 evaluation set.

estimations. Compared to the baseline ASR model, more than 42%
relative WER reduction is achieved on all subsets.

Finally, the joint training4 in the last three lines leads to a com-
parable speech enhancement performance to the MC-Conv-TasNet
models. Although the ASR performance on the simulated data is
slightly worse than the MC-Conv-TasNet result (No. 6), this can
be regarded as the effect of regularization from the real data dur-
ing training. When only the simulated data is used for training
(No. 11), the speech recognition on real data is severely degraded
compared to the ASR baseline, which indicates the over-training
in the simulation condition. After introducing the real data (No. 12)
and additionally the clean data (No. 13) for training, we can observe
pronounced WER reduction on the real data. This illustrates the ad-
vantage of joint training that various training data from different
conditions can be well utilized to improve the overall performance
of the entire system. Although the ASR performance does not out-
perform the BLSTM MVDR model, the performance gap is largely
reduced, and much better enhancement performance is achieved.

To better illustrate the discrepancy between different speech en-
hancement methods, we further visualize the original spectrogram
of a real sample and its enhanced versions from different models
in Figure 3. Subfigures (a) and (b) are the noisy speech recorded
by the distant microphone and close-talk microphone, respectively.
Subfigures (c)–(f) show the corresponding enhanced signals by dif-
ferent models discussed above. We can observe that the MC-Conv-
TasNet model severely corrupts the speech pattern in the spectrum,
while the Beam-TasNet and jointly trained MC-Conv-TasNet mod-
els can restore the speech pattern and suppress the noise to some

4We jointly finetuned the pretrained MC-Conv-TasNet and E2E ASR
models instead of training from scratch.

extent. This observation also coincides with the results in Table 1.5

4. CONCLUSION
In this paper, we investigate the performance of multi-channel
Conv-TasNet based models for time-domain speech enhancement.
A large performance gap is observed between simulation and real
conditions. And several approaches are proposed to reduce this gap
and improve the robustness of MC-Conv-TasNet based models, in-
cluding the integration into the Beam-TasNet framework, and the
joint training of MC-Conv-TasNet and ASR models. Experimental
results on the CHiME-4 data show the difficulty of achieving good
performance on real data, and that well-trained speech enhancement
models on the simulated data do not necessarily remain advanta-
geous when evaluated on real data. Our proposed approaches are
shown to effectively mitigate the ASR performance gap, while still
preserving a comparable speech enhancement capability. In the fu-
ture work, we would like to incorporate more approaches to miti-
gating the mismatch between real and simulation conditions, such
as better simulation strategies.
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