
THE SJTU SYSTEM FOR MULTIMODAL INFORMATION BASED SPEECH PROCESSING
CHALLENGE 2021

Wei Wang, Xun Gong, Yifei Wu, Zhikai Zhou, Chenda Li, Wangyou Zhang, Bing Han, Yanmin Qian†

MoE Key Lab of Artificial Intelligence, AI Institute
X-LANCE Lab, Department of Computer Science and Engineering

Shanghai Jiao Tong University, Shanghai, China

ABSTRACT

This paper describes the SJTU system for ICASSP Multi-modal
Information based Speech Processing Challenge (MISP) 2021. To
solve the speech recognition problem in real complex environments
where time-synchronized near- and far-field signals are available
for training an enhancement frontend. We build a joint system
with speech enhancement frontend and speech recognition backend.
These two modules are optimized jointly by both ASR and enhance-
ment criteria. Audio-visual fusion is explored to further boost the
ASR performance. ROVER and test time augmentation techniques
are used to combine recognition results from multiple systems. The
final system achieves Chinese character error rates (CCER) of 34.9%
on dev set and 34.0% on test set, which achieved third place in the
MISP challenge. The absolute CCER reduction compared with the
official baseline system is 26.9% on dev set and 28.7% on test set.

Index Terms— multi-modality, speech recognition, end-to-end

1. INTRODUCTION

Speech enhancement (SE) and automatic speech recognition (ASR)
play important roles in modern speech-based human-computer in-
teraction applications. Plenty of impressive and inspiring techniques
have been developed, showing advantages in various works [1, 2, 3,
4, 5]. However, complex real environment brings great challenges to
the SE and ASR systems, such as channel distortion, ambient noise
and reverberation, etc. In recent years, it is commonly observed that
supplementary information, such as videos [6, 7, 8, 9] and speaker
identities [10, 11], can be utilized to assist in accomplishing SE and
ASR tasks. Nevertheless, most of the works on far-field speech
recognition with an enhancement frontend are conducted on simu-
lated data. The lack of large-scale real-scenario corpora brings about
the performance gap of SE and ASR systems on simulated and real
data.

Thanks to the Multimodal Information Based Speech Process-
ing (MISP) Challenge committee’s work[12], a new large-scale
multi-modal Chinese corpus of multi-speaker conversations in real
scenario for wake word spotting and speech recognition is released.
It targets the home TV scenario where several people are chat-
ting and watching TV. This paper mainly focus on the audio-visual
speech recognition task of MISP Challenge (task 2).

To accomplish the task, several features of the corpus should
be taken into consideration. First, the collected audio involves not
only the target speaker and the interfering speaker’s speech, but also
noises and human voice from a nearby television. To deal with it,
a straightforward way is to perform blind source separation (BSS)

†Yanmin Qian is the corresponding author.

on the input audio. However, the permutation problem needs to be
solved after BSS. Another promising approach is to apply a beam-
former as the frontend, since the speakers and the TV, are located
in different directions relative to the microphone arrays. Second,
although near-field audios are provided in training, there is severe
mismatch between the far-field multi-speaker audios and the corre-
sponding near-field single-speaker audios due to the differences in
microphone specification and locations. Thus, it is difficult to utilize
near-field audio as supervision in SE model training. Some prior
works [13, 14] proposed unsupervised or semi-supervised methods
to deal with the problem. Another simple yet promising approach for
this task is cascading a SE frontend and an ASR backend, and using
an end-to-end ASR loss to jointly train the SE and ASR modules [15,
16]. Third, although high-quality middle-field videos per speaker are
available for training, only the far-field videos with speakers’ faces
in relatively low resolution could be utilized during inference. Su-
per resolution techniques may be helpful according to some works
on face recognition [17, 18]. However, most of the lip regions in
far-field videos are too small, which poses a challenge for the above
pre-trained models.

This paper describes the SJTU system for the MISP challenge.
To deal with the complex multi-channel scenario, several commonly
used front-end speech processing approaches are explored, includ-
ing blind source separation [19], guided source separation [20], and
neural beamformer [21, 22]. Advanced end-to-end architectures like
Transformer and Conformer are used to build the basic ASR sys-
tem with joint connectionist temporal classification (CTC)-attention
multi-task training. We further adopt multi-channel input single-
speaker output (MISO) [15] speech recognition, which extends the
original end-to-end architecture to deal with multi-channel input.
Different data augmentation technologies are investigated, includ-
ing speed perturbation, SpecAugment, test time augmentation and
audio-visual feature adaptation. With the Recognizer Output Vot-
ing Error Reduction (ROVER) [23] rescoring technique, our system
achieved a significant improvement compared to the official baseline
system.

