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ABSTRACT

Transformer based on self attention mechanism has demonstrated
its state-of-the-art performance in most natural language processing
(NLP) tasks, but it’s not very competitive when applied for speaker
verification in previous works. Generally, speaker identity is mostly
reflected by the relationship between adjacent tokens, whose extrac-
tion mainly depends on local modeling ability. However, the self-
attention module, as the key component of transformer, can help the
model make full use of global information but insufficient to cap-
ture the local information. To tackle this limitation, in this paper,
we strengthen the local information modeling from two different as-
pects: restricting the attention context to be local and introducing
convolution operation into transformer. Experiments conducted on
Voxceleb illustrate that our proposed methods can notably improve
system performance, verifying the significance of local information
for speaker verification task.

Index Terms— Speaker Verification, Local Information, Gaussian-

attention, Local-attention, Convolution-attention

1. INTRODUCTION

Speaker verification (SV) is a task that utilizes the uttered speech
to verify the speakers’ identities. Given two utterances, a typical
SV system can extract speaker embeddings and automatically de-
termine whether two utterances belong to the same speaker or not.
In general, a typical SV system includes two parts. The first one is
an embedding extractor [1, 2, 3, 4, 5] which is used to extract the
fixed-length speaker representation from variable-length utterances.
The other one is back-end model [6, 7] which aims to calculate the
similarity between speaker embedding vectors.

With the widely application of deep learning methods in other
fields, the effectiveness of DNN has been broadly demonstrated.
Based on this, different network structures have been proposed for
speaker embedding extraction, including the time-delay neural net-
work (TDNN) [2], ResNet [3, 8] and more powerful architectures
such as Dual Path Network (DPN) [9, 4] and ECAPA-TDNN [5].

Because of the powerful global information modeling and par-
allel computation ability of transformer [10], it has become the
most popular backbone in natural language processing (NLP) [11]
and automatic speech recognition (ASR) field [12, 13]. Recently,
transformer has shown its strong competitiveness in computer vi-
sion (CV) [14] field compared to the dominant convolutional neural
network (CNN). However, researchers find that it is non-trivial to
leverage the transformer architecture in speaker verification task
to achieve competitive results [15, 16] with the ResNet [3] and
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Fig. 1. Transformer Encoder

ECAPA-TDNN [5] based system. The self-attention module in the
transformer enables it to see the global information of the input
sequence while the speaker information is often reflected in local
rhythmic changes.

In order to emphasize the local information in transformer for
speaker verification, in this paper, we introduce the local informa-
tion to the original transformer from two different aspects. First,
we restrict attention in tranformer to be local, including local self-
attention and gaussian self-attention. Second, we combine the trans-
fomer with the convolution operation which naturally models the
local information. The experiments are conducted on Voxceleb [17],
and the results illustrate that the proposed three methods signifi-
cantly improve the system performance which demonstrates the im-
portance of local information for speaker verification.

The rest of the paper is organized as below: In Section 2, we give
a simple description of transformer encoder’s architecture. Then,
we present our methods of local information modeling with self-
attention for speaker verification. Next, experimental results on Vox-
celeb [17] are presented and analyzed in Section 4 and 5. And finally,
the conclusion is given in Section 6.

2. RELATED WORK

Transformer, which is proposed in [10], has been widely used in var-
ious fields and achieved the state-of-the-art performance [11, 12, 13,
14]. For speaker verification task, [15, 16] also adopted transformer
as embedding extractor to encode the speaker characteristics into the
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discriminative embeddings. The transformer encoder is composed
of a stack of N identical blocks with two sub-layers and the corre-
sponding architecture is shown in Figure 1. The first sub-layer is a
multi-head self-attention mechanism which is the key component of
the transformer encoder. It helps the encoder look at other frames
in the input sentence as it encodes a specific token. The second is a
simple position-wise feed-forward network. It is composed of two
full-connected-layer and is independently applied to each position.
Besides, a residual connection [8] is employed around each of the
two sub-layers, and it is followed by a layer normalization [18].

3. METHODS

The most important component in transformer is the self-attention
module. The attention function can be described as mapping a set
of query and key-value pairs to an output, where the query, keys,
values and outputs are all vectors. The output is computed as a
weighted sum of the values, where the weight assigned to each value
is computed by a compatibility function of the guery with the corre-
sponding key. In this section, we firstly introduce the original global
attention mechanism in transformer blocks, and then two kinds of
modification focusing on local information will be described.

