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Abstract

Target speaker extraction (TSE) focuses on isolating the speech
of a specific target speaker from overlapped multi-talker speech,
which is a typical setup in the cocktail party problem. In re-
cent years, TSE draws increasing attention due to its poten-
tial for various applications such as user-customized interfaces
and hearing aids, or as a crutial front-end processing technolo-
gies for subsequential tasks such as speech recognition and
speaker recongtion. However, there are currently few open-
source toolkits or available pre-trained models for off-the-shelf
usage. In this work, we introduce WeSep, a toolkit designed
for research and practical applications in TSE. WeSep is fea-
tured with flexible target speaker modeling, scalable data man-
agement, effective on-the-fly data simulation, structured recipes
and deployment support. The toolkit will be publicly avaliable
at https://github.com/wenet-e2e/WeSep.
Index Terms: target speaker extraction, speaker embedding,
cocktail-party problem

1. Introduction
Daily communication environments are often complex, with
various audio sources and voices intertwining. Interestingly,
humans seem to possess a natural ability: in such complicated
backgound, they can effectively focus their attention on the
voice of the person they want to listen to. This phonomenon is
often termed as “Selective Attentive Mechnism” [1, 2, 3]. Tar-
get speaker extraction (TSE) aims to enable a similar process.
Unlike blind source separation (BSS), TSE typically relies on
additional cue information that directly indicates the identity of
the target speaker, thereby circumventing the permutation prob-
lem, leading to more flexible and applicable systems. In the
current era of large-scale models, it is critical to take advan-
tage of the abundant online media resources. However, before
utilizing them for tasks like speech synthesis, it is necessary to
process and filter these resources. TSE can play an important
role in such pipelines [4].

TSE has gained significant attention in academia and in-
dustry. However, the availability of related open-source tools is
relatively limited. This scarcity can be attributed to two main
factors. Firstly, most TSE research is conducted on synthetic
datasets, which may not generalize well to real speech. Sec-
ondly, improving the generalization performance for unknown
speakers requires advanced speaker modeling techniques. To
address these limitations, we aim to provide an accessable open-
source toolkit called “WeSep”, focusing on TSE.

The key features of the WeSep toolkit are as follows,
• To the best of our knowledge, WeSep is the first toolkit focus-

ing on target speaker extraction task, implementing current

mainstream models with plans to incorporate more powerful
models in the future.

• WeSep has achieved seamless integration with the open-
source speaker modeling toolkit Wespeaker [5], allowing for
flexible integration with powerful pre-trained models and
predefined network architectures for joint training.

• Following the design of WeNet and WeSpeaker, WeSep of-
fers a flexible and efficient data management mechenism
called Unified IO (UIO). This mechanism enables WeSep to
easily handle large-scale datasets, ensuring scalability and ef-
ficiency in data processing.

• WeSep implements the on-the-fly data simulation pipeline,
which allows users to leverage mono-speaker audios pre-
pared for speech recognition or speaker recognition without
the need for pre-mixing, thereby enabling model training to
scale up and achieve better performance with large datasets.

• Lastly, models in WeSep can be easily exported by torch Just
In Time (JIT) or as the ONNX format, which can be easily
adopted in the deployment environment. Pretrained models
and sample deployment codes in C++ are also provided.

2. Related Work
2.1. Target Speaker Extraction

A typical TSE system is depicted in Figure 1. Assume the mix-
ture signal m containing K speakers is composed of the target
speaker xs and other K− 1 interfere speakers, as demonstrated
by

m = xs +

K∑
k ̸=s

xk + ϵ (1)

where ϵ represents the residual signals capturing noise and re-
verberation.

A TSE system aims to reconstruct the xs from the mixture
waveform m, given the cue Cs. The optimization goal of TSE
model MTSE parameterized by θTSE is to minimize the training
loss L(·) , which measures how close estimated target speech
x̂s is to the target source signal xs.

θTSE = argmin
θ

L (xs, x̂s) (2)

x̂s = MTSE (m,Cs; θ) (3)

For audio-based target speaker extraction, the cue Cs typi-
cally refers to a pre-enrolled utterance from the target speaker.
In the case of visual-based TSE1, Cs can be represented by a
sequence of image frames capturing the lip movements of the
target speaker.

1The visual cue based TSE will be supported in next release
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Figure 1: Architecture of a typical TSE system, the cue encoder
can be jointly trained or pretrained, an additional speaker
classification loss is usually added in the joint-training mode.
The parameters of the cue encoder can be shared (or partially
shared) with the mixture encoder.

