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Self-Supervised Learning With Cluster-Aware-DINO
for High-Performance Robust Speaker Verification

Bing Han"Y, Member, IEEE, Zhengyang Chen

Abstract—The automatic speaker verification task has achieved
great success using deep learning approaches with a large-scale,
manually annotated dataset. However, collecting a significant
amount of well-labeled data for system building is very difficult
and expensive. Recently, self-supervised speaker verification has
attracted a lot of interest due to its no dependency on labeled data.
In this article, we propose a novel and advanced self-supervised
learning framework based on our prior work, which can construct
a powerful speaker verification system with high performance
without using any labeled data. To avoid the impact of false negative
pairs, we adopt the self-distillation with no labels (DINO) frame-
work as the initial model, which can be trained without exploiting
negative pairs. Then, we further introduce a cluster-aware training
strategy for DINO to improve the diversity of data. In the iterative
learning stage, due to a mass of unreliable labels from unsupervised
clustering, the quality of pseudo labels is important for the system
performance. This motivates us to propose dynamic loss-gate and
label correction (DLG-LC) methods to alleviate the performance
degradation caused by unreliable labels. Furthermore, we extend
the DLG-LC from single-modality to multi-modality on the audio-
visual dataset to further improve the performance. The exper-
iments were conducted using the widely-used Voxceleb dataset.
Compared to the best-known self-supervised speaker verification
system, our proposed method achieve relative EER improvement of
22.17%,27.94% and 25.56 % on Vox-0O, Vox-E and Vox-H test sets,
even with fewer iterations, smaller models, and simpler clustering
methods. Importantly, the newly proposed self-supervised learning
system even achieves comparable results with the fully supervised
system, but without using any human-labeled data.

Index Terms—Self-supervised speaker verification, cluster-
aware dino, dynamic loss-gate, label correction, multi-modality.

1. INTRODUCTION

ECENTLY, deep learning methods have been widely ap-
R plied for speaker verification tasks and many efforts have
been made such as various model architecture [2], [3], [4], [5],
[6], training objection [7], [8], [9], pooling methods [10], [11]
and so on, to achieve performance improvement compared with
traditional methods such as Gaussian Mixture Model-Universal
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Background Model (GMM-UBM) [12], i-vector [13]. However,
all of these methods are based on fully-supervised training and
usually require large amounts of training data with accurate
human annotations. As we know, the collection of large-scale,
well-labeled data is actually very difficult and expensive.

Self-supervised learning is gaining traction as a means of re-
ducing dependency on labeled data. Currently, some researchers
are investigating its applicability to speaker verification tasks.
Inspired by the great success of speech pre-trained models,
e.g. wav2vec 2.0 [14] and HuBERT [15] in automatic speech
recognition (ASR) tasks, some researchers [16] utilized them to
extract the universal speech representation and apply to SV task.
However, since these pre-trained models lack explicit speaker
information, simply fine-tuning them on speaker verification
task does not yield optimal results. In the work [17], the speech
representation learned from large-scale unlabeled data was ex-
plored to replace the acoustic features, and then a deep neural
network was trained in a supervised way. Although a promising
performance was obtained, it still requires labeled data for
training, and the parameter size is too large for real applications
due to the large pre-trained model.

To fully leverage large-scale unlabeled data, inspired by text-
to-speech (TTS) task, a generative method has been investi-
gated in [18] to separate speaker representation with the help
of phone information. Subsequently, some researchers came
up with a hypothesis that speech segments truncated from the
same utterance belong to the same speaker, while those from
different utterances belong to different speakers. This hypothesis
is approximately true for speaker verification datasets. Based on
this hypothesis, several efforts [19], [20], [21], [22], [23] have
been made to obtain discriminative speaker representations by
maximizing information between different segments from the
same utterance via contrastive-learning. Then, inspired by [24],
an iterative learning framework [25] was developed to further
improve the performance of self-supervised SV systems. This
state-of-the-art system typically consists of two stages. In the
first stage, a contrastive learning-based objective function is
applied to train a speaker encoder. In the second stage, the
pre-trained model from stage I is used to estimate pseudo-labels
through clustering, which are then used as the supervised signal
to train a new encoder. This process is iteratively performed to
continuously improve the performance.

While this two-stage framework has shown performance
improvement [26], [27], [28], [29], [30], it has several short-
comings which impede the further improvement of the system
performance. For contrastive learning methods in stage I, speech
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segments cropped from different utterances are regarded as
negative pairs to be pushed away from each other in speaker
space. However, different utterances may belong to the same
speaker in the real situation, which means that this inaccurate
assumption might lead to errors. To tackle this problem, we
introduced a negative-pairs free framework named DINO [31]
to avoid the impact of the false negative pairs in our previous
work [1]. During the second iterative stage, [24], [25] have
proved that many pseudo labels generated by the clustering
algorithm lack reliability, which would confuse and degrade
the model. Researchers have conducted numerous studies on
speaker recognition with noisy labels [29], [32], [33], [34], and
one key approach is finding a way to select high-quality pseudo
labels for enhancing model performance. In [29], they observed
that the data with lower loss is more reliable than those with
unreliable labels, and then proposed a loss-gate learning strategy
to distinguish between reliable labels and unreliable labels by
setting a loss threshold. The network is only updated using data
with loss values below this threshold, ensuring the usage of
reliable data. Although this approach led to further improve-
ments, the use of manually set thresholds in each iteration limits
flexibility and fails to make use of data with unreliable labels.

To solve these problems, this paper further extends our prior

study [1] by focusing on novel algorithmic enhancements and
additional analyses. The main contributions are summarized as
follows:

1) Inour previous work [1], we introduced DINO [31] as the
self-supervised learning framework to obtain the initial
pre-trained model, which is negative-pairs free to avoid
the impact of the false negative pairs. Here, we propose
a cluster-aware (CA) training strategy for algorithmic
enhancement of DINO, which can improve the diversity
of data and then obtain better performance.

2) In addition, we provide several additional analyses about
dynamic loss-gate and label correction(DLG-LC).

3) Then, the DLG-LC method is further extended from au-
dio single-modality to audio-visual multi-modality. Multi-
modal data utilize multi-modal knowledge and make reli-
able label selection more efficient.

4) With these strategies, we achieve a great performance leap
compared with the state-of-the-art (SOTA) system with
self-supervised learning nowadays, even with fewer iter-
ations, smaller models, and simpler clustering methods.
More promisingly, this newly proposed self-supervised
learning framework can approach the fully supervised
system in performance which is trained in the same setup.

Recently, several DINO-based contemporaneous works have

been released. It’s noted that our work is done independently and
concurrently with [35], [36], [37], [38], [39] related methods.
No other papers were published when we submitted our work.
We also compare our model to these concurrent works in the
experiments and showcase the superiority of our methods.

II. SELF-SUPERVISED LEARNING FOR SPEAKER VERIFICATION

In this section, the commonly utilized two-stage self-
supervised speaker verification framework is reviewed,

including the first contrastive-learning stage for pre-trained
model and the second iterative learning stage.

A. Contrastive Based Self-Supervised Speaker Verification

Self-supervised learning (SSL) is a type of unsupervised
training that utilizes pretext or proxy tasks to learn the rep-
resentations from the data itself. Common SSL methods can
be broadly classified into two categories: generative [18] and
contrastive [20], [21], [22], [23] methods. In speech application,
based on the hypothesis that segments sampled from the same
utterance belong to the same speaker while those from different
utterances come from different speakers, most studies of SV
tasks focus on contrastive learning approaches. Among them,
SimCLR [40] is one of the most popular contrastive learning
frameworks. Its basic idea is to minimize the distance between
the representations of augmented segments cropped from the
same utterance as well as maximize the distance between neg-
ative pairs from different utterances. Besides, the MoCo [41]
framework further improves performance by incorporating a dy-
namic dictionary with a queue and a moving-averaged encoder.
Based on these frameworks, many works such as equilibrium
learning [20], augmentation adversarial training [21], channel-
invariant training [22], prototype momentum [23] are proposed
to learn more discriminative speaker representation.

B. [terative Framework for Self-Supervised Speaker
Verification

Considering that contrastive learning can naturally introduce
label error and might degrade the model performance when
the cluster indices of its learned embeddings are directly used
as pseudo labels, in [25], they proposed an iterative, self-
evolving framework to further improve the performance of
self-supervised speaker verification systems. This framework
is mainly divided into two stages, and they are illustrated as
follows:

e Stage I: Pre-training

1) Use contrastive learning or other self-supervised learn-
ing methods to pre-train a speaker encoder as the initial
model.

2) With the pre-trained model, extract the speaker embed-
dings for the training set and then apply a clustering
algorithm to assign pseudo labels.

e Stage II: Iterative training and pseudo labeling.

1) Train a new encoder with the pseudo labels generated
by the previous step.

2) Perform a clustering algorithm to update pseudo labels
with the new encoder.

3) Repeat stage II several times until the model converges.

Although this framework requires high computing resources
due to the several iterations, it is widely used in [26], [27], [28],
[29], [42] for its advanced performance. In addition, this frame-
work is extended to the audio-visual dataset in [30] and achieves
better performance with the help of multi-modal information in
the clustering algorithm.
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TABLE I
PROBABILITY OF REPEAT SPEAKER IN A BATCH

Batch Size B) | 16 32 64 128 256
Probability | 0.020 0.080 0286 0.745 0.996

III. CLUSTER-AWARE-DINO FOR SPEAKER VERIFICATION

For contrastive learning-based methods in previous works,
they shared the same assumption that segments cropped from
the same utterances form positive pairs and those from different
utterances in a batch belong to different speakers. But this
assumption does not hold all the time because repeat speakers
might appear in the same batch. Taking the statistics on Voxceleb
2 as an example, we can compute the probability of repeat
speakers on Voxceleb 2 by (1) and the results are listed in Table I.

P(N,B N!

Drepeat(N, B) =1 — % =1- m (D
where N is the speaker number in training set (N = 5994
for Voxceleb 2), B is batch size and P(N, B) = (N]fjg)! is
B-permutation of V.

According to the Table I, a larger batch size leads to a higher
probability of repeating which will cause a negative impact on
the model. We can use a small batch size to alleviate this problem,
but it will degrade the performance [41].

A. DINO Based Self-Supervised Learning

To tackle this problem, negative-pairs free DINO [31] is
introduced to the self-supervised speaker verification task, and
the whole framework is shown in Fig. 1.

Firstly, 4 short {x5, 25, x5, 25} and 2 long segments {z!, 25}
are randomly sampled from an utterance using a multi-crop
strategy [43]. The long segments allow for the extraction of more
stable speaker embeddings. It is notable that when sampling,
these segments should overlap as little as possible. Same as
the previous works [20], [21], [22], [23], we still obey the
assumption that the segments cropped from the same utterance
belong to the same speaker and then apply different kinds of
data augmentation on them by adding noise or room impulse
response for robust performance. Unlike SimCLR [40], which

p2 logp1

> - |
Short ;
cosine similarity l EMA
, T Teacher
> Long| —» : Encoder
Fig. 1.

Stop
Gradient
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Head

Framework of distillation with no label (DINO) for self-supervised speaker representation learning.

only uses one encoder to do contrastive learning, our model
consists of not only a student encoder but also a momentum
teacher encoder whose architecture is similar to knowledge
distillation [44]. After augmentation, all segments pass through
the student encoder while only the long segments pass through
the teacher encoder, thus encouraging the short-to-long corre-
spondences by minimizing the cross-entropy H (-) between two
distributions, as shown in the following (2):

2. )y

ze{z! zb} a'e{xl 2,25, x5}

Lce = H(Pf(z) ‘ P@(zl)) (2)

where output distributions of momentum feacher network fy,
and student network fy_ are denoted by P; and P, respectively.
And P can be computed by using a softmax function to normal-
ize the output:

fo.(x)

€

Py(xz) = Softmax( ) 3)
where €; > 0 is the temperature parameter that can control the
sharpness of the output distribution. Similarly, there is a formula
that holds for P, with temperature €; > 0, too. Moreover, a
mean statistic ¢ computed over batches is used for centering
teacher model’s output distribution by fy, (x) = fg, (x) — ¢, and
the statistic ¢ is updated during the training process with a
moving average strategy. During the training, both sharpening
and centering are applied to avoid trivial solution [31].

The teacher and student models own the same architecture but
different parameters due to the different update methods. The
student model is updated by gradient descent while the teacher
model is updated by the exponential moving average (EMA) of
the student’s parameters. The EMA update rule is defined as
follows:

0 < A0, + (1 — 1)04 4)

where A is adjusted by a cosine schedule [45] from 0.996 to 1
during training. Speaker embeddings are extracted by Encoders
and then passed through the Projection Head, which is composed
of a 3-layers perceptron with a hidden dimension of 2048,
followed by /s normalization and a weight normalized fully
connected layer with K dimensions. The whole architecture is
similar to [31].
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In addition, a cosine-based consistency loss is added to ensure
that the speaker embedding is encoded into cosine space which
is more suitable for the scoring and clustering in the following.
It works by maximizing the cosine similarity among the embed-
dings extracted from the same speaker. Finally, the total loss is
summarized with coefficient a:

/
)
llell 1le’l

&)
where e represents the extracted speaker embedding from the
encoder.

Liino = Lee + @ Z Z

ee{ell,eg} e'efe} ,eé,ei,...,ei}

B. Cluster-Aware Training on DINO

In traditional DINO, all segments are sampled from the same
utterance to form positive pairs. However, due to the limited
duration of the utterances, these segments usually have a great
degree of overlaps. As mentioned above, the optimization of
DINO is encouraging short-to-long correspondences by mini-
mizing the cross-entropy between two distributions of positive
pairs. Because there are a lot of overlapped parts in the segments,
the model might pay more attention to the linguistic content,
channel and other irrelevant information of the overlapped parts,
and ignore the speaker information in the audio. Although we can
add different types of data augmentation to segments, the data
still lacks diversity, which could lead the model optimization in
the wrong direction.

In order to reduce the overlaps of segments and increase
the diversity in the segments for long-short correspondence,
we propose to crop segments with being aware of cluster in-
formation, which is named CA-DINO in the following. More
specifically, we divide model training into two stages. In the
early stage of training, we optimize the model according to the
traditional DINO strategy. Once the model has converged and
can extract discriminative speaker representations, the training
process will enter the next stage. Here, we perform a clustering
algorithm using the extracted speaker embeddings, assuming
that utterances in the same cluster belong to the same person.
As shown in Fig. 2, the positive pairs are sampled from several
utterances belonging to the same cluster rather than a single
utterance. These pairs may come from the same speaker but with
different speaking contents and channels, which leads to a high
data diversity and makes the model pay more attention to the
speaker’s information instead of irrelevant factors. Considering
the resource consumption of extracting the speaker embeddings,
the clustering operation will be done every few rounds.

IV. ITERATIVE LEARNING WITH DYNAMIC LOSS-GATE AND
LABEL CORRECTION

Based on the proposed CA-DINO self-supervised learning,
we then apply the iterative learning framework [25] to further
improve the performance of self-supervised SV. During the
iterative process, a serious problem is that the generated pseudo
labels contain a lot of noises which will confuse and degrade the
network. Considering this limitation, several works have been
done to select high-quality pseudo labels. In [25], an aggressive

— 1
] [ 4‘L
| | |Short Short
4 L
1
B T
Long Long
(a) (b)

Fig.2. Difference between traditional DINO and cluster-aware training DINO.
(a) Traditional DINO:long and short segments are sampled from the same
utterance to compose the positive pairs. (b) Cluster-aware training DINO:
through a simple clustering algorithm, we consider that the same speaker in
the same cluster shares the same identity and segments are cropped from the
corresponding cluster.
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Fig.3. Loss distribution of Loss-gate (LG) learning [29] on Voxceleb 2 [46].
Loss value is scaled by log function, and the lines are estimated by GMM with
two components.

training method is applied to purify the labels using clustering
confidence but achieves minor profit. In [29], they conducted a
toy experiment and observed that data samples with lower loss
is more reliable. Then, they propose a loss-gate (LG) strategy to
select the data with lower loss by setting a fixed threshold and
only use these data to update the model. With the LG strategy, the
system achieved obvious improvement, but the threshold setting
in this method is heavily dependent on human experience, and
unreliable data are not fully utilized.

In this section, we will introduce our proposed DLG-LC
to adjust the loss-gate threshold dynamically and correct the
unreliable pseudo label to fully utilize the data, and then this
DLG-LC approach is extended to utilize the multi-modality for
further improvements.

A. Dynamic Loss-Gate

In order to determine an appropriate loss-gate threshold, we
implemented the LG learning and visualized it to analyze the
distribution of loss values on Voxceleb 2 [46] dataset. The
histogram of loss values is provided in Fig. 3. According to the
figure, there exist two sharp peaks in the distribution obviously.
And similar experiments conducted in [47] have shown that data
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with reliable and unreliable labels can be represented by two
peaks respectively. If we can find a way to model the distribution,
then the loss-gate threshold can be determined dynamically as
the loss distribution varies, which can avoid laborious manual
tuning.

Gaussian distribution is an important continuous probability
distribution of real-valued random variables, whose general
form of the probability density function is defined in (6).

1 1 <:c - u) 2 ©)
= exn| ==
ovV2m P\ 72 o
where location parameter and scale parameter are denoted by
1 and o respectively. The Gaussian distribution is known for
its bell-shaped curve, with low values on both sides and high
values in the middle, which is very similar to the “peaks” of
loss observed in Fig. 3. In this case, Gaussian Mixture Model
(GMM) with two components can be applied to model the loss
distribution of reliable and unreliable samples respectively:

p(x) = LN (p1,07) + AN (2, 03) (7

where A; and Ao represent the weights for two Gaussian com-
ponents. After fitting, the fitted curves are plotted in Fig. 3, it’s
obvious to find that the two weighted Gaussian components can
be used to approach these two “peaks”. Then, by computing the
loss values whose probabilities belonging to the two components
are equal, the loss-gate threshold 71 can be obtained easily to
distinguish between the reliable and unreliable data:

N (p,0%) =

71 p1(71) = pa(m1) ¥

where pi(z) = 21N (u1,07) and pa(x) = 22N (p2, 03). For
each epoch, all loss values are recorded for re-estimating the
parameters of GMM, so 7 can be tuned dynamically according
to the current training condition.

Our DLG introduces this dynamical loss-gate threshold 7y
into the speaker classification loss function ArcMargin Softmax
(AAM) [48] to select the data and only these retained data with
losses under the threshold are used to update the parameters of
the network.

1 B es(cos(ey,i,i—km))
Lpre = B ; L0, rean<ri 108 - 9)
where Z = es(cos(eyiymtm)) + Z;:l,j;ﬁi es(cos((?yi,f,))’ ej,i is the
angle between the column vector IW; and speaker embedding
€;,aug Of the augmented segment. 1 here denote the Indicator
function, B is batch size, ¢ is number of speaker, s is the scaling
factor and m is hyper-parameter to control the margin. AAM can
enforce larger gaps between the nearest speakers and is widely
adopted in speaker recognition tasks.

B. Label Correction

For samples with larger loss values than loss gate threshold
71, it’s hard to assign reliable pseudo labels by the unsupervised
clustering algorithm, and we call them hard samples. Instead
of dropping them away directly [29], we propose the label
correction (LC) strategy to correct unreliable pseudo labels

Algorithm 1: The Proposed Dynamic Loss-Gate and Label
Correction.

Input: mini-batch D, = {(x1,22,y)}], where 1 and z2 are
different crops from the same utterance; two threshold 71 and
T2; Network g(-) including a speaker encoder and a classifier
1 ; sharpness factor €. Output: the loss of the mini-batch
2 for (z1,z2,y) € Dm do

3 Teleans Taug = T1, augment(zz) # augment one segment

4 Pcleans Paug = g(xcleun)’ g(maug) # output distribution

5 Compute the AAM-softmax 10ss l¢jeqn and laug according the
pseudo label y

6 Record the l.jcqn value

7 if lejean < 71 then

8 ‘ return lgug # pseudo label y is reliable

9 else

10 if max(pciean) > T2 then

11 Pelean = sSharp(Peiean, €c) # sharpen the distribution

12 compute the cross-entropy ! between peieqrn and paug

13 return [

14 else

15 \ return 0 # prediction isn’t reliable

16 end if

17 end if

18 end for

19 After one epoch, re-estimate the GMM on the recorded loss values
and then update the 71

automatically during the training process so that we can utilize
these hard samples effectively. Researchers in [33], [34] have
indicated that the network is capable of clustering noisy samples
into their correct classes. To leverage this ability, we hypothesize
that the output prediction of the model is more reliable than
pseudo labels generated by clustering. Thus the predicted poste-
rior probability is regarded as the target labels and incorporated
into the objective loss function to prevent the model from fitting
into inaccurate labels. However, not all prediction labels are
suitable for training. Inspired by [49], [50], we assume that the
prediction label owns high confidence if the model assigns a
high probability to one of the possible classes. Then, another
fixed threshold 7 is introduced to retain the prediction whose
probability of largest class is above 7, and the label correction
loss is defined as the following (10):

1 B
LLC = E E ]lliycz€an>7'1,max(pirclmn)>72H(pi,clean |pi,aug)

i=1
(10)
where p; 4.4 represents the output probability of augmented seg-
ments and p; cjcqn represents their corresponding clean version
(without any data augmentation strategies). H (-) here denotes
the cross-entropy loss function between two probability distri-
butions. In addition, to encourage a peaky distribution, p; cjean
is obtained by applying a sharpening operation with sharpness
factor €. which is described in (3).
Then, the DLG loss and LC loss are combined to optimize the
speaker model as (11).

L=Lprg+Lic (11)

More specifically, the pseudo-code for describing the flow of
the DLG-LC algorithm is provided in detail and shown in
Algorithm. 1.
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C. Incorporate With Multi-Modality

The researchers in [30] have introduced the multi-modality
information into the data clustering step to generate more ac-
curate pseudo labels in self-supervised speaker verification. In
our work, considering that the audio and visual features from
the same video share the same speaker identity, we also try to
enhance our DLG-LC method by integrating visual modality to
utilize data more effectively and achieve better performance. Our
fusion of visual information is mainly divided into two aspects:
firstly, to aid DLG-LC in selecting more dependable data, and
secondly, to improve the clustering results during data clustering.

1) Multi-Modal Based DLG-LC: Different from the single-
modal DLG-LC, our strategy of selecting reliable data has
been slightly adjusted. For multi-modal data, we will use two
independent encoders to encode audio and visual data separately.
Then, by recording the loss values, we can obtain two loss-gate
thresholds for audio and visual respectively. For an audio-visual
instance, it can be regarded having a reliable label only if its loss
values are both under these two loss-gate thresholds. We then
optimize these instances using AAM softmax, as defined in (9).

For unreliable data, the multi-modal label correction (LC) will
be performed on it. First, we compare whether the predicted la-
bels of the two modal networks are consistent. If the predictions
of the two models belong to the same class, it indicates that the
accuracy of the prediction is relatively high. Unlike single-modal
LC, which uses soft labels for training, our output is verified by
multi-modal, which has higher reliability. As a result, we use the
“hard” labels (i.e. the arg max of the model’s output distribution
Delean) 10 Optimize the Py, 4 using AAM softmax. If the network
disagrees with the predicted labels, then we use the soft labels
to optimize models separately based on (10).

2) Multi-Modal Based Data Clustering: During the previous
training step, the multi-modal information was only used to
select reliable data, and the models of the two modalities were
not structurally related. As a result, we can obtain audio g,(-)
and visual encoders g, (-) independently. Given a dataset with
audio x, and visual modality x,,, we can use a trained encoder
to extract audio embedding e, and visual embedding e, respec-
tively. To leverage the complementary information present in
both modalities, we apply an additional clustering on the joint
representation e,,, = (eq, €, ), Which is formed by concatenating
the audio and visual embeddings. With the joint operation, the
representation will be more discriminative and the cluster will
be more robust. Then, pseudo labels for the next iteration will be
generated by k-means on these audio-visual joint embeddings.

V. EXPERIMENTS SETUP
A. Dataset

The experiments are conducted on Voxceleb [46], [51] which
is a large-scale audio-visual dataset for the speaker recognition
task. For the model training in stages I and II of self-supervised
learning, we adopt the development set of Voxceleb 2 [46] for
training the networks, and no speaker identity information is
used during this process. Because we introduced visual features
into the iterative learning stage, we excluded some utterances

with the video missing in the data set. Then, the final audio-
visual training set includes 1,091,251 utterances among 5,994
speakers, extracted from YouTube.

For the evaluation, we report the experimental results on
3 trials as defined in [46]: the Original, Extended, and Hard
Voxceleb test sets. Vox-O is the original test set of Voxceleb
1 contains 37,720 trials from 40 speakers. Vox-E is a trial list
which (using the entire dataset) contains 581,480 trials from
1251 speakers. Vox-H is a hard evaluation list consisting of
552,536 pairs sampled from 1190 speakers in Voxceleb 1, all of
which are from the same nationality and gender.

B. Metrics

The main metrics adopted in this paper are (i) Equal Error Rate
(EER) which is the error rate when both acceptance and rejection
rates are equal, and (ii) the normalized minimum Detection Cost
Function (minDCF) which is defined by (12) :

Cdet = Cmiss X Pmiss X Ptar + Cfa X Pfa X (]- - Ptar)
(12)
where we set the prior target probability P;,,- as 0.01 and equal
weights between misses Cp,;ss and false alarms C,. Both
EER and minDCF are commonly used as evaluation metrics
for speaker verification systems.

C. Data Augmentation

1) Audio: To generate extra training samples and increase
the diversity of data, we perform online data augmentation
strategy [52] by adding background noise or convolutional
reverberation noise from MUSAN [53] and RIR dataset [54]
respectively. The noise types in MUSAN include ambient noise,
music, television, and babble noise for the background additive
noise. We can obtain augmented data by mixing the noise
with the original speech in time-domain waveform directly and
the signal-to-noise ratios (SNR) are randomly applied between
5 to 20 dB. For the reverberation, the convolution operation
is performed with 40,000 simulated room impulse responses
(RIR) [54]. After applying the augmentation, we normalize the
waveform value for stable training. We used 80-dimensional log
Mel filter-bank energies with 25 ms length Hamming windows
and 10 ms window shift as the acoustic features, while no voice
activity detection (VAD) is involved in our experiments.

2) Visual: For each video segment in VoxCeleb 1 & 2
datasets, images are extracted at one frame per second. Then, we
align the faces in extracted frames using the landmarks predicted
by MTCNN [55] and after that, the similarity transformation is
used to map the face region to the same shape (3 x 112 x 96).
To enhance the quality of the visual features, we resize each
image to the most common size of the model (3 x 224 x 224).
In the following, several data augmentation strategies including
random color distortion, random horizontal flipping, random
grey scaling, and random Gaussian blur are applied to the
original images with 0.8 probability. Finally, we normalize the
pixel value of each image to the range of [—0.5, 0.5] before
feeding it into the model.
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TABLE II
MODEL ARCHITECTURE OF VISUAL ENCODER RESNET34 [60]

Layer Structure Output Size
Input 3xLxL
Conv2D ( % 3,32) 32xLxL

P C(3 X 3 32) L L
Residual Block 1 0(3 X 3,32) X 3, stride 2 2xFXZ

. 0(3 X 3, 64) . L L
Residual Block 2 0(3 X 3.64) , stride 2 64 x 7 X 7

. C(3 X 3 128) . L L
Residual Block 3 0(3 % 3’ 128) X 6, stride 2 128 X ¢ X §

1 C(3 X 3, 256) . L L
Residual Block 4 C(3 X 3,256) X 3, stride 2 256 x 16 X 16

Embedding - 192

C (kernal size, channel) denotes the convolutional 2D layer. [] represents the
residual block and L is the image size of input.

TABLE III
MODEL ARCHITECTURE OF AUDIO ENCODER ECAPA-TDNN [56]

Layer Structure QOutput Size
Input FxT
ConvlD C(5 512) 512 x T
C(1,512)
SE-Res2Block 1 C(3,64) x 8, dilation 2 512 x T'
C(1,512)
C(1,512)
SE-Res2Block 2 C(3,64) x 8, dilation 3 512 x T'
C(1,512)
C(1,512)
SE-Res2Block 3 C(3,64) x 8, dilation 4 512 x T'
C(1,512)
ConvlD C(1,1536) 1536 x T'
Pooling Layer Attentive Stat Pooling 3072 x 1
Embedding - 192

C (kernal size, channels) denotes the convolutional 1D layer. F is the
dimension of the input acoutic features which is determined by the number
of frequency bins of the Mel spectrogram. T relates to the frames of the
speech segments.

D. CA-DINO Setup

1) DINO: For DINO, considering the training time and
memory limitation, we adopt ECAPA-TDNN [56] as an audio
encoder to learn discriminative speaker representation, which
is a time-delay neural network (TDNN) [3] based backbone
with emphasized channel attention, propagation, and aggrega-
tion. It employs a channel- and context-dependent attention
mechanism [57], Multi-layer Feature Aggregation (MFA), as
well as Squeeze-Excitation (SE) [58] and residual blocks. The
model architecture of ECAPA-TDNN is shown in Table III .
For each utterance, two long (3 seconds) and four short (2 sec-
onds) segments are randomly cropped and regarded as positive
pairs. It is worth noting that all the segments will be applied
with data augmentation, and after that, they are encoded into
192-dimensional speaker embeddings by the encoder. Similar
to the configuration in [31], the K in the DINO projection head
is set as 65,536. Temperatures for the teacher ¢, and the student
€5 are 0.04 and 0.1 respectively. In addition, we set cosine loss
weight «vas 1.0 to balance two losses. The whole training process
will last 150 epochs. Model parameters are updated using the

stochastic gradient descent (SGD) algorithm with weight decay
5e-5. The learning rate is linearly ramped up from O to 0.2 in
the first 20 epochs, and then it decays to 1e-5 with the cosine
schedule [45]. Moreover, the momentum also follows the cosine
schedule from 0.996 to 1.0.

2) Cluster-Aware Training: For cluster-aware training strat-
egy, we train the model normally in the first 90 epochs. After that,
a clustering algorithm is applied on the whole training set every
5 epochs, which is supported by faiss library [59]. Considering
the time complexity and the amount of training data, we only
utilize k-means here which requires a few extra computations.
The results of clustering are used for the generation of training
data. Positive pairs are sampled from utterances belonging to the
same cluster rather than the single one.

E. DLG-LC Setup

1) Single Modality: In this stage, for a fair comparison
with [29], we also adopt ECAPA-TDNN [56] as our audio
encoder to extract speaker embedding. For clustering, we choose
k-means algorithm to assign the pseudo label to the training
set. Unlike some works [29], [30], [42] that directly regard the
number of real speakers as the number of clusters, we choose
7500 as the cluster number to verify the robustness of our
method. For LC, sharpening parameters €. and threshold 7 are
set as 0.1 and 0.5 respectively. The learning rate decays from
0.1 to 5e-5 exponentially and we set the momentum and weight
decay as 0.9 and le-4. Finally, the training process will last
100 epochs.

2) Multi Modality: For audio-visual based DLG-LC, except
for the addition of an image encoder, other configurations are
consistent with the single-modal. We employ the ResNet34 [60]
as the backbone network for the visual encoder, which is similar
to the recent works [61], [62]. More detail is shown in Table II.

VI. EXPERIMENTAL RESULTS

The experiments are performed in six parts. In Section VI-A,
a performance comparison of the proposed Cluster-aware DINO
with previous works in stage I are reported, and we discuss
how the number of clusters affects the cluster-aware training
strategy. In Section VI-B, we report the speaker verification per-
formance of CA-DINO finetuned on the small-scale labeled data.
In Section VI-C, an ablation study of our proposed DLG-LC
is given to demonstrate its effectiveness. Then, Section VI-D
and Section VI-E showcase how our proposed DLG-LC can
improve the performance in both single-modal and multi-modal
scenarios. Finally, in Section VI-F, we provide a comprehensive
comparison between our newly proposed self-supervised learn-
ing method and previous works to demonstrate the superiority
and robustness of our system.

A. Evaluation of CA-DINO Based Speaker Verification

Table IV summarizes the speaker verification performance of
our proposed methods and compares them with other previous
self-supervised speaker models. All the methods are trained
on Voxceleb 2 without any speaker label and evaluated on the
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TABLE IV
PERFORMANCE COMPARISON OF THE PROPOSED CA-DINO WITH OTHER
SELE-SUPERVISED SPEAKER VERIFICATION METHODS

SSL. Methods EER (%) minDCF
Disent [63] 22.090 -
CDDL [64] 17.520 -
GCL [19] 15.260 -
i-vector [21] 15.280 0.63 (p=0.05)
AP + AAT [21] 8.650 0.45 (p=0.05)
SimCLR + uniform [22] 8.280 0.610
MoCo + WavAug [23] 8.230 0.590
Unif+CEL [20] 8.010 -
*DINO [35], [37] 4.830 -
*C3-DINO [36] 3.300 -
*DINO (Raw waveform) [38] 5.400  0.340 (p=0.05)
*DINO + Curriculum Learning [39] 4.470  0.306 (p=0.05)
DINO 31.233 0.990

+ EMA 4.404 0.434

+ + Cluster Aware (CA) 3.585 0.353

* Contemporaneous works when this paper is under review.
SSL means Self-supervised learning. EER (%) and mindcf (p=0.01) are evaluated
on Vox-O test set.

Vox-O test set. According to the results, we can find that the
methods based on contrastive learning [20], [21], [22], [23] have
greatly improved the performance compared with the traditional
works [19], [63], [64]. And negative-pairs-free DINO-based
methods also achieve a great performance leap again compared
to contrastive learning based methods which rely on and positive
and negative pairs. It shows that negative pairs are indeed a
bottleneck for performance improvement. It’s noted that our
baseline achieves the comparable result of contemporaneous
works [35], [37], [38], [39] except C3-DINO [36] because it’s
trained with larger batch size and longer segments which is high
demand for large computation resources.

In addition, we also provide the ablation study at the bottom
of Table IV. When we train the DINO without the exponential
moving average (EMA), it’s difficult to converge and only ob-
tains a very bad result which demonstrates that EMA is the key to
preventing the model from collapsing. Then we apply the cluster-
aware (CA) strategy when training the DINO, the performance
has been further improved. The proposed CA-DINO achieves
an EER of 3.585%, with 55.24% relative EER improvement
compared with the best previously published performance of
contrastive learning based self-supervised SV system [20].

During the cluster-aware training, there exists a k-means clus-
tering operation. We also conducted an experiment to explore
the influence of the number of clusters on the performance
and the results are reported in Table V . The motivation of
cluster-aware training is to increase the diversity of positive
pairs. Due to the lack of ground truth, it is inevitable to intro-
duce false positive pairs when increasing diversity. Normalized
Mutual Information (NMI) is a good measure for determining
the quality of clustering, which can be used to evaluate the
trade-off between the diversity and false positive pairs. Assume
that the true speaker labels is U and the predicted pseudo labels
is V, NMI measures the clustering quality by computing the
information shared between U and V':

2x I(U;V)

13)

TABLE V
PERFORMANCE COMPARISON OF CLUSTER-AWARE TRAINING WITH DIFFERENT
CLUSTER NUMBERS

# Cluster | 1080k 30k 20k 10k 5k
NMI | 0753 0.891 0902 0912 0.898
Ps, | 0.000 0.054 0.074 0.127 0.233
Navg | 1.00 36.37 5456 109.13  218.25

EER(%) | 4404 3909 3946  3.585 3.978

EER (%) is evaluated on VOX-O test set. 1080 k here means that one utterance is
one class, which is equivalent to training without the cluster-aware strategy. NMI
denotes normalized mutual information. Py, denotes the probability of false positive
pairs from the same cluster. N, denotes the average number of utterances
belonging to same cluster, which can reflect diversity.

TABLE VI
EER(%) COMPARISON OF FINETUNING THE PRE-TRAINED SELF-SUPERVISED
MODEL WITH DIFFERENT AMOUNT OF LABELED DATA FROM VOXCELEB 1

Initial Model  None 10% 20% 50% 100%
Random 3278 6.893 5276 3.691 2.755
SimCLR 8.547 4388 3.797 3.266 2936
CA-DINO 3.585 2393 2356 2.016 1.835

Results are evaluated on Vox-O which is the test set of voxceleb 1.

where I(U; V) is the mutual information between U and V,
and H () denotes entropy. From the results, it is observed that
NMI is positively correlated with the results, and our proposed
cluster-aware training strategy can improve the NMI effectively
and bring stable improvements for all the given number of
clusters compared with the baseline system (1080 k). Mean-
while, CA-DINO with 10 k cluster number outperforms other
systems which shows that the reasonable setting for the number
of clusters can maximize the performance improvement.

B. Evaluation of CA-DINO With Pretrain-Finetune
Framework With Labeled Data

To better illustrate the superior performance of our proposed
CA-DINO, we conduct an exploration of self-supervised learn-
ing using the pretrain-finetune framework, i.e. fine-tuning the
self-supervised model with a small amount of labeled data in
the downstream speaker verification task. We randomly sample
10%/20%/50%/100% labeled utterances from Voxcelebl [51]
as the supervision and finetune the self-supervised models with
these data.

As shown in Table VI , it is observed that self-supervised
models, both SimCLR and proposed CA-DINO, made great
improvements compared with model training from scratch,
which shows that a pretraining model with better initialization
is very important in low-resource conditions. Moreover, com-
paring the proposed CA-DINO with SimCLR, the proposed
non-contrastive CA-DINO outperforms SimCLR obviously and
can obtain a good performance position only with few labeled
data in downstream speaker verification tasks. Moreover, with
only 10% part of the labeled data, CA-DINO even achieves a
better performance than the fully supervised system, i.e. 2.393%
vs. 2.755%, which is meaningful to economize lots of manual
annotation.
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TABLE VII
EER (%) COMPARISON ON VOX-O, E, H OF THE PROPOSED DLG-LC IN
ITERATION 1

Method Threshold Vox-O Vox-E  Vox-H
SimCLR - 6.281 7.428 11.54
DINO - 3.287 3.613 6.039
CA-DINO - 2.909 3.315 5.692
CA-DINO

+ LG [29] 0.5 2.684 3.129 5.277

+ LG [29] 1 2.441 2.930 4.892

+ LG [29] 2.516 3.037 5.094

+ LG [29] 5 2.553 3.052 5.173
CA-DINO

+ DLG Dynamic 2.186 2.473 4.306

++ LC Dynamic 2.021 2.331 4.012

In this experiment, pseudo labels are estimated from our pre-trained CA-DINO
system. SIMCLR and CA-DINO here mean we used all the data with the estimated
pseudo labels as the supervisory signal without any data selection strategy during
the system training.

C. Evaluation of Proposed DLG-LC

Based on pseudo labels generated by pre-trained models in
stage I, we conducted some experiments to illustrate the effec-
tiveness of our proposed methods. The corresponding results
are presented in Table VII . Firstly, following the iterative
learning framework proposed by [25], we estimate the pseudo
labels based on the speaker embedding extracted by CA-DINO
and train a new encoder using these labels. To showcase the
superiority of our method, we also trained a model based on
SimCLR which is the most popular self-supervised speaker
verification method [22]. From the results in the Table, we can
see that the model based on CA-DINO outperforms SimCLR
and DINO on all test sets with a significant improvement. Then
based on pre-trained CA-DINO, we also conduct an exploration
of DLG-LC in Iteration 1. According to the results, it can be
observed that the loss-gate (LG) learning with fixed thresholds
to select data can bring significant improvement compared with
the system trained without any data selection. This indicates
that loss-gate can effectively select reliable labels, which are
of benefit to the model. However, we also try to set different
thresholds (0.5, 1, 3, 5), and find that the choice of threshold
also has a non-negligible impact on model performance [29].
Based on the estimated GMM, our proposed dynamic loss-gate
(DLG) can adjust the threshold dynamically to consider the
current training situation and achieve better performance than
LG which only adopts a fixed threshold during the whole training
process. In addition, we apply the label correction (LC) strategy
to make full use of data with unreliable labels, and the results are
further improved. Compared with the baseline system (SimCLR
without data selection), the proposed CA-DINO with DLG-LC
outperforms it with a relative 70.05%, 68.61%, 65.23% EER
reduction on Vox-O, Vox-E, and Vox-H sets, respectively.

To understand how the dynamic loss-gate (DLG) changes
and filters the reliable data, we visualize it and present it in
Fig. 4. Different from LG [29], which pre-trains the model
on whole data and then fine-tunes with a fixed threshold, our
DLG can repeat this process automatically by increasing and
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Fig. 4. Dynamic loss-gate threshold versus epoch (Up) and selected data
proportion under loss-gate versus epoch (Down).

decreasing the threshold. In this repetitive process, more and
more reliable data are filtered by dynamic threshold and utilized
to optimize the model, which leads to performance improvement
over multiple cycles of iterative training pipeline.

D. Iterative Learning With DLG-LC

In order to further demonstrate the superiority of our proposed
method, we carried out several rounds of iterative training fol-
lowing [25]. In this training process, we trained the speaker net-
work with the pseudo labels iteratively and updated the pseudo
labels using the new converged network. Table VIII summarizes
the performance of EER and minDCF of each iteration with
and without the proposed DLG-LC strategy on Vox-O, Vox-E,
and Vox-H test sets. Firstly, we compare the iterative results of
SimCLR and CA-DINO respectively, both of which were trained
without any loss-gate strategies. According to the results, it is
observed that the iterative learning method can continuously
improve the performance of the system with the increase of itera-
tion number. However, the convergence speed based on SimCLR
is significantly slower than that based on CA-DINO. SimCLR
does not converge even in the 5th round, while CA-DINO
has achieved the best performance position in the 3rd round.
In addition, the final performance of SimCLR with iterative
learning is still worse than the initial performance of CA-DINO.
The proposed CA-DINO owns consistently large advantages
over SImCLR in each iteration which further demonstrates the
superiority of the proposed CA-DINO in self-supervised speaker
verification.

Based on the pseudo-labels generated by CA-DINO, we ap-
plied the proposed strategy of DLG-LC, and the performance
significantly improved further. It only took one round of iteration
to obtain better results than three rounds of iterations without
DLC-LC, showing the importance of dynamic threshold filtering
and label correction on data usage. After convergence with more
iterations, its performance is much better than the system without
DLG-LC. It shows that the proposed DLG-LC can not only
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TABLE VIIT
EER (%) AND MINDCF (P=0.01) COMPARISON ON VOX-O, VOX-E, AND VOX-H TEST SETS FOR DIFFERENT ITERATIONS OF THE PROPOSED DLG-LC WITH
OTHER STRATEGIES

Initial Model DLG-LC Iteration Vox-O Vox-E Vox-H
EER(%) minDCF EER(%) minDCF EER(%) minDCF
Initial 8.547 0.6453 9.228 0.6912 14.21 0.7757
1 6.281 0.5811 7.428 0.6221 11.54 0.7213
SimCLR x 2 5914 0.5299 6.745 0.5880 10.54 0.6971
3 5.547 0.5259 6.407 0.5580 10.14 0.6698
4 4.872 0.4651 5.593 0.5144 8.923 0.6408
5 4.484 0.4545 5.225 0.5055 8.501 0.6321
Initial 3.585 0.3529 3.852 0.4182 6.918 0.5743
1 2.909 0.3000 3.315 0.3372 5.692 0.4654
CA-DINO X 2 2.606 0.2887 3.181 0.3211 5.403 0.4489
3 2.558 0.3054 3.064 0.3176 5.342 0.4482
4 2.643 0.2825 3.065 0.3200 5.291 0.4483
Initial 3.585 0.3529 3.852 0.4182 6.918 0.5743
1 2.021 0.2171 2.331 0.2419 4.012 0.3484
CA-DINO v 2 1.596 0.1665 2.004 0.2089 3.484 0.3083
3 1.585 0.1671 1.879 0.1963 3.293 0.2941
4 1.606 0.1636 1.906 0.2028 3.274 0.2955

SimCLR and CA-DINO without DLC-LC mean that we used all the estimated pseudo labels of the data without data selection in the training

process.

TABLE IX
EER (%) AND MINDCF (P=0.01) COMPARISON ON VOX-O, VOX-E, AND VOX-H TEST SETS FOR DIFFERENT ITERATIONS OF THE PROPOSED DLG-LC WITH
SINGLE- OR MULTI-MODALITY

Training Modality  Iteration Vox-O Vox-E Vox-H
EER(%) minDCF EER(%) minDCF EER(%) minDCF
Audio Initial 3.585 0.3529 3.852 0.4182 6.918 0.5743
1 2.021 0.2171 2.331 0.2419 4.012 0.3484
Audi 2 1.596 0.1665 2.004 0.2089 3.484 0.3083
udio 3 1.585 0.1671 1.879 0.1963 3.293 0.2941
4 1.606 0.1636 1.906 0.2028 3.274 0.2955
1 1.537 0.1326 1.789 0.1910 3.235 0.3007
Audio-Visual 2 1.292 0.1565 1.571 0.1688 2.799 0.2676
3 1.356 0.1553 1.602 0.1711 2.839 0.2712

It’s noted that they are both initialed with CA-DINO in the first self-supervised pretraining stage. Both our audio and visual
encoders are trained independently, and the fusion of multi-modal information only performs when clustering data and selecting
data in iterative learning. We do the testing still with the single audio modality.

speed up the model convergence and reduce the training time
but also significantly boost the performance upper limit of the
self-supervised learning model.

E. Incorporate With Multi-Modality

Then we introduce visual information in the iterative learning
process. The difference from the work in [30] is that we not
only use multi-modality when doing the data clustering but also
utilize multi-modality information when applying data selection
through DLG-LC. Table IX illustrates the EER and minDCF
performance comparison of DLG-LC with single- and multi-
modality.

It is observed that incorporating both audio-visual modal-
ity knowledge in iterative learning can obtain additional per-
formance improvement, which demonstrates that extra visual
information can make the data usage better. Take the EER of
Vox-H as an example, with only single modality audio data, the
relative EER reduction of the current and previous iterations

are 42.01%, 13.16%, and 5.48% on Vox-H trials for the first
three iterations. If iterative learning with audio-visual data, the
relative EER reduction percentages are 53.24 %, 13.48 % for the
first two iterations.

FE. Comparison With Other Systems

In this section, a performance comparison among our pro-
posed CA-DINO with DLG-LC and other self-supervised
speaker verification systems is given in Table X, and most of
them are from the latest Voxceleb Speaker Recognition Chal-
lenge (VoxSRC) [66], [67] which represent the most advanced
systems nowadays. Besides, the fully supervised system is also
illustrated as the first line of Table X for comparison.

Compared with the previous works using large-size models,
the model we adopt is ECAPA-S (Small, C=512) which has
fewer parameters and requires fewer computation resources.
Compared to systems with AHC (Agglomerative Hierarchical
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TABLE X
EER (%) COMPARISON ON VOX-0O, VOX-E, Vox-H AMONG THE PROPOSED CA-DINO WITH DLG-LC AND OTHER MOST ADVANCED SELF-SUPERVISED SYSTEMS

Methods Model # Iteration # Clusters Cluster Vox-O (EER) Vox-E (EER) Vox-H (EER)
Fully Supervised [56] ECAPA-S - - - 1.010 1.240 2.320
IDLab [26] ECAPA-L 7 7500 AHC 2.100 - -
JHU [27] Res2Net50 5 7500 AHC 1.890 - -
SNU [28] ECAPA-L 5 7500 AHC 1.660 - -
LG [29] ECAPA-L 5 6000 K-M 1.660 2.180 3.760
DKU + single-modal [30] ResNet34 5 6000 K-M 2.740 3.080 5.480
DKU + multi-modal [30] ResNet34 5 6000 K-M 1.920 2.030 3.720
C3-DINO [36] ECAPA-S - - - 2.200 - -
CA-DINO ECAPA-S 3 7500 K-M 2.558 2.129 5.148
CA-DINO + DLG-LC + single-modal ECAPA-S 3 7500 K-M 1.585 1.879 3.293
CA-DINO + DLG-LC + multi-modal ECAPA-S 2 7500 K-M 1.292 1.571 2.799
CA-DINO + DLG-LC + multi-modal*  ECAPA-S 2 7500 K-M 1.191 1.474 2.543

* The results are given with adaptive s-norm [65] which requires label information for a fair comparison with fully supervised system [56].
The model architecture, clustering number, method and iteration rounds of each system are listed in detail. Note that AHC and K-M here mean agglomerative
hierarchical clustering and k-means. ECAPA-S (small) and ECAPA-L (large) here denote the ECAPA-TDNN with 512 channels and 1024 channels respec-

tively.

Clustering), to make it easier to implement, we adopt a sim-
pler and more convenient clustering method K-M (k-means)
to generate pseudo labels. Moreover, when clustering data, we
set the number of clusters to 7500 instead of 6000, because
6000 is closer to the real number of speakers (5994) in the
training set which is more opportunistic. From the results, it is
observed that our proposed new self-supervised speaker verifica-
tion framework is far superior to all the existing methods in both
single- and multi-modality, even with fewer iterations, smaller
model, and simpler clustering method. For the single modality
condition, the proposed CA-DINO with DLG-LC outperforms
the best system (LG) [29] by relative 4.52%, 13.81% and
12.42 % on Vox-O, Vox-E, and Vox-H sets respectively with only
3 iterations. If we use audio-visual data in the iterative learning
stage, the corresponding improvement is enlarged to relative
22.17%, 27.94% and 25.56 %, which is a great performance
leap. As for C3-DINO [36], it trains the model by DINO loss
with ProtoNCE [23] initialed weights, which is a new approach
different from typical iterative training methods. However, our
method still has superior performance compared to C3-DINO.

In summary, our proposed system achieves the new state-
of-the-art performance for self-supervised speaker verification
with a large performance improvement, despite we train the sys-
tems with fewer iterations, smaller model, and simpler clustering
method. More promisingly, compared to the conventional fully
supervised system with the same training configuration, our
newly proposed self-supervised learning system even obtains
a comparable performance with the supervised system, but
without using any ground-truth labels.

VII. CONCLUSION

In this work, we proposed an advanced self-supervised
speaker verification system called Cluster-Aware DINO (CA-
DINO) with Dynamic Loss-Gate and Label Correction (DLG-
LC). Based on the DINO framework we introduced before,
the cluster-aware training strategy is incorporated. More
specifically, positive samples are collected from the same cate-
gory rather than single sentences, so that the model can utilize
more diverse data and obtain stable improvement. In the iterative

learning stage, DLG-LC is adopted here with additional analyses
and then extended to multi-modality for further improvements.
The experiments on Voxceleb showed that our newly proposed
CA-DINO with DLG-LC is superior and achieves the new
state-of-the-art performance for self-supervised speaker ver-
ification. More promisingly, the gap between unsupervised and
supervised representation learning is dramatically reduced for
speaker verification, achieving close performance to the fully
supervised system with our self-supervised earning method.
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