3.1. Self-Attention

MatMul
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Fig. 2. Illustration of attentions: left is the original global attention
of transformer, right is local restricted attention with bias.

Considering an input audio sequence X = [z1,z2,...,27] of
length T to the self-attention block, with z; € Rdm, and a set of
trainable parameters {Wo, Wx} € Rém>de 1y, ¢ Rim>dv,
Then, the model transforms the input X into namely queries Q) €
RT*4% keys K € RT*%% and values V € RT*% which are de-
fined as follows:

g =z Wq
ki = x:Wk (D
Vi = miWV

Then, the vanilla dot-product self-attention works as the left of
Figure 2: It soft-aligns each input token x; € X to the output o;,
according to the compatibility function computed by the softmax of
dot products and then sums the attended values together. As a result,
we can get the output o; of time instance ¢:

0i = Z Softmax;(qik;)v;
JET
-y _caplaiks)

> €xp(qikm) 7

(@3]

JET
Self-attention mechanism brings the ability to model global in-
formation to the model, which is very effective to solve the thorny
long-term dependence problem in sequence problem but loses the
ability to capture local features. In this section, we mainly consider
helping the transformer explicitly model the local information from
two different aspects. For the first aspect, we can constrain the con-
text that each query can attend from the whole sequence to the ad-
jacent area. For the other aspect, we can directly encode the local
information to the query, key, and value. Next, we will introduce our
proposed local attention mechanism in these two aspects.

3.2. Constraint Attention Context
3.2.1. Local Self-Attention

(a) Global (b) Local

Fig. 3. The illustrations of global and local attention. The colored
squares means corresponding attention scores are calculated, and a
blank square means the attention score is discarded.

For the original definition of self-attention, it treats the similar
frames at different positions almost equally and performs globally,
which is shown in Figure 3 (a). It is inconsistent with our cognition
that adjacent frames contribute more to speaker embedding extrac-
tion. While CNNs / RNNs model this ‘chunking’ phenomenon in-
ternally, the vanilla self-attention mechanism in Transformer could
not capture the local structure of texts.

Since speech comes with a strong property of locality, it is nat-
ural to restrict each query to attend to its neighbor nodes. A widely
adopted class of such pattern is local self-attention, in which the at-
tention matrix is a band matrix as illustrated in the right part of Fig-
ure 3. Given a fixed window size 2w, each frame only focuses on w
frames on each side. To implement the local self-attention in trans-
former, we can generate a bias matrix and add it to the score matrix
in order to mask the frames, which is shown as the right part of Fig-
ure 2.

i+w

Z Softmax;(qik;)v;
j=i—w (3)
= Z Softmax;(qik; + bij)v;

JET
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where b;; is a bias and defined as follows:

0
bij = {—OO

3.2.2. Gaussian Self-Attention

if i — j| < w @
ifli —j|>w

Local self-attention can directly constraint the attention context, but
the fixed window size is not flexible. For better modeling the local
information, we also propose another self-attention method based
on Gausssian distribution to reduce the score weight continuously
according to the distance between tokens. Compared with local self-
attention using the hard weight (0 or 1) to restrict local information,
Gaussian self-attention can be regarded as a soft version of local self-
attention. We hypothesize that the contribution to the central frame
from tokens at different distance obey a normal distribution, and then
use a variant of Gaussian prior to correct the score weight of tokens
which neighbor with the current central frame.

For simplicity, we assume that this weight satisfies the stan-
dard norm distribution whose mean and variance are 0 and 1/27.
Then, its probability density function can be simplified to ¢(d;;) =
exp(—mnd;;) where d;; is the distance between frame i and j. To
correct the weight of frames at various distances, we insert Gaussian
prior ¢(d) to Eq. 2:

dij)exp(qiky)
Zz (d )

im ) exp(qikm

JeT
exp qzk — mdij)
_ Z Vj %)
it Z €ZIIp Q'L m ﬂ—dzm)
= Z Softmaz;(—nd;; + qik;)v;
JET

Then, Eq. 5 converts the multiplication operation into the addi-
tion operation of the Gaussian bias term, which has the same form
with the right of Figure 2. Because our previous assumptions about
the Gaussian distribution are too strong. To loose the restriction, we
introduce a learnable parameter w to adjust the shape of Gaussian
distribution in the following:

0; = Z Softmaxj(fwd?j + qik;j)v; (6)
JET
Besides, inspired by [19, 20, 21], a punishment term b is applied
to reduce the weight of the central word attending itself:

0; = Z Softmaz;(—|wds; + b| + gik;)v; (7
JET
where || represents the absolute value with scalar parameters w > 0
and b < 0.