2.2. Related Open-Source Projects

Deep learning-based TSE systems have gained popularity in re-
cent years. Although some notable works, such as Spex+2 [6]
and SpeakerBeam3 [7], have made their source code publicly
available, there is currently no comprehensive toolkit specifi-
cally dedicated to this task. Unlike some general-purpose tools
like [8] provide simple TSE recipes, WeSep features a sim-
ple code structure that focuses on TSE. In addition to defin-
ing speaker model structures within WeSep, users can directly
access various state-of-the-art models and pre-trained models
from WeSpeaker.

3. WeSep
3.1. Unified I/O for Local Data Management

To effectively handle both experimental data and production-
scale datasets that encompass tens of thousands of hours of
speech, often fragmented into a multitude of small files, we have
implemented the Unified Input/Output (UIO) framework [9]
within WeSep. This mechanism has also been integrated into
WeNet and WeSpeaker.

3.2. On-the-Fly Data Simulation

For datasets like Libri2Mix [10], researchers typically use pre-
processed data and standardized setups to ensure fair compar-
isons. However, to develop functional systems for real-world
applications, it is necessary to train on a substantial amount of
data. Preprocessing data and storing it on a hard drive is not
an optimal solution. Instead, we propose employing an online
data simulation approach as shown in Figure 2. This method
not only conserves storage resources but also allows for the cre-
ation of a more diverse set of training data in a flexible manner,
thereby enhancing the robustness of the model.

3.2.1. Online Noise and Reverb Generation

WeSep supports online noise addition and reverberation gener-
ation. In line with the approach implemented in WeSpeaker [5],
we draw additive noises from a designated noise database, such
as MUSAN [11] and AudioSet [12]. However, when it comes
to reverberation, WeSep not only offers standard sampling from
a Room Impulse Response (RIR) dataset [13] but also incor-

2https://github.com/gemengtju/SpEx_Plus
3https://github.com/BUTSpeechFIT/speakerbeam

porates the fast random approximation of RIR signals, as intro-
duced in the work by Luo et al. [14]. This enhancement allows
for more dynamic and customizable reverberation effects tai-
lored to various acoustic environments.

3.2.2. Dynamic Speaker Mixing Strategy

Dynamic Speaker Mixing (DSM) [15]involves generating the
mixture waveform in real-time during the training process. In
contrast to traditional static mixing methods, DSM enhances
the model’s robustness and generalization ability by introduc-
ing greater data diversity and complexity. In WeSep, the DSM
algorithm implemented follows Algorithm 1.

Algorithm 1: Dynamic Speaker Mixing Strategy
Data:
nspeaker: Number of speakers for the mixed speech
LBuffer: Buffer list containing training utterances
Lwavs: List of wavs to mix
SNRmin: Min value of SNR (interfere v.s. target speaker)
SNRmax: Max value of SNR (interfere v.s. target speaker)

1 Lwavs ← [ ];
2 for i← 0 to nspeaker do
3 if i == 0 then

// Select the utterance for target
speaker

4 st ← random sample(LBuffer);
5 Lwavs.append(st);
6 else

// Select the utterance for
interfere speaker and scale with
random snr

7 snr ← random.uniform(SNRmin, SNRmax);
8 si ← random sample(LBuffer);
9 while same speaker(st, si) do

10 si ← random sample(LBuffer);
11 end
12 Lwavs.append(rescale(si, snr));
13 end
14 sm = add and rescale(Lwavs)

15 end
16 Output: sm, Lwavs

3.3. Backbone Support

• ConvTasNet: Proposed in [16], ConvTasNet is a pioneering
deep learning model for single-channel audio source separa-
tion that operates directly in the time domain, utilizing convo-
lutional neural networks to learn and estimate masks for sep-
arating target sources from mixtures. Based on Conv-TasNet,
WeSep supports its most famous variant talored for the TSE
task, Spex+ [6].

• BSRNN: Initially proposed in [17] for music source separa-
tion, Band-split Recurrent Neural Network (BSRNN) explic-
itly divides the spectrogram into different frequency bands
and performs fine-grained modelling. [18] adapts BSRNN
for the task of personal speech enhancement (PSE) by incor-
porating an additional speaker embedding, which inspires the
implementation of the BSRNN for TSE in WeSep.

• DPCCN: The Densely-connected Pyramid Complex Convo-
lutional Network (DPCCN) [19] is a novel architecture in-
spired by DenseUNet, incorporating features from Temporal
Convolutional Networks (TCNs) and DenseNet to improve
separation performance.