The rest of the paper is organized as below: In Section 2, the
system is explained in detail. Experimental results are presented and
analyzed in Section 3. Finally, the conclusion is given in Section 4.

2. METHODOLOGY

We mainly built two types of systems: Conformer-based hybrid sys-
tem and Multi-channel Input Single-speaker Output (MISO) system
with neural beamformer enhancement frontend and Transformer /
Conformer ASR backend. We further conduct audio-visual fusion
on these models for improved robustness. Both systems are trained
with different setups to produce diverse models. Finally, the trained
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models are combined with test time augmentation and ROVER to
obtain better recognition results.

2.1. Conformer based Hybrid System
The speech recognition task is to find the text sequence correspond-
ing to a given speech feature sequence. In hybrid system, it can be
formulated as:

w∗ = argmax
w∈H

P (w|O)

= argmax
w∈H

P (O|w)P (w)

P (O)

= argmax
w∈H

P (O|w)P (w) ,

(1)

where w,O,H means words, features and hypotheses, respectively.
The P (O|w) is the acoustic model and P (w) is the language model.
After that, the pronunciation lexicon L is introduced to model the
relationship between phones and words, which bridges the acoustic
model and language model.

w∗ = argmax
w∈H

P (O|L)P (L|w)P (w) . (2)

For the deep neural network based hidden Markov model (DNN-
HMM), the DNN models the probability P (θ|O) of pdf-ids (the
clustered HMM states) θ conditioned on given features O , also
known as senone. Different from GMM-HMMs, the DNNs are dis-
criminative models, the transformation strategies are as follows:

P (O|θ) = P (θ|O)P (O)

P (θ)
≈ P (θ|O)

P (θ)
. (3)

We build the hybrid ASR system using the Conformer acoustic
model [24] and Kaldi [25] toolkit. We first follow the official Kaldi
NN-HMM baseline to build the HCLG Weighted Finite State Trans-
ducer (WFST) and get the alignment of the whole training set. Then
we train the Conformer acoustic model with the Cross Entropy (CE)
criterion to predict the pdf-ids. After that, the Conformer acoustic
model and the HCLG graph are cascaded for decoding. To get a rel-
atively high quality alignment, we train and align the near-field data
at the first time. Since the near-field data and far-field data are syn-
chronized in time, we train the NN-HMM model on near-field data
and apply the alignment results as the alignment for far-field data for
better alignment precision.

2.2. Enhancement ASR joint System
The architecture of the enhancement and ASR joint system is shown
in Fig. 1. In the frontend module, we adopt the mask-based mini-
mum variance distortionless response (MVDR) [26, 27] beamformer
for noise reduction and interference suppression, which is formu-
lated as follows:

wf =
Φ−1

n,fΦs,f

Trace(Φ−1
n,fΦs,f )

u , (4)

where Φs,f and Φn,f represent the spatial covariance matrices of the
target speech and noise signals, respectively. u is a one-hot vector
for reference channel selection. Trace(·) denotes the trace of a ma-
trix. Both speech and noise covariance matrices are estimated based
on the predicted masks:

Φα,f =

T∑
t=1

(
C∑

c=1

Mα,t,f,c

)
Yt,fY

H
t,f

T∑
t=1

C∑
c=1

Mα,t,f,c

, (5)

where α ∈ {s, n} is a symbol for representing speech (s) or noise
(n). Mα,t,f,c represents the predicted mask value at the t-th time
frame, f -th frequency bin, and c-th channel. T and C denote the
total number of time frames and channels, respectively. Yt,f is the
observed far-field signal.

The enhanced signal X̂f is finally obtained by applying the es-
timated time-invariant beamformer filter wf to the input signal Yf :

X̂f = wH
fYf . (6)

The enhanced spectrum is then fed into a differentiable feature
extraction module to calculate the 80-dim log Mel-filterbank feature
O for speech recognition:

O = LMF(X̂f ) , (7)

where LMF(·) represents the feature extraction module.
In conventional speech enhancement tasks, we train models with

simulated noisy signals and their corresponding clean reference sig-
nals. Although parallel near-field signals are also provided in this
task, they cannot be directly used for training due to the sample shift
and channel mismatch caused by various factors such as reverbera-
tion and device difference.

To resolve the power mismatch between near-field signals and
far-field signals. We introduce trainable power adaptive filters H to
resolve the scale mismatch between far-field signals and near-field
signals in each frequency band. That is, we rescale the enhanced
signal obtained from Eq. (6) per frequency band with H as:

X̂f := HfX̂f . (8)

To mitigate the sample shift and channel mismatch, L2 loss
is calculated between Mel-filterbank features of far-field signals
and their corresponding near-field signals for enhancement frontend
training:

Lenh = ∥O−Onear∥2 . (9)

where Onear is Mel-filterbank feature of the near-field signals. To
stabilize the training process, Onear is also fed into the ASR module
to train the ASR backend.