3.3. Convolution Self-Attention

Convolutions have also been successfully applied for speaker ver-
ification task [2, 3], which capture local context progressively via
a local receptive field layer by layer. In this paper, we also make
an exploration about how to effectively combine convolutions with
self-attention to enhance the ability of the model to capture the local
information.

Conformer [22] is a state-of-the-art ASR encoder architecture,
which inserts a convolution layer into a Transformer block to in-
crease the local information modeling capability of the traditional
Transformer model. In the first, we tried to adopt conformer as the

embedding extractor to extract speaker embedding, but obtained un-
satisfactory performance. Based on this, we propose two kinds of
convolution-augmented transformer for speech verification, which
are described in the following:

Conv-SAB: As mentioned in Equ. 1, Query, Key, and Value
are obtained by transforming input X with learnt matrices Wy, W,
and W, in self-attention block (SAB). To introduce convolution into
SAB, we replace the matrices with three distinct convolution 1d lay-
ers, which is named Conv-SAB. With the help of convolution layers,
local information can be introduced when calculating the attention.

Conv-FFN: Another idea is to introduce convolution between
attention. Inspired by [23], we use a 2-layer convolution 1D network
with ReLU activation to replace the original fully connected layers
in Feed-Forward Network (FFN), which is described in Figure 1.
Then, the conv-FFN is defined as follows:

ConvFFN(z) =
ReLU(z) =

where C'onv is convolution 1d layer, ReLU is the activation
function and z is the input of Conv-FFN.

Conv(ReLU(Conv(z)))

maz(0, x)

(®)

4. EXPERIMENT SETUP

4.1. Dataset

In our experiment, we trained all the systems on the development
set of Voxceleb2 [17], which contains 1,092,009 utterances among
5,994 speakers. For the evaluation, the development set and test set
of Voxcelebl are used. We report the experimental results on 3 trial
sets as defined in [17]: the original test set of Voxceleb 1 contains
37,720 trials from 40 speakers, the Voxceleb 1-E test set (using the
entire dataset) contains 581,480 trials from 1251 speakers, and the
Voxceleb 1-H test set (within the same nationality and gender) con-
tains 552,536 trials from 1190 speakers.

4.2. Training Detail

To enrich the training data, we perform online data augmenta-
tion [24] with MUSAN dataset [25]. The noise type includes
ambient noise, music, television, and babble noise for the back-
ground additive noise. Augmented data is generated by mixing
noise with original speech. For the reverberation, the convolution
operation is performed with 40,000 simulated room impulse re-
sponses (RIR) [26]. During the training, we decide whether to do
augmentation for each sample with the probability 0.6.

We used 40 dimension Fbank with 25ms length Hamming win-
dows and 10ms window shift as the input feature, while no voice
activity detection (VAD) is involved. All the features are mean nor-
malized with a sliding window of up to 3 seconds. The whole train-
ing process will last 165 epochs. Noam [10], with 25,000 warm-up
steps, is applied as the optimizer to train the models on softmax loss
function. After the model optimization, we use Probability Linear
Discriminant Analysis (PLDA) [6] as back-end to score trials.

5. RESULTS

5.1. Constraint Attention Context

First, we will demonstrate the effectiveness to incorporate the local
information by constraining the attention context. And the results are
shown in Table 1. According to the table, we can see that the best
L-SA (size=5) achieves an average relative > 15.0% improvement
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Table 1. Results comparison of different systems on Voxceleb dataset. Equal error rate (EER) and the minimum detection cost function at
Piarget = 0.01 (MinDCFj.o1) are used as the performance evaluation metrics. For the baseline system with the original self-attention, we
reproduce the model with setup describe in [16]. Attention dimension and head number are 512 and 8 respectively. All systems use 6 layers.
SA (Self-Attention), L-SA (Local Self-Attention), G-SA (Gaussian Self-Attention), C-SA (Convolution Self-Attention)

