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ABSTRACT

Text-dependent speaker verification systems trained on large
amount of labelled data exhibit remarkable performance.
However, collecting the speech from a lot of speakers with
target transcript is a lengthy and expensive process. In
this work, we propose a synthesis based data augmenta-
tion method (SynAug) to expand the training set with more
speakers and text-controlled synthesized speech. The per-
formance of SynAug is evaluated on the RSR2015 dataset.
Experimental results show that for i-vector framework, the
proposed methods can boost the system performance signif-
icantly, especially for the low-resource condition where the
amount of genuine speech is extremely limited. Moreover,
combined with traditional data augmentation methods such as
adding noises and reverberation, the systems could be further
strengthened in extremely limited resource situation.

Index Terms— Data augmentation, Speech Synthesis,
Text-dependent Speaker verification, i-vector

1. INTRODUCTION

Text-dependent speaker verification is the task of verifying
whether the given speech belongs to the claimed speaker iden-
tity, in which the transcript is constrained to fixed lexical con-
tent. Both the traditional i-vector[1] systems and the deep
learning based models, such as d-vector[2], j-vector[3] and x-
vector[4], have been widely investigated. However, all these
methods require sufficient amount of training data, while the
collection of the text-dependent data is often very difficult and
expensive.

To increase the amount and diversity of existing data,
data augmentation is often applied as a pre-processing step
when building deep learning models. For speaker verification
tasks, different data augmentation methods are also proposed
and analyzed in the literature. For example, by adding noises
and reverberation to the clean audios, it’s shown that the
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performance of x-vector systems can be significantly im-
proved [4]. SpecAugment is a simple data augmentation
method for speech recognition proposed in [5], which also
shows its effectiveness for speaker verification tasks [6].
Sharing similar ideas, the random erasing strategy introduced
in [7] is also proved to work well for the speaker verification
tasks. Besides the augmentation for the front-end embed-
ding extractors, researchers also investigated the application
of generative adversarial network (GAN) and variational au-
toencoder (VAE) for the back-end PLDA augmentation [8, 9].

However, all the data augmentation approaches described
above only provide variations on acoustic environment,
which is only an aspect for the system robustness. Espe-
cially for the text-dependent tasks, the text variation should
be explicitly considered. In this paper, inspired by the suc-
cess of using synthetic speech in automatic speech recogni-
tion(ASR) [10, 11, 12], we propose a novel data augmentation
approach, SynAug, that generates controlled speech of new
speakers with a speech synthesis system for text-dependent
speaker verification training. A main difference between this
work and other TTS-based augmentation applied in ASR is
that we can use additional text-independent speech as the
reference to guide the synthesis. To the best of our knowl-
edge, this is the first study to use synthetic speech for speaker
verification training. The main advantages of SynAug are as
follows,

1. The amount of speakers for training is increased, which
enables the effective modelling of speaker identity in-
formation.

2. The generated speech share the same content with the
target application, which is important for text depen-
dent tasks.

The proposed method is examined on the RSR2015
dataset, the results obtained under the i-vector/PLDA frame-
work exhibit the effectiveness of this approach.
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2. I-VECTOR

In the i-vector system, given an utterance, the speaker- and
session-dependent supervector M is modeled as:

M =m+ Tx (1)

where m is the speaker and session-independent super-vector,
T is a low rank matrix which captures speaker and session
variability, referred to as the total variability matrix. The dis-
tribution of x is a standard normal distribution.

3. SYNAUG FOR TEXT-DEPENDENT SPEAKER
VERIFICATION

3.1. Conditional FastSpeech2 based TTS system

Our TTS model in this work is based on FastSpeech2[13],
which takes a phoneme sequence as input and the corre-
sponding 320-dimensional mel-spectrogram as output. In
this work, we need to synthesize speech for multiple speakers
with variations, hence we use a condition extractor inspired
by [14, 15, 16] to extract additional information other than
the input phoneme from the reference speech, including
speaker, speaking style, volume, speed, and etc. These in-
formation is expressed as the condition embedding ¢ which
is then broadcasted and added to the encoder output of Fast-
Speech2 for speech synthesis. The overall architecture of
our TTS model is shown in Figure 1. In the training stage,
the reference speech is exactly the target speech for training
TTS. Therefore, the condition extractor is optimized to ex-
tract effective information in c for better reconstructing the
mel-spectrogram. In the inference stage, we can randomly
select a mel-spectrogram as the reference, and then obtain a
synthetic speech corresponding to the given transcript with
similar condition information to the reference.

The architecture of the condition extractor in this paper is
similar to [14]. It contains 6 layers of 2D convolution with a
kernel size of 3x3, each followed by a batch normalization
layer and a ReLU activation function. A bidirectional GRU
with a hidden size of 128 is designed after the above modules.
The concatenated forward and backward states from the GRU
layer is the output of the condition extractor, which is referred
to as the condition embedding c.

3.2. The pipeline of SynAug

In this work, we assume that we have a limited text-dependent
dataset Dp and a large text-independent dataset Dr1. Fig-
ure 2 demonstrates the pipeline of our data augmentation ap-
proach. We first train a TTS system on Dy, and then synthe-
size new samples with the transcripts from Drp and speakers
from Dr1. By sampling different speech of each speaker in
D1 as the reference, we generate a synthetic text-dependent
dataset Dgtp, where each speaker has several different au-
dios for each target transcript. For the i-vector systems, the
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Fig. 1. Conditional FastSpeech2-based TTS architecture

UBM and PLDA are trained only on Drp, while the i-vector
extractor is trained on the pooled data of Drp and Dgrp.
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____________________________________
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Fig. 2. The pipeline of SynAug. The TI, TD, and STD rep-
resents text-independent, text-dependent, and synthetic text-
dependent data respectively. The TTS system is trained on TI
data.

4. EXPERIMENT AND RESULTS

4.1. Dataset

The background set of RSR2015 [17] partl corpus is used
to train the speaker verification systems, which contains 97
speakers. The evaluation set from the same corpus is used
to evaluate the proposed systems. The evaluation contains
1568008 trials, among which 19052 are target trials and
1548956 are impostor trials'.

"Note that we removed all “impostor-wrong” trials since they are very
easy to detect, leading to a very low EER, which makes the analysis non-
intuitive
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LibriTTS[18] is a large multi-speaker TTS dataset, whose
training set is divided into two parts named “train-clean-460”
and “train-other-500”. We use train-clean-460 as the TTS
training set, containing about 245 hours data. The speech is
re-sampled to 16kHz for simplicity.

For the i-vector systems, we use 30-dimensional MFCC
with a window size of 25ms and a frame shift of 10ms. The
UBM has 512 Gaussian mixture components and the dimen-
sion of i-vector is set to 700.

In order to simulate the cases where different amount of
TD data is available, we use 10, 20, 50 and all the 97 speakers
in RSR2015 respectively in the experiments.

4.2. The necessity of speech sysnthesis

One trivial idea of data augmentation is to directly use the
additional text-independent data Dy for training the i-vector
extractor. Thus, it’s necessary to show that directly introduc-
ing new speakers without constraining the speech content is
not a good idea for text-dependent speaker verification. In
this section, we will first show the importance of synthesizing
speech with the desired content, and then analyze the impact
of the synthesis’s quality on the SV system.

First, we randomly select 200 speakers from the train-
clean-460 dataset and directly use the corresponding text-
independent data as the Dy for augmentation.

Then, we apply SynAug where we synthesize the 30 fixed
transcripts in RSR2015 20 times for each of the same 200
speakers in Dy;. We use different utterances of the corre-
sponding speakers as the references, in order to generate
speech with diverse conditions. Figure 3 demonstrates an
example of the mel-spectrograms of 4 instances generated
by the TTS system with the same speaker and transcript.
Despite their similarity, we can find obvious differences
among the four mel-spectrograms, which shows the diversity
of generated samples. We use Griffin-Lim algorithm [19]
and WaveRNN [20] respectively to reconstruct the waveform
from the predicted mel-spectrogram. The synthetic speech
Dstp, together with the original text-dependent training data,
is used for the i-vector training. We use only original data
without augmentation in the PLDA stage.

Table 1. EER(%) on RSR2015 test set with different addi-
tional data. 10, 20, 50 and all the 97 genuine speakers’ data
are respectively mixed with the additional data for training.

Additional Vocoder Num spks used in RSR2015
Data 10 | 20 | 50 | 97
None - 9.26 | 252 | 1.07 | 0.71

TI - 6.77 | 2.57 | 1.01 | 0.62
STD Griffin-Lim | 2.59 | 1.28 | 0.76 0.61
STD WaveRNN | 2.18 | 1.14 | 0.71 | 0.61

The results of the above systems are reported in Table
1. Generally, SynAug outperforms the text-independent data

Fig. 3. Mel-spectrograms of 4 instances generated by the TTS
system for the same speaker with the same transcript “this
coat looks like a rag heap”.

augmentation, which exhibits the importance of generating
text-matched speech. We also find that the neural vocoder
WaveRNN provides more improvements than Griffin-Lim al-
gorithm because of the better voice quality of synthetic speech
as mentioned in [20]. For example, SynAug with WaveRNN
obtains a relative reduction of EER by 14.1% when all the 97
speakers in RSR2015 are available, and 76.5% when only 10
speakers in RSR2015 are available.

4.3. Impact of the SynAug scale
4.3.1. The number of speakers

In this section, we analyze how the number of speakers in the
synthetic speech affects the performance of SynAug. We still
simulate the 4 situations as described in 4.2 when different
amount of TD data is available. The vocoder in the following
experiments is the WaveRNN, which is better as discussed
in Section 4.2. Then we randomly select 100, 200, 500 and
1000 speakers respectively from the train-clean-460 dataset
and use them to synthesize the 30 fixed transcripts 20 times
for SynAug.

The results are presented in Figure 4. We can find that
the EER decreases when more speakers are used for SynAug.
However, increasing the number of speakers in the synthetic
speech cannot match increasing that in the real speech. For
example, when we have 10 speakers in the real speech and
200 speakers in the synthetic speech, totaled 210 speakers,
we get an EER of 2.18; but when we have 20 speakers in the
real speech and 100 speakers in the synthetic speech, totaled
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Fig. 4. EER(%) curves of i-vector systems on RSR2015 test
set when different numbers of speakers are used in the syn-
thetic speech.

120 speakers which is less than the previous combination, we
get a lower EER of 1.23. This can partially be explained by
the domain divergence between the speakers in RSR2015 and
train-clean-460. Moreover, it is observed that increasing the
number of speakers in the synthetic speech from 200 to 500
or 1000 obtains less improvement than increasing the number
from 100 to 200. Therefore, we still use 200 speakers for
SynAug in the following experiments for a balance between
performance and computational cost.

4.3.2. The number of utterances for each speaker

In addition to the number of speakers, we also investigate the
number of utterances for each speaker in the synthetic speech.
Here, we synthesize the 30 transcripts 5, 10 and 20 times
respectively for each speaker and observe the gains. As is
shown in Table 2, when the number of utterances for each
speaker grows, the EER decreases. This is in line with the
common sense that more training data can provide better per-
formance.

Table 2. EER(%) of i-vector systems on RSR2015 test set
when different numbers of utterances are synthesized for each
of the 200 speakers. 10, 20, 50 and all the 97 genuine speak-
ers’ data are respectively mixed with the synthetic data for
training.
Num utts for each spk
in synthetic speech

Num spks used in RSR2015
10 \ 20 \ 50 \ 97

0 9.26 | 2.52 | 1.07 | 0.71
30x5 3.11 | 1.43 | 0.81 0.66
30 x 10 243 | 1.18 | 0.77 | 0.65
30 x 20 218 | 1.14 | 0.71 0.61

4.4. Combining the SynAug with adding noises and rever-
beration

We first present the results of adding noises and reverbera-
tion [4] for data augmentation. We follow the Kaldi Vox-
celeb recipe v2[21] and generate an augmented noisy copy of
the original dataset. Both the original data and the generated
noisy data are used for training the i-vector extractor. The
results in Table 3 demonstrate that adding noises and rever-
beration can reduce EER when 10, 20, and 50 speakers are
available in RSR2015.

Then, we combine the proposed SynAug method with
adding noise and reverberation. Both the synthetic speech
from TTS and the generated noisy speech mentioned above
are used for i-vector training. We present the results in Table
3. The combination yields further gains in the low resource
situations , compared with the systems using only TTS. How-
ever, when more speakers can be used in RSR2015, the com-
bination brings no benefit. For example, when 10 speakers are
available in RSR2015, the combination reduces the relative
EER by 82.2% compared with the baseline that no data aug-
mentation is applied, and 58.8% compared with the system
that uses only noise and reverberation for data augmentation.

Table 3. EER(%) on RSR2015 test set when using different
data augmentation approaches. “N. & R.” represents noise
and reverberation. 10, 20, 50 and all the 97 genuine speak-
ers’ data are respectively mixed with the augmented data for
training.

Data Num spks used in RSR2015
Augmentation 10 [ 20 [ 50 [ 97
None 9.26 | 2.52 | 1.07 0.71
N. & R. 4.00 | 1.90 | 1.01 0.74
SynAug 2.18 | 1.14 | 0.71 0.61
SynAug + N. & R. | 1.65 | 1.10 | 0.75 0.66

5. CONCLUSION AND FUTURE WORK

In this work, we propose a novel synthesis based data aug-
mentation method, SynAug, which generates speech of new
speakers with a TTS system for text-dependent speaker verifi-
cation training. By generating speech with controlled speech
of new speakers, we show that SynAug can greatly benefit the
text-dependent speaker verification systems, especially when
the original training data is very limited. The experiments
on RSR2015 dataset demonstrates that using 200 augmented
speakers obtains a relative reduction of EER 14.1% when
all the 97 speakers in RSR2015 are available, and 76.5%
when only 10 speakers in RSR2015 are available. Moreover,
combined with conventional augmentation methods such as
adding noises and reverberation, the system performance
could be further boosted.
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