We follow the fully end-to-end training scheme proposed in [15,
16, 28, 29] with enhancement loss to jointly optimize the neural
beamformer and end-to-end ASR systems. That is, the final ASR
criterion is used to optimize both frontend and backend modules:

L = λ1Lenh + λ2Lctc + (1− λ1 − λ2)Latt-dec , (10)

where λ1 and λ2 are interpolation factors for multi-task learning.
Lenh denotes the L2 enhancement frontend loss. Lctc and Latt-dec de-
note the CTC loss and attention-based decoder CE loss. In addition,
following [30], several techniques, such as diagonal loading, mask
flooring, and double precision, are used to improve the numerical
stability of the end-to-end system during training.
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Fig. 1: End-to-End Training of Enhancement and ASR system

2.3. Visual Feature Preparation

We build a lipreading model with the same structure as that in [31].
The lipreading model is firstly pre-trained with CAS-VSR-W1k (the
original LRW1000) [32] dataset. The pre-training is conducted on
a 1000-word classification task, and then it is fine-tuned with the
videos in MISP data.

In the MISP data fine-tuning stage, we firstly use the near-field
audio to train a GMM-HMM model following Kaldi AIShell recipe,
then the syllable-level alignment of step tri4 is extracted for near-
field audio. The videos are segmented with the corresponding audio
alignment, to ensure each segment contains only 1 syllable. Then
the lip-reading model is fine-tuned with the segmented video on the
syllable classification task. The last fully-connected (FC) layer of the
pre-trained model is replaced with a random initialized FC layer for
syllable classification. This fine-tune procedure is firstly performed
for the MISP middle-field, and then performed for far-field videos.

Finally, the 3D-ResNet frontend of the fine-tuned lipreading
model is used as the visual feature extractor. By processing the
videos with the visual feature extractor, each 2-D picture frame in
the MISP video will be converted into a 1-D vector.

2.4. Test time Augmentation

Test time augmentation is a useful technique validated in image clas-
sification [33] and accent identification [34]. Instead of predicting
the label of the test audio itself, our model takes multiple augmented
versions of the test audio as input, and the predicted results are then
aggregated to obtain the final result. Concretely, speed perturba-
tion [35] with ratios 0.9, 1.0 and 1.1 are applied to the test audios.
The decoding results on augmented test sets are rescored by the
ROVER technique.

Table 1: The performance on dev-far set of Conformer based hybrid
models

System CCER(%)

TDNN-nnet3-combine 76.1
Conformer-nnet3-far 69.7

Neural BF + Conformer-nnet3-far 60.0

3. RESULTS

All experiments are carried out with ESPnet [36] and Kaldi toolk-
its. SpecAug [37] and speed perturbation with ratio 0.9, 1.0 and 1.1
are applied for all training data. Details on MISP dataset specifi-
cations can be found at https://mispchallenge.github.
io/task2_data.html.

3.1. Conformer based Hybrid System

We adopted 12 layers of Conformer multi-headed self-attention
blocks with 256 hidden dims and feedforward layers of 2048 hid-
den units as our acoustic model. We also tested Kaldi’s time delay
neural network (TDNN) models. The 1024-dim visual features are
projected to 40-dim features through principal component analysis
(PCA) and concatenated with the 80-dim FBANK features before
being fed into the model. For the HCLG in our system, we used
the DaCiDian in Kaldi’s AIShell-2 [38] recipe as our pronunciation
lexicon. The 4-gram language model was trained using the kenLM
toolkit. All data were adopted without any enhancement technique.

Table 1 shows performance of Conformer based hybrid mod-
els on dev far set. ‘combine’ means the model is trained with data
from a combination of near-field middle-field and far-field data. The
neural beamformer in the third row is jointly optimized by CE loss
with Conformer ASR backend. Conformer based hybrid models
showed limited improvement even if a neural beamformer enhance-
ment frontend is applied.

3.2. Enhancement ASR joint System

For neural beamformer-based enhancement frontend, the mask es-
timation network is a 3-layer bidirectional long-short term memory
with projection (BLSTMP) network with 512 cells in each direction.
For Transformer-based ASR backend, we adopted 12 layers of en-
coder and 6 layers of decoder with 2048 hidden units. Each layer
is a Transformer block with 8 heads of 64 dimension self-attention
layer. For Conformer-based ASR backend, we replaced the Trans-
former blocks with Conformer blocks and adopted the same config-
urations for the number of layers, hidden units and attention heads.
The λ2 for multi-task learning (MTL) in Eq. (10) is set to 0.3 during
training. For all systems, the 1024-dim visual features are projected
to 256-dim through a feedforward layer and concatenated with the
output of the first convolutional layer after the neural beamformer.

Fig 2 shows the spectrum of the far-field signal enhanced with
different frontend training objectives. When the power adaptive fil-
ter H in Fig 1 is not applied, we observe vanishing of multiple
frequency bands on the spectrum of enhanced signal as shown in
Fig 2 (c). A possible reason is that the attenuation of speech signal
during propagation is frequency-dependent, and the relative power
scale among different frequency bands differs in far-field signals and
their corresponding near-fields signals. Therefore, a trainable power
adaptive filter H is appended after the neural beamformer to sim-
ulate the signal attenuation during propagation and adjust the rela-
tive power scale of the enhanced far-field signals on different fre-
quency band as shown in Fig 2 (d). Although no explicit constraint
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is enforced on the enhancement frontend during training as shown in
Fig 2 (e), the intermediate signals after the neural beamformer still
shows good quality in terms of audibility.

Table 2: The performance of Enhancement ASR joint models

System λ1 CCER(%)

Conformer N/A 49.9
Neural BF + Transformer 0 41.0
Neural BF + Transformer 0.1 41.4
Neural BF + Conformer 0 39.8
Neural BF + Conformer 0.1 40.7

(c) 𝐿! Enh

(d) 𝐿! with adaptive filter Enh 

(e) 𝜆" = 0 Enh

(b) Far-Field

(a) Near-Field

Fig. 2: Example of enhanced spectra after neural beamformer

Table 2 shows the performance of end-to-end trained enhance-
ment and ASR joint models. The first row shows an end-to-end ASR
Conformer baseline with no enhancement frontend. A significant
20% relative CCER reduction can be observed by adding a neural
beamformer frontend which is jointly optimized with ASR backend
module. Although the enhanced far-fields signal shows better quality
in terms of audibility by enforcing explicit constraints on enhance-
ment frontend (λ1 = 0.1), the ASR performance of the joint system
suffers degradation.

3.3. Audio-Visual Fusion
Since the frame rate of the voice feature was 100Hz and the video
feature was 24Hz, we had upsampled the video feature to the same
level as the voice feature. After that, we explored a frame-level fea-
ture fusion strategy.

Our video features used the hidden representation of the lip-
reading neural network, so the dimension 1024 is much larger than

Table 3: The performance on dev far set of Enhancement ASR joint
models with audio-visual fusion

System CCER(%)

Neural BF + Conformer 39.8
Neural BF + Conformer + V (96.6)
Neural BF + Conformer + V + init 39.3

the 80 dimensions of speech features. Due to the success of PCA
in the field of visual features [39], we first used PCA to reduce the
dimension of visual features to 80.

We estimated the PCA transformation matrix on our training set.
We sampled feature vectors from our training set instead of using all
features. This is because using all feature frames is costly for esti-
mating the transformation matrix. In addition, the 80-dimensional
visual features were concatenated with the log Mel-filterbank and
follows a projection layer to the Conformer encoder.

As shown in Table 3, the training process of an audio-visual en-
hancement ASR joint model from scratch could not converge in our
experiments. Initializing the audio-visual joint model with audio-
only joint model stablized the training process and yielded further
improvement.

3.4. System Combination

Finally, we combine several systems through ROVER to reach the
best performance as in Table 4. These systems include enhancement
ASR joint model with neural beamformer frontend and conformer
backend, enhancement ASR joint model with neural beamformer
frontend and transformer backend and end-to-end conformer model.
The final system reaches 34.9% CCER on dev far set and 34.0%
CCER on the official test set.

Table 4: The performance with ROVER and test time augmentation

System CCER(%)

Chain-TDNN-AV* (official baseline) 61.8
Neural BF + Conformer + V + init 39.3
ROVER 36.0
ROVER + Test Time Augmentation 34.9

4. CONCLUSIONS

In this paper, we present the SJTU system for MISP challenge.
Multi-channel in and single speaker output (MISO) end-to-end
speech recognition system are firstly explored in real far-field sce-
nario. Different data augmentation schemes like speed perturbation,
SpecAugment and test-time augmentation are also applied to im-
prove the system performance. Audio-visual fusion is later used to
improve ASR system. Overall, with ROVER scheme, our system
achieve 34.9% CCER on dev set and 34.0% CCER on test set, which
are 26.9% and 28.7% absolute CCER reduction over the official dev
set and test set baseline respectively.
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