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ABSTRACT

As the most widely used technique, deep speaker embedding learn-
ing has become predominant in speaker verification task recently.
Very large neural networks such as ECAPA-TDNN and ResNet can
achieve the state-of-the-art performance. However, large models
are computationally unfriendly in general, which require massive
storage and computation resources. Model compression has been
a hot research topic. Parameter quantization usually results in sig-
nificant performance degradation. Knowledge distillation demands
a pretrained complex teacher model. In this paper, we introduce a
novel self-knowledge distillation method, namely Self-Knowledge
Distillation via Feature Enhancement (SKDFE). It utilizes an auxil-
iary self-teacher network to distill its own refined knowledge with-
out the need of a pretrained teacher network. Additionally, we ap-
ply the self-knowledge distillation at two different levels: label level
and feature level. Experiments on Voxceleb dataset show that our
proposed self-knowledge distillation method can make small models
have comparable or even better performance than large ones. Large
models can also be further improved when applying our method.

Index Terms— speaker verification, deep embedding learning,
model compression, self-knowledge distillation

1. INTRODUCTION

Currently, deep neural networks (DNNs) have been widely applied
in speaker verification task and presented remarkable results [1, 2, 3,
4, 5, 6, 7]. Impressive performance can be achieved by deep speaker
embedding learning with very large architectures such as ECAPA-
TDNN [7] and ResNet [8]. However, there is a trade-off between
efficiency and effectiveness. Powerful models with millions of pa-
rameters generally require tremendous storage and computation re-
sources, which is hard to be deployed onto resource-limited devices
in real life. On the contrary, small models are much easier for distri-
bution while the performance is unsatisfactory. How to make small
models have comparable or even better performance than large ones
is a demanding task for speaker verification.

Accordingly, model compression has attracted the attention of
many researchers [9, 10, 11, 12, 13]. Compressing models directly
can lead to significant performance degradation such as network
quantization [9, 13] or model size reduction [10]. Although large
compression ratio can be achieved, compressed models yield un-
satisfying performance, which is the main problem for this type
of compression strategy. To boost the results of small models,
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knowledge distillation [14] is another choice, which is charac-
terized by good compression and comparable performances [10].
Whereas knowledge distillation enables student network to utilize
the teacher’s knowledge, preparing a pretrained teacher network in
advance is still a computationally expensive task. In addition, there
still exists the performance gap between the teacher and student
network after distillation.

To deal with the limitations of the traditional knowledge
distillation, this paper introduces a novel paradigm called self-
knowledge distillation for speaker verification task. Combined with
the proposed feature enhancement module, we present a new self-
knowledge distillation method, namely Self-Knowledge Distillation
via Feature Enhancement (SKDFE). Self-knowledge distillation is
designed to reduce the necessity of pretraining a teacher network
beforehand, which utilizes an auxiliary self-teacher network to en-
hance feature representation and transfer the refined knowledge
to self-student network. We employ multi-path feature pyramid
network as self-teacher network to yield the enhanced and refined
knowledge. Moreover, label level and feature level guidances are
utilized to transfer knowledge better, which allows us to further nar-
row the performance gap between the self-teacher and self-student
network.

2. RELATED WORKS

In this section, we briefly present previous works related to our
proposed approach, including knowledge distillation and self-
knowledge distillation.

2.1. Knowledge Distillation

Knowledge distillation is first introduced in [14], which has been
widely used in various fields. For speaker verification [10, 11, 15],
[10] introduces embedding level guidance that directly makes uses
of teacher network’s speaker embedding to boost student network,
providing minimum square error (MSE) learning and cosine distance
learning. [11] develops two alternatives of knowledge distillation
and random erasing to improve the generalization and robustness of
text-dependent speaker verification systems. [15] investigates the
possibility of distilling knowledge from a multi-modality system to
a single-modality system.

2.2. Self-Knowledge Distillation

Different from knowledge distillation, self-knowledge distillation
transfers the enhanced and refined knowledge originating from stu-
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Fig. 1. Comparison of knowledge distillation and self-knowledge distillation. (a) Knowledge Distillation: A pretrained teacher network
is employed to guide the training of student network. (b) Self-Knowledge Distillation via Feature Enhancement: An auxiliary self-teacher
network is utilized to distill the refined knowledge to self-student network without a pretrained model.

dent network itself without a pretrained teacher network. Generally
speaking, auxiliary network, which has the ability to capture global
information and aggregate features from various layers, is adopted
as self-teacher network to provide more powerful feature represen-
tation and guide the training of student network. In computer vision,
several strategies have been explored to perform self-knowledge
distillation. [16] introduces a set of auxiliary branches for the mid-
dle hidden layers within a network to enhance the performance of
shallow layers. [17] proposes to train a single multi-branch network
while establishing a strong teacher on-the-fly to enhance the learn-
ing of target network. In this paper, we introduce a more complex
auxiliary feature enhancement network as self-teacher network to
generate refined knowledge for speaker verification task.

