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Abstract

Self-supervised speech representation learning has shown re-
markable capability in automatic speech recognition. How-
ever, it requires substantial computations and storage capac-
ity. Pruning is an effective method for model compression. In
this work, we propose SparseWAV, a fast and accurate unstruc-
tured pruning framework designed for large speech foundation
models, which can efficiently remove unimportant parameters
without sacrificing performance. It adaptively determines the
sparsity ratio for each weight matrix within pre-trained mod-
els and updates the remaining parameters to compensate for the
eliminated ones. Experiments on Librispeech demonstrate the
proposed method can remove 80% of the parameters of pre-
trained large speech foundation models with negligible perfor-
mance loss. Compared to previous works, our resulting models
achieves up to 30% improvement in performance under simi-
lar parameters. Meanwhile, the compression algorithm’s time
consumption is reduced by up to 1080x.
Index Terms: model compression, unstructured pruning,
speech recognition

1. Introduction
Self-supervised speech representation learning has demon-
strated impressive results in automatic speech recognition. [1,
2, 3, 4]. However, these pre-trained models come with sig-
nificant computational expenses and extensive storage needs,
hindering their widespread adoption in consumer products. Re-
cently, there has been considerable interest in compressing these
models.

The current two mainstream methods are knowledge dis-
tillation and network pruning. Knowledge distillation utilizes
a large teacher model to guide a smaller student model. Pre-
vious studies such as DistilHuBERT [5] and FitHuBERT [6]
have achieved promising results. However, distillation requires
an amount of training time and the design of student model
needs specific expertise to achieve better performance. Network
pruning discovers a compact subnetwork from a large model
by removing unimportant weights. Recent works like DPHU-
BERT [7, 8, 9] apply L0 regularization based structured prun-
ing to compress speech models. However, previous methods
require an additional round of training on the dataset to deter-
mine the pruning mask, which introduces extra computational
overhead. Moreover, structured pruning often leads to greater
performance degradation as it uses structures rather than indi-
vidual weights as the basic unit of pruning, which might result
in the removal of some important parameters.
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In comparison, unstructured pruning offers higher degrees
of freedom, allowing non-important parameters in the weight
matrix to be individually removed. Thus, models pruned with
unstructured approaches generally exhibit better performance.
PARP [10] is one of the methods for unstructured pruning
speech models. However, PARP has only been validated on
low-resource speech recognition tasks and causes significant
performance degradation under high sparsity conditions.

In this paper, we propose SparseWAV, a fast and accu-
rate unstructured pruning method suitable for large speech
foundation models. It can efficiently remove the majority of
parameters within pre-trained speech models without perfor-
mance degradation and performs well under high sparsity con-
ditions. Specifically, we first introduce Optimal Brain Surgeon
(OBS)[11] framework, tailed for pruning large speech models.
To further enhance performance, a refined saliency criterion that
integrates first-order information is proposed. In addition, we
present a scheme to dynamically assign varying sparsity ratios
to each weight matrix according to the Hessian based sensitiv-
ity. Finally, two different post-pruning finetune strategies are
developed to recover the performance of the pruned models.

Experimental results on LibriSpeech dataset demonstrate
that our method can be applied to various pre-trained speech
models, including wav2vec2-base, large and wavlm. Up to
80% parameters can be removed with negligible performance
degradation. In addition, a thorough comparison with previ-
ous works reveals that our method achieves a new state-of-the-
art performance with similar parameters. Moreover, our ap-
proach also significantly reduces the time consumption com-
pared to previous strategies. Unlike the extensive GPU hours re-
quired for knowledge distillation, our method efficiently prunes
wav2vec2-base in merely 80 seconds and wav2vec2-large in
210 seconds on a single RTX 4090. Notably, at sparsity levels
of 50% or lower, models pruned with our technique achieve the
same performance as their original dense counterparts without
the need for fine-tuning.

2. Methods
2.1. Preliminary

OBS is a second information based pruning method, it prunes
one parameter then updates the remaining to compensate for
the performance degradation until the target sparsity is reached.
The saliency of parameters which measures the change in the
loss function due to pruning and the updates of the remain-
ing parameters δ are derived through Taylor expansion and La-
grange multipliers. More precisely

saliencyp =
w2

p

[H−1]pp
, δp = − wp

[H−1]pp
· [H−1]:,p, (1)
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where wp denote the value of the pth paramter, H denote the
Hessian matrix of model’s loss function, [H−1]pp denotes the
pth diagonal entry of the inverse Hessian, and [H−1]:,p is its pth
column. Note that the OBS framework assumes that the model
has converged, so it neglects the first-order term of the Taylor
expansion. At the same time, it assumes that higher-order terms
are small and can be ignored. Therefore, the saliency formula
only includes second-order terms.