Attention Configure Voxceleb-O Voxceleb-E Voxceleb-H
g EER(%) MinDCF EER(%) MinDCF EER(%) MinDCF

SA [16]* 7.700 — 6.320 — 6.940 —
— 2.915 0.3486 2.872 0.3289 4.754 0.4459
size=2 2.574 0.2926 2.615 0.2966 4.490 0.4372
L-SA size=5 2.287 0.2573 2.447 0.2778 4.318 0.4135
size=8 2.282 0.2704 2.520 0.2840 4.394 0.4240
G-SA — 2.133 0.2519 2.281 0.2494 4.003 0.3851
Conformer [22] 3.946 0.3778 3.846 0.4044 6.526 0.5355
C-SA Conv-SAB 2.122 0.2843 2.234 0.2670 3.949 0.3928
Conv-FFN 2.090 0.2534 2.131 0.2478 3.745 0.3741
L-SA & C-SA size=5 2.223 0.2777 2.336 0.2720 4.113 0.4075
G-SA & C-SA Conv-FFN 1.963 0.2654 2.071 0.2373 3.659 0.3687

* results are cited from [16]

on both EER and MinDCF over the baseline system for each test
set. It is observed that, performing with local information can obtain
significant system improvements, and the proposed L-SA is better
than the original self-attention for speaker verification. In addition,
we also conduct an exploration about the influence of different atten-
tion sizes on performance. Based on this, the original self-attention
with global mode can be regarded as a very large attention size. For
the different attention sizes, the system can achieve the best perfor-
mance position when the size is 5, and too small (size=2) or too large
(size=8) are not appropriate for the local self-attention.

Thus, attention size has a significant impact on the models, but it
is difficult to select the appropriate value in practical application. As
a result, we propose Gaussian self-attention (G-SA) with learnable
attention size, which can be regarded as a soft version of L-SA. Ac-
cording to the results presented in Table 1, it is obviously observed
that the G-SA system outperforms all L-SA systems, which means
that G-SA is more flexible than L-SA with fixed attention size.

5.2. Convolution Self-Attention

In this section, we also conducted an investigation on the effect of
introducing convolution layers in different positions of transformer.
And the results are also shown in Table 1. In order to illustrate the su-
periority of the methods proposed in this work, we also provide the
results of the conformer [22], which is designed to combine trans-
former and convolution, and has been widely used in ASR. However,
in terms of results, conformer performs poorly, even worse than the
baseline. This also shows that the performance can only be improved
by putting the convolution layer in the right place.

The proposed two modes with convolution self-attention (C-
SA), i.e. Conv-SAB and Conv-FFN, can both obtain obvious im-
provement compared to the usual self-attention. Especially, the
Conv-FFN method outperforms all the other self-attention systems
shown in Table 1. Then, we can conclude that introducing convolu-
tion can help the network utilize local information, so as to improve
the overall performance of the model.

5.3. Combination

It is worth noting that the L-SA and G-SA change the context that
the query can see, whereas the C-SA change the way to calculate the
elements for attention by involving the convolution operation. It will
be intuitive and simple to combine L-SA or G-SA with C-SA. For
simplicity, we only leverage the best system Conv-FFN for system
combination. The corresponding results are shown at the bottom
of table 1. From the results, we find that the L-SA is not compat-
ible with C-SA and the system performance degrades. Encourag-
ingly, the G-SA complements the C-SA well and achieved further
improvement. This combined system leads to the best results among
all the systems and obtains relative ~25.0% reduction on both EER
and MinDCF.

6. CONCLUSION

To better focus on local information in transformer, in this work,
we propose three improved methods for vanilla self-attention, in-
cluding L-SA, G-SA, and C-SA. The former two achieve the goal
by restricting the size of attention and the latter one is to obtain the
performance gain by combining convolution. In the experiments, the
results show that these methods all can significantly improve the per-
formance, which demonstrates the importance of the local informa-
tion for transformer-based speaker verification. Among them, G-SA
with dynamic attention size also shows better performance and flex-
ibility, compared with L-SA. In addition, to further improve the sys-
tem, we also integrate the proposed G-SA with Conv-FFN, and this
system achieves the best performance and obtains relative ~25.0%
improvement on both EER and MinDCF over the traditional self-
attention.
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