3. PROPOSED METHODS

In this section, we introduce the self-knowledge distillation via fea-
ture enhancement (SKDFE) based on ResNet. Figure 1(a) shows the
traditional knowledge distillation. Figure 1(b) is the overview of our
proposed method.

3.1. Self-Student and Self-Teacher Network

For the self-student network, the left side in Figure 1(b), ResNet is
used in this paper. As shown on the right side of Figure 1(b), the
self-teacher network, as a main component of self-knowledge dis-
tillation method, is utilized to provide the self-student network with
enhanced feature maps and soft labels for the purpose of distillation.
We adopt BiFPN from [18] as the self-teacher network to produce
refined knowledge. Architecture details of the self-student network
and self-teacher network are listed in Table 1 and Table 2 respec-
tively.

For the self-student network, we represent the i-th stage feature
map as Fi, for i = 1, ..., 4. For the self-teacher network, lateral
convolution is firstly calculated as follows:

Li = Conv(Fi; di) (1)

where Conv is a depth-wise convolution [19] operation with a di
number of output channels. The i-th lateral convolutional output is
denoted as Li.

Secondly, lateral outputs and previous top-down features are fed
into top-down layers. A new intermediate feature map Pi is ob-
tained:

Pi = Conv(IPi,1 · Li + IPi,2 ·Resize(Pi+1); di) (2)

IPi,j =
ew

P
i,j∑

k e
wP

i,k

, j, k = 1, 2 (3)

where Pi represents the i-th stage of the top-down path. wP
i,j is

a learnable fusion weight parameter. IPi,j is a normalized soft-
max value which means the importance of each input feature. The
mismatch of dimensions between input features is dealt with by
the Resize operator where bilinear interpolation is adopted for
up-sampling and max pooling is utilized for down-sampling.

Thirdly, bottom-up path is implemented to fuse features in
bottom-up way, where the middle layer Ti accepts lateral, top-down
and previous bottom-up features as inputs:

Ti = Conv(ITi,1 · Li + ITi,2 · Pi + ITi,3 ·Resize(Ti−1); di) (4)

ITi,j =
ew

T
i,j∑

k e
wT

i,k

, j, k = 1, 2, 3 (5)
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Table 1. The ResNet34 self-student network. The dimensions of the
output are C × F × T , i.e. the number of channels, filter-banks and
frames.

Layer Structure Output Stage

Conv1 [Conv2D-BN-ReLU] 32 × 40 × T –

ResBlock-1
[

Conv2D-BN-ReLU
Conv2D-BN

]
× 3 32 × 40 × T 1

ResBlock-2
[

Conv2D-BN-ReLU
Conv2D-BN

]
× 4 64 × 20 × T/2 2

ResBlock-3
[

Conv2D-BN-ReLU
Conv2D-BN

]
× 6 128 × 10 × T/4 3

ResBlock-4
[

Conv2D-BN-ReLU
Conv2D-BN

]
× 3 256 × 5 × T/8 4

Table 2. The self-teacher network. The dimensions of the output are
C × F × T , i.e. the number of channels, filter-banks and frames.

Layer Structure Output Stage

L1 [
Conv2D-Conv2D-BN-ReLU
Conv2D-Conv2D-BN-ReLU

] 256× 40× T 1
L2 256× 20× T/2 2
L3 256× 10× T/4 3
L4 256× 5× T/8 4

P2
[

Conv2D-Conv2D-BN-ReLU
Conv2D-Conv2D-BN-ReLU

]
256× 20× T/2 2

P3 256× 10× T/4 3

T1 [
Conv2D-Conv2D-BN-ReLU
Conv2D-Conv2D-BN-ReLU

] 256× 40× T 1
T2 256× 20× T/2 2
T3 256× 10× T/4 3
T4 256× 5× T/8 4

where Ti represents the i-th stage of the bottom-up path. Similarly,
wT

i,j is a learnable fusion weight parameter. ITi,j denotes a normal-
ized softmax value, which ranges from 0 to 1. Resize represents a
resize operator.

3.2. Self-Knowledge Distillation for Speaker Verification

Traditionally, knowledge distillation utilizes a pretrained teacher net-
work to guide the training of student network at label or embedding
level as shown in Figure 1(a). By comparison, our proposed method
SKDFE adopts a self-teacher network, which is trained jointly with
the self-student network, to distill its own refined knowledge with-
out a pretained model. Meanwhile, both label level and feature level
distillations are performed to enhance the self-student network.

Firstly, the soft label ỹ of the self-teacher network is utilized
to perform the label level distillation, which forces the self-student
network to mimic the posteriors of the self-teacher network. The
corresponding Kullback-Leibler divergence (KLD) loss LKLD can
be formulated as:

LKLD = −
N∑
i=1

C∑
j=1

ỹij log y
i
j (6)

where ỹi is the posteriors of the i-th sample predicted by the self-
teacher network.

Secondly, the feature level distillation is employed to induce
the self-student network to learn from the refined feature map Ti

of the self-teacher network. Specifically, the attention transfer [20]
is adopted for feature distillation in this paper. The feature level dis-
tillation loss LF is defined as:

LF =

S∑
i=1

‖φ(Ti)− φ(Fi)‖2 (7)

where i indicates the the i-th stage feature map of the self-student
network and self-teacher network. φ is a channel-wise pooling oper-
ator combined with L2 normalization.

Thirdly, cross-entropy loss LCE is applied to both the self-
student network and self-teacher network, which makes them learn
from the ground-truth labels.

For label level only distillation, the overall optimization objec-
tive is:

LSKDFE = LCE
S + LCE

T + αLKLD (8)

For feature level only distillation, the overall optimization ob-
jective is:

LSKDFE = LCE
S + LCE

T + βLF (9)

For both label level and feature level distillations, the overall
optimization objective is:

LSKDFE = LCE
S + LCE

T + αLKLD + βLF (10)

where α and β are hyperparameters, which are chosen from {1, 2,
3} and {100, 200} respectively.

4. EXPERIMENTAL SETUP

4.1. Datasets

Our experiments are conducted on the Voxceleb1&2 [21, 22]
datasets. The development set of Voxceleb2 is adopted as training
data. Voxceleb1 is used as testing data. Performance is measured
on the three official trial lists. Specifically, no data augmentation is
applied in the experiments for fair comparison with [10].

4.2. Implementation Details

40-dimensional Fbank with a frame length of 25 ms and a frame
shift of 10ms are extracted as input features. We use a fixed frame
number 300 to extract the Fbank features during training, which is
randomly cropped from one utterance. Trial scores are evaluated
using probabilistic linear discriminant analysis (PLDA) [23] since
it provides better results than cosine distance. The equal error rate
(EER) and the minimum detection cost function (MinDCF) with the
settings of Ptarget = 0.01 and CFA = CMiss = 1 are adopted
to measure performance. All the systems are implemented using
PyTorch [24] framework. In order to compare with [10], normal
softmax is employed to calculate the loss in the experiments.

5. RESULTS

5.1. Evaluation of the Proposed Self-Knowledge Distillation

The results of the baseline systems and our proposed self-knowledge
distillation systems are listed in Table 3. We implement ResNet18,
34 and 50 as the baselines. It can be obviously observed that the
performance of systems can become better with models being deeper
and larger. Still, how to make small models have comparable or
even better performance than large ones is important and difficult
for speaker verification.

Our proposed self-knowledge distillation method can signif-
icantly improve the baselines without increasing the parameters.
In our experiments, ResNet18 and ResNet34 are employed as the
self-student networks individually. The channel number in the self-
teacher network is set to 256 by default. For ResNet18-SKDFE,
applying label level and feature level distillations simultaneously
achieves the best performance, which results in relative improve-
ments in EER by 21.5%, 17.8%, 18.9% and in MinDCF by 19.4%,
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Table 3. Performance comparison of the baselines and the proposed self-knowledge distillation systems on the Voxceleb1 dataset.