To reduce the computation cost of OBS due to the calcula-
tion of the Hessian of the whole model, we follow [12, 13] to
decompose the pruning task into a series of layer-wise pruning
and reconstruction of a single weight matrix W:

argminŴ ||WX− ŴX||22 s.t. sparsity(Ŵ) ≥ S. (2)

where Ŵ denotes the pruned weight matrix, X is the input of
dimension dcol ×N and S is the target sparsity. Using Formula
2 as the loss function, we find that each row of matrix W has
the same Hessian matrix: 2XXT. This can be calculated us-
ing a formula, without the need for complex framework-based
differentiation, thereby saving time.

2.2. Improved Saliency with First-order Information

Through analysis and experimentation, we found that adding
the first-order term of the Taylor expansion to the saliency for-
mula describing parameter importance can improve the perfor-
mance of pruning methods employing approximations. The im-
proved saliency is formulated as follow:

improved saliencyp = |wpGp|+
w2

p

[H−1]pp
(3)

where Gp denotes the gradient of the loss function with respect
to the p-th parameter. In the case of layer-wise pruning, the loss
function is Formula 2 and Gij = 2(Ŵ −W)i,:(XXT):,j for
the j-th parameter in the i-th column of the weight matrix.

We have several reasons for doing this: First, OBS itself
introduces errors when computing the updates of the remain-
ing parameters by neglecting higher-order terms. Additionally,
layer-wise pruning, by considering only the linear part and ne-
glecting the effect of the non-linear activation function, further
increases the error in the updates of the remaining parameters.
After pruning a certain number of parameters, the model no
longer converges on the dataset due to accumulated errors. At
this point, the model’s gradient with respect to the loss function
is no longer zero, rendering OBS’s assumption invalid.

2.3. Mixed Sparsity Pruning

Each layer of the speech SSL model contributes differently to
the overall performance of the model. Therefore, it’s reason-
able to assign different sparsities for different weight matrices
to maximize the retention of the model’s performance. We de-
velop a novel method capable of dynamically setting the spar-
sity ratio for each weight matrix. This approach involves cal-
culating the sensitivity of each weight matrix by approximating
the trace of the Hessian matrix with respect to the loss function,
and then determining the sparsity level for each weight matrix
based on this sensitivity.

First, we estimate the trace of model’s Hessian matrix using
stochastic linear algebra methods [14] and the Hutchinson algo-
rithm [15], because accurately computing the Hessian matrix of
a speech SSL model is time and space-consuming.

Tr(H) = Tr(HI) = Tr(HE[zzT]) = E[Tr(HzzT)]

= E[zTHz] ≈ 1

N

N∑
i=1

zTi Hzi
(4)

where I denotes identity matrix, and z is a random vector sam-
pled from a standard Gaussian distribution, N denotes the num-
ber of sampled data points.

Then, we compute the average trace of the parts of the Hes-
sian matrix related to each weight matrix as the sensitivity of
that weight matrix.

sensitivity =
1

n
Σn

i Tr(H)i (5)

where n denotes the number of diagonal elements in the corre-
sponding part of Hessian matrix.

After computing the sensitivity of all weight matrices, we
sort them and assign sparsity to each weight matrix based on
their rankings. Due to the constraints that are difficult to sat-
isfy in sparsity assignment, such as ensuring that the sparsity
of weight matrices falls within the range of 0 to 1 and that the
weighted sum equals the target sparsity of the model as a whole,
we adopted a simple approach: using an arithmetic progression
to allocate sparsity. The detailed process is as follows:

Lower bound = s− α, Higher bound = s+ α (6)

sparsityi = Lower bound + ranki ×
2α

N − 1
(7)

where sparsityi denotes the allocated sparsity for i-th weight
matrix, s denotes the target sparsity of the whole model, α is
a hyperparameter that controls the range of sparsity, N denotes
the total number of weight matrix in the model, ranