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ABSTRACT

Convolution and self-attention based neural networks have
both obtained excellent performance in automatic speaker
verification. However, the convolution model often lacks
the ability of long-term dependency modeling due to the
limitation of receptive field, while the self-attention model
is insufficient to model local information. To tackle this
limitation, we propose a new multi-layer perceptrons based
speaker verification network (MLP-SVNet) which can apply
MLPs across temporal and frequency dimensions to cap-
ture the local and global information at the same time. The
experimental results conducted on Voxceleb show that the
proposed model is very competitive when compared to other
systems based on convolution or self-attention. In addition,
we demonstrate that MLP-SVNet based on multi-layer per-
ceptrons can produce complementary embeddings, which can
be fused with the state-of-the-art system to further improve
the performance.

Index Terms— Multi-layer Perceptron, Speaker Verifica-
tion, Speaker Embedding, Text-independent

1. INTRODUCTION

Speaker verification (SV) is a task that utilizes speech as the
biometric feature to verify the speakers’ identities. Recently,
the end-to-end deep embedding learning methods have been
broadly applied for SV task and obtained excellent perfor-
mance [1, 2, 3, 4, 5]. Generally, these model architectures are
composed of three deep neural network components includ-
ing a frame-level feature extractor, an utterance-level repre-
sentation aggregator, and a speaker classifier.

To further improve SV performance, many models with
different network architectures have been proposed in re-
cent studies. And most of the studies focus on the con-
volution structure, including time delay neural network
(TDNN) [1], residual networks (ResNet) [2], Dual Path Net-
work (DPN) [6], ECAPA-TDNN [7] and so on. Convolution
Neural Networks (CNN) are known as shift invariant or space
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invariant artificial neural networks, based on the shared-
weight architecture of the convolution kernels or filters that
slide along input features [8]. This independence assumption
from prior knowledge leads to an excellent ability to model lo-
cal features. Benefiting from this, convolution based models
have achieved excellent performance in SV tasks. However,
due to the limitation of the receptive field, convolution lacks
the ability to model long-term dependency. To solve this
problem, [3] proposed a tandem self-attention encoder and
pooling layer to obtain a discriminative speaker embedding,
which is inspired by transformer’s [9] high parallelization
capabilities and strong performance on computer vision and
natural language processing [10]. Although self-attention
solves the problem of long-term information modeling, it is
insufficient for capturing local information.

In this study, inspired by [11], we propose a new multi-
layer perceptrons based speaker verification network (MLP-
SVNet), which does not use any convolutions or self-attention
mechanism and bases entirely on multi-layer perceptrons in-
stead. It applies MLPs across either temporal or frequency for
modeling the local and global information at the same time.
Comparing with CNN or attention based models, 1) MLP-
SVNet has less inductive bias and more trainable parameters
which will bring better fitting ability. 2) MLP-SVNet across
temporal and frequency dimensions can balance global and
local information at the same time. 3) As a totally different ar-
chitecture, MLP-SVNet can produce complementary speaker
embeddings, which means the fusion with MLP-SVNet can
lead to much more improvement than other systems.

The rest of the paper is organized as below: In Section 2,
we introduce some related works about architecture design
for speaker verification. Then, we present our proposed MLP-
SVNet. Next, experimental results are presented and analyzed
in Section 4. And finally, the conclusion is given in Section 5.

2. RELATED WORKS

2.1. X-vector and R-vector

The emergence of the x-vector [1] system marked that neu-
ral network based system completely outperforms the systems
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Fig. 1. The architecture of proposed MLP-SVNet. MLP-SVNet consists of pre-patch block, MLP blocks, statistic pooling
layer, and a speaker classifier. Each MLP block contains one temporal Mixer block and one frequency Mixer block. And each
Mixer block is composed of two fully-connected layers, layer norm, residual connection, and a GELU nonlinearity function.

based on i-vector [12]. X-vector has five time-delay layers to
handle the input at the frame level, followed by a statistical
pooling layer that computes the mean and standard deviation
of the input sequence, which aggregates the frame-level input
into a segment-level representation.

R-vector system is another convolution based network
which is proposed in [2] and achieves superior performance
in SV for its high-efficiency modeling complex data structure.
Different from X-vector which only utilize convolution 1D
to extract the feature, R-vector processes the features as a 2-
dimensional signal before the statistic pooling layer. Finally,
a fully connected layer transforms features into a fixed vector
to represent the speaker.

2.2. S-vector

S-vector [3] is a new architecture, where the frame-level fea-
ture extractor is replaced with a transformer’s [9] encoder
which is based on self-attention. This mechanism is built on
the dot product between frames, and allows the model to cap-
ture long-term speaker characteristics based on unrestricted
context.

2.3. ECAPA-TDNN

ECAPA-TDNN is proposed in [7] and it’s commonly ac-
knowledged that it has been the state-of-the-art (SOTA) sys-
tem nowadays. ECAPA-TDNN’s architecture is an enhanced
version of the conventional X-vector system. It integrates a
Res2Net [13] module to enhance the central volume layer
and constructs a hierarchical residual connection to handle
multi-scale features. It also introduces 1-dimensional TDNN
specific SE-blocks [14] which help the architecture to better
model the channel interdependencies.

3. MLP-SVNET

MLP-SVNet presented in this paper can be mainly divided
into four parts including a pre-patch layer, MLP blocks, a
statistic pooling layer, and a dense classifier. In this section,
we will give a detailed description of MLP-SVNet and an
overview of the architecture is depicted in Figure 1.

3.1. Pre-Patch

D-vector [15] has demonstrated that stacking each training
frame with its left and right context frames can provide better
performance than a single frame. Inspired by this, we pro-
pose the pre-patch module in order to encode the neighbor
information. As shown in Figure 1 (left), the input X is a fea-
ture map whose dimension is composed of temporal and fre-
quency. Then, similar to the patching method in [10], we split
the feature map into overlapped patches with a sliding win-
dow. Finally, all the patches are flattened to vectors and en-
coded into a sequence of fixed-dimension embeddings, which
is used as the input to feed into MLP blocks in the following.
There are two patching methods we have proposed in
this study: patch 1D and patch 2D. Patch 1D means that we
split the feature map across temporal dimension and stack the
frames with their neighbor contents. And the latter one treats
the feature map as an image to split it into square patches
across not only temporal but also frequency dimensions.

3.2. MLP Block

MLP-SVNet is mainly composed of multiple identical size
MLP blocks, and each MLP block consists of two Mixer
blocks to model the temporal and frequency information of
the input X € RT*¥ where T and F are time and frequency
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dimension respectively. As shown in Figure 1 (middle), the
first Mixer block is the temporal Mixer block. It applies the
dense transformation on the temporal dimension of the input.
Because the temporal dimension is the column of the feature
map, we add transpose operation before and after the tempo-
ral Mixer blocks for the convenience of implementation. The
second one is the frequency Mixer block which applies the
dense transformation on the frequency dimension in order to
mix the frequency features.

For each Mixer block, it contains two dense layers, resid-
ual connection and an element-wise non-linearity activate
function GELU [16] which is shown in Figure 1 (right). As
described above, MLP blocks can be written as follows:

Y = Mizer((Mizer(XT))T) (D

where T means the transpose operation that swaps the time
and frequency dimension. And, Mixer is defined as follows:

Mizer(X) = X + W30(W;LN(X)) )

Here o is the GELU function and LN means Layer Nor-
malization. W and Wy represent transformation matrix of
two dense layers. Furthermore, each MLP block has the same
size of the input. This “isotropic” design is most similar to
Transformers. We tried pyramidal structure whose deeper
blocks have a lower resolution and higher frequency as well,
but the result was not too good. In addition, MLP-SVNet does
not use any position embeddings because the MLP blocks are
sensitive to the order of the input tokens.

3.3. Loss Function

To explicitly enforce the similarity for intra-class samples and
the diversity for inter-class samples, several variants based on
the Softmax loss function have been proposed, and we have
carried out a detailed comparison of the different loss func-
tions in our previous paper [17]. In this paper, we choose the
best performance of them, Additive Angular Margin Softmax
(AAM-Softmax) [18] will be applied to train the model.

4. EXPERIMENT

4.1. Dataset

The performance of the proposed system MLP-SVNet is as-
sessed by VoxCeleb [19] datasets. VoxCeleb2 development
set is used for training. It comprises 1,092,009 utterances
among 5,994 speakers, extracted from videos of YouTube. To
generate extra training samples and increase the diversity of
data, we perform online data augmentation [20] with MU-
SAN [21] and RIR dataset [22]. The noise type in MUSAN
includes ambient noise, music, television, and babble noise
for the background additive noise. Augmented data is gen-
erated by mixing noise with original speech. For the rever-
beration, the convolution operation is performed with 40,000

simulated room impulse responses in the RIR dataset. Dur-
ing the training process, we decide whether to augment each
sample with the probability 0.6.

We use 40-dimensional filter bank with 25ms windows
and 10ms shift as the acoustic features. All MLP-SVNets are
trained on chunks of speech features with 300 frames. During
the test, we first split each utterance into multiple chunks with
300 frames. Then, we get the embedding for each utterance
by averaging the embeddings extracted from these chunks.

4.2. Configuration

During the training, MLP-SVNets are optimized by SAM [23]
optimizer with momentum 0.9 and weight decay of le-4. In
addition, we adopt AAM-Softmax [18] as loss function for
better performance. The scale parameter and the margin of
AAM are set to 32 and 0.2 respectively. The whole training
process will last 165 epochs while the learning rate decreases
from 0.1 to le-5 exponentially. The training is paralleled on
4 GPUs, with the batch-size is set to 64.

4.3. Investigation of Different Patch Methods

Table 1. Results with different patch methods. These re-
sults are all obtained when the number of MLP blocks is set
to 6. Without patch means that not stack the frames with its
neighbor contents.

EER (%)
Methods -5 F VoxH
wioPatch 1.622 1.638 2707
Patch ID 1361 1.469  2.492
Patch2D 1819 1810  3.045

Firstly, we will conduct an investigation of different
patching methods in MLP-SVNet, and the results are pre-
sented in Table 1. From the table we can find that, patching
1D obtains the best performance on this text-independent
speaker verification task among all the results. It shows
that stacking the frames with their neighbor contents can
better aggregate local information and bring significant per-
formance gain. However, this phenomenon does not appear
in the patch 2D method which means that splitting along fre-
quency dimension is not conducive to extracting good speaker
information.

As mentioned above, patching 1D outperforms other
patch methods with the lowest EER. Based on the patch 1D
method, an exploration about the influence of patching size
has been conducted in Table 2. According to the results,
we find it is necessary to introduce some local information
through the patching method, but too large patch size will
hurt the performance.
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Table 2. Results with different patch size. These results are
obtained with patch 1D methods and MLP block number is set
to 6. Patch size = 1 is equivalent to not stacking the frames
with its neighbor contents, which means without patching.

Size EER (%)
Vox-O Vox-E Vox-H
1 1.622 1.638 2.707
3 1.361 1469 2492
5 1.377 1.447 2.444
7 1.393 1493 2518
9 1.435 1499 2.537

4.4. Investigation of Different MLP Block Number

In our experiments, we also analyzed the effect of MLP block
number on the MLP-SVNet. EER results for the different
block numbers are presented in Table 3. We see that the
increase of the block number only brings a little improve-
ment and MLP-SVNet can achieve a comparable performance
even though only a few blocks are used. This benefits from
MLP-SVNet’s excellent ability of modeling global informa-
tion. With temporal Mixer blocks, global information is well
aggregated and mixed.

Table 3. Results with different number of MLP blocks.
The results are obtained with patch 1D method and size is set
to 3.

EER (%)
Block Vox-O Vox-E Vox-H
2 1.659 1.747  2.840
4 1.435 1.496  2.515
6 1.361 1.469 2.492
8 1.314 1484  2.510

4.5. Comparing with other systems

A performance overview of other speaker verification systems
and our proposed MLP-SVNet system is given in Table 4. Ac-
cording to the results, our proposed architecture MLP-SVNet
can obviously outperform most of the traditional systems in
addition to the state-of-the-art ECAPA-TDNN system which
has a more dedicated design to leverage multi-scale informa-
tion. It reveals that MLP with less inductive bias and more
trainable parameters, is superior at capturing long-range de-
pendencies and local features compared to other models based
on convolution or self-attention.

Because the proposed MLP-SVNet is totally based on
MLP, it has a very different architecture from the models
based on convolution or self-attention. We expect that system
fusion with the state-of-the-art system can improve perfor-
mance further. Table 5 presents the results of the different
fusion systems. It shows that fusion of ECAPA-TDNN and

Table 4. Comparison with other speaker verification sys-

tems. We implement all these systems in our experiments.

Systems EER (%)

y Vox-O Vox-E Vox-H
X-vector [1] 2,117 2220 3911
R-vector

ResNet18 [2] 1.770 1.784  3.020
ResNet34 [2] 1.463 1.555 2.767
S-vector [3] 2915 2872 4754
ECAPA-TDNN [7] 1.080 1.196  2.130
MLP-SVNet 1.361 1.469  2.492

MLP-SVNet gives the most significant performance gain,
which suggests that it can produce the most complementary
speaker embeddings comparing with X-vector, R-vector, and
S-vector.

Table 5. Results of different systems fused with ECAPA-
TDNN. System fusion is based on score weighted summation.
ECAPA-TDNN is the state-of-the-art system.

EER (%)
System 1 System 2 0 B i
— 1.080 1.196 2.130
X-vector 1.005 1.173 2.154
ECAPA-TDNN R-vector 1.000 1.190 2.148
S-vector 1.234 1.340 2.498
MLP-SVNet 0.973 1.130 2.020

5. CONCLUSION

In this work, we propose a new multi-layer perceptrons based
speaker verification network (MLP-SVNet), which doesn’t
use any convolution or self-attention mechanisms. It applies
MLPs across either temporal or frequency for modeling the
local and global information at the same time. In the exper-
iments, the results show that MLP-SVNet can significantly
outperform X-vector, R-vector, and S-vector. It reveals that
MLP-SVNet is superior at capturing long-range dependencies
and local features compared to other models. Moreover, ben-
efit from the totally different architecture of MLP-SVNet, it
complements the SOTA system well and can further improve
the system performance.
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