Architecture Distillation # Params Voxceleb-O Voxceleb-E Voxceleb-H

EER(%) MinDCF EER(%) MinDCF EER(%) MinDCF

ResNet18 — 3.45M 2.00 0.2232 2.07 0.2453 3.65 0.3566
ResNet34 — 5.98M 1.78 0.2331 1.87 0.2195 3.22 0.3207
ResNet50 — 8.51M 1.45 0.2131 1.63 0.1903 2.93 0.2878

ResNet18-SKDFE
Label

3.45M
1.62 0.1952 1.76 0.1955 3.02 0.3052

Feature 1.72 0.2019 1.87 0.2214 3.37 0.3311
Label+Feature 1.57 0.1800 1.70 0.1873 2.96 0.2985

ResNet34-SKDFE
Label

5.98M
1.49 0.1738 1.65 0.1860 2.81 0.2852

Feature 1.54 0.1989 1.70 0.1946 3.01 0.2934
Label+Feature 1.44 0.1677 1.59 0.1789 2.76 0.2781

20.4%, 16.3% over the basic student network in the three official
tasks. It is noteworthy that the best ResNet18-SKDFE can achieve
better performance than ResNet34, and meanwhile obtain a sub-
stantial 45.0% reduction in the parameter size. Similarly, the best
ResNet34-SKDFE decreases the EERs to 1.44%, 1.59% and 2.76%
in the three official tasks, which are comparable or even better than
the ResNet50 system, and on the other hand the proposed ResNet34-
SKDFE even has 30.0% fewer parameters than the ResNet50.

From Table 3, we can see that both label level and feature
level distillations can improve the baselines, which reveals that self-
teacher network has the ability to yield more enhanced and powerful
features via cross-path connections. Additionally, the best knowl-
edge transfer can be achieved through distilling at label and feature
level simultaneously, which is reasonable since different information
exists in label and feature levels.

5.2. Comparison with Traditional Knowledge Distillation

We compare the traditional knowledge distillation [10] with our
proposed self-knowledge distillation in this section. The pretrained
ResNet34 is set as the teacher while an untrained ResNet18 is
adopted as the student. Two knowledge distillation methods: la-
bel level and embedding level from [10] are implemented. Table
4 shows that our proposed SKDFE outperforms the three knowl-
edge distillation variants from [10] significantly. Moreover, SKDFE
reduces the necessity of pretraining a teacher network in advance.

We notice that only slight improvements are obtained when us-
ing ResNet34 as the teacher network. Since a stronger teacher net-
work can boost student network further, we replace ResNet34 with
ResNet50 as the teacher network. Results are listed in Table 5. It
shows that SKDFE still outperforms the three knowledge distillation
variants with a pretrained ResNet50 as the teacher network, which
further demonstrates the superiority of our proposed self-knowledge
distillation method. Joint training of the self-student network and
self-teacher network can result in better knowledge transfer and a
narrower performance gap between the teacher and student in self-
knowledge distillation.

6. CONCLUSION

In this paper, we introduce a novel self-knowledge distillation
paradigm to replace the conventional knowledge distillation for
speaker verification. Two advantages can be obtained: 1) reduce
the necessity of pretraining a teacher network beforehand. 2) make
small models have comparable or even better performance than

Table 4. The first line is the teacher network ResNet34. The mid-
dle part shows the student network ResNet18 and three traditional
knowledge distillation variants. The last line is the proposed self-
knowledge distillation with ResNet18 as the self-student network.

System Distillation Vox1-O Vox1-E Vox1-H

ResNet34 — 1.78 1.87 3.22

ResNet18

— 2.00 2.07 3.65
Label 1.95 1.99 3.50

EmbeddingMSE 1.94 1.99 3.54
EmbeddingCOS 1.86 1.97 3.53

ResNet18-SKDFE Label+Feature 1.57 1.70 2.96

Table 5. The first line is the teacher network ResNet50. The mid-
dle part shows the student network ResNet18 and three traditional
knowledge distillation variants. The last line is the proposed self-
knowledge distillation with ResNet18 as the self-student network.

System Distillation Vox1-O Vox1-E Vox1-H

ResNet50 — 1.45 1.63 2.93

ResNet18

— 2.00 2.07 3.65
Label 1.80 1.89 3.42

EmbeddingMSE 1.87 1.91 3.46
EmbeddingCOS 1.78 1.88 3.45

ResNet18-SKDFE Label+Feature 1.57 1.70 2.96

large ones. We propose an auxiliary feature enhancement network
as self-teacher network to transfer the refined knowledge to self-
student network through label level and feature level distillations.
Experiments on Voxceleb dataset demonstrate the effectiveness of
our proposed self-knowledge distillation via feature enhancement
(SKDFE). Compared to the conventional knowledge distillation,
the proposed SKDFE can achieve better knowledge transfer and
improve the baseline systems significantly.
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