• TF-GridNet: Proposed in [20], TF-GridNet operates in the
T-F domain and stacks several multi-path blocks to leverage
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Figure 2: The online data preparation pipeline in WeSep, the case of 2 speakers is demonstrated

local and global spectro-temporal information, representing
the State-of-the-art model for speech seperation. In WeSep,
speaker embeddings are integrated prior to each multi-path
block to specifically tailor it for the TSE task.

3.4. Target Speaker Modeling

To guide the extraction of target speaker’s speech, a cue Cs is
provided, for the audio based TSE, the cue Ca

s is often rep-
resented by a fixed-dimensional speaker embedding, extracted
from a speaker encoder which is pretrained for the speaker
recognition task or jointly trained within the TSE model.

3.4.1. Speaker Encoders

Besides specific design in well-known architectures, such as
the ResNet based speaker encoder in Spex+ [6], WeSep offers
seamless integration with various speaker models that are pre-
defined in WeSpeaker [5]. It provides support for both “pre-
trained” and “joint training” modes. The “pretrained” mode in-
volves loading the weights released by WeSpeaker4, while the
“joint training” mode only requires the model definition to be
loaded, with the weights being optimized jointly with the tar-
geted speech enhancement (TSE) task.

1 # psudo-codes for integrating wespeaker models
2 from wespeaker import get_speaker_model
3 s = get_speaker_model(spk_model_name)(**spk_args)
4 m = BSRNN(**sep_args) # Or other backbones
5 m.speaker_model = s

3.4.2. Fusion methods

Considering a speaker embedding es derived from the cue Cs

and the intermediate outputs H = h1,h2, · · · ,hT encoded
from the mixed signal m, WeSep supports the following fusion
methods, both for the pretraining mode and joint training mode.
• Concat: Directly replicate es for T times and concatenate it

to H, as used in VoiceFilter [21] and Spex series [22, 6].
• Add: es is first projected to the same dimension with ht and

do sample-wise addition.
• Multiply: es is first projected to the same dimension with ht

and do sample-wise multiplication. This is adopted mainly in
the SpeakerBeam series [23, 24].

• FiLM: Feature-wise linear modulation (FiLM) [25, 26] ap-
plies a transformation to H by a learned affine transforma-
tion, represented by h′

t = γ(es)⊙ ht + β(es), where γ and
β are functions of the speaker embedding es, and ⊙ denotes
element-wise multiplication.
4https://github.com/wenet-e2e/wespeaker/blob/

master/docs/pretrained.md

3.5. Training Strategies

3.5.1. Joint Training with Speaker Encoders

Despite directly leveraging the pretrained speaker encoders for
target cue extraction, WeSep also facilitates the joint optimiza-
tion of the speaker encoder along with other components. An
optional speaker classification loss can be easily configured to
help contrain the learned speake embedding space.

3.5.2. Online Sampling of the Enrollment

To improve the model’s resilience to varying enrollment condi-
tions, WeSep maintains a correspondence mapping of spk2utt
for all training data. This allows for the random selection of
an enrollment utterance belonging to the target speaker for each
sample, with the optional corruption of noise addition or rever-
beration effects to simulate more challenging conditions.

3.5.3. Training Objectives

WeSep follows common TSE research by using negative scale-
invariant signal-to-noise ratio (SI-SNR) [27] as the default train-
ing objective. For flexibility, we integrated loss functions from
Auraloss5. Additionally, we implemented GAN-based loss to
offer potential enhancement in perceptual quality.

3.6. Deployment

Models in WeSep can be effortlessly exported to ONNX or Py-
Torch’s Just-In-Time (JIT) format. We provide sample code to
facilitate deployment. Additionally, we offer command-line in-
terfaces (CLI) that are accessible through a straightforward “pip
install” process. Users have access to off-the-shelf pretrained
models which can be easily used as a standalone tool or for in-
tegration into custom pipelines.

4. Recipes and Results
WeSep provides recipes for the standard datasets such as
Libri2Mix [10]6, following their respective split and pre-mixing
strategies. Additionally, WeSep utilizes the VoxCeleb dataset to
showcase the construction of a more generalizable TSE system
using single-speaker data collected from real-world scenarios.
However, due to space limitations, we will focus on a detailed
comparison using the Libri2Mix dataset and highlight the gen-
eralization capabilities using VoxCeleb. For comprehensive re-
sults on other datasets, please refer to the online repository.

5https://github.com/csteinmetz1/auraloss
6Recipes for standard WSJ0-2Mix [28] and AISHELL-2Mix [19]

datasets are also provided, but not presented in this paper
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4.1. Libri2Mix

The performance of different models on the Libri2Mix-Eval
dataset are showcased in Table 1. In line with the approach
detailed in [19, 6], we have implemented DPCCN and Spex+
with a default joint training of the speaker encoder. For the
remaining models, the ECAPA-TDNN [29] pretrained on the
VoxCeleb2 [30] Dev set by WeSpeaker is utilized.

Table 1: SI-SDR (dB) comparison of different models

Backbone SpkEnc Training Data

train-100 train-360

BSRNN Pretrain 13.32 16.57
TF-GridNet Pretrain 12.09 15.79

DPCCN Joint Train 11.45 13.80
Spex+ Joint Train 12.64 14.57

In the sections below, we will provide a detailed analysis of
the impact of fusion strategy, speaker model architecture, and
the pretrain/joint-train paradigm. Unless otherwise specified,
the experiments utilize BSRNN as the default backbone, the
pretrained ECAPA-TDNN as the speaker model, multiplication
as the default method, and train-100 as the training dataset.

4.1.1. Impact of the Fusion Strategy

To incorporate the encoded speaker representation into the TSE
system, a fusion mechanism is employed. Four fusion methods
are compared in Table 2, and it is observed that the simple mul-
tiplication achieves the best performance, followed by FiLM.
Concatenation and addition methods show similar results.

Table 2: Performance comparison of different fusion methods

Fusion Method Concat Add Multiply FiLM

Libri2Mix 12.84 13.15 13.25 13.32
AISHELL2Mix 4.61 5.15 4.76 5.54

4.1.2. Impact of the Speaker Model

To assess the compatibility of various pretrained speaker en-
coders, we present the results of the BSRNN system utilizing
different pretrained embeddings in Table 3. When comparing
architectures trained on the same dataset (VoxCeleb2-Dev, 5994
speakers), achieving superior results on the speaker verification
task (VoxCeleb1-O) does not necessarily lead to enhanced per-
formance on the TSE task. However, training on a more ex-
tensive dataset can lead to improved TSE performance. For in-
stance, the CAM++ model [31] developed by Alibaba7, trained
on a dataset of 200,000 Chinese speakers, demonstrates this
improvement, despite its poor performance on VoxCeleb1-O,
which may be due to the language mismatch.

4.1.3. Impact of Joint Training

WeSep facilitates the joint training of the speaker encoder
alongside the backbone model. In Table 4, we present some
preliminary results of various training paradigms, illustrating

7https://modelscope.cn/models/iic/speech_
campplus_sv_zh-cn_16k-common

Table 3: Performance comparison using different pretrained
speaker encoders

SpkEnc Type Train Data SI-SDR (dB) EER (%)

TDNN [32] VoxCeleb2 12.41 1.721
ResNet34 [33] VoxCeleb2 13.18 0.937

ECAPA-TDNN [29] VoxCeleb2 13.32 1.072
CAM++ [31] VoxCeleb2 12.29 0.845

CAM++ Ali 200k 14.50 6.225

that joint training typically yields superior performance8. How-
ever, we did not observe the anticipated additional performance
gain from the inclusion of the speaker classification loss, as sug-
gested in [6, 24].

Table 4: Joint training v.s. pretrained speaker encoder
SpkEnc Type Joint Training Multitask SI-SDR (dB)

ResNet34
× × 13.18
✓ × 13.96
✓ ✓ 13.97

ECAPA-TDNN
× × 13.32
✓ × 13.87
✓ ✓ 13.85

4.2. VoxCeleb1

To privide a TSE model with enhanced applicability and to ex-
emplify the training process of such a system utilizing large-
scale data, we have offered a Recipe on VoxCeleb1 [34].

Table 5: Generalization on out-of-domain dataset

Training Dataset SI-SDR (dB)
Libri2Mix AISHELL2Mix

Libri2Mix-train-100 13.32 5.54
Libri2Mix-train-360 16.57 8.17

VoxCeleb1 16.18 10.18

As demonstrated in Table 5, the system trained on Vox-
Celeb1 yields results on Libri2Mix that are comparable to those
obtained by the system trained on in-domain data. More-
over, it exhibits significantly better generalization capabilities
on AISHELL2Mix.

5. Conclusion and Future work
In this paper, we present WeSep, an open-source project focused
on Target Speaker Extraction. WeSep is designed with versatile
speaker modeling capabilities, enables online data simulation,
and offers scalability to large-scale datasets. Looking ahead,
WeSep will continually integrate state-of-the-art (SOTA) mod-
els, audio-visual recipes, and will expand its capabilities to in-
clude blind speech separation tasks within a unified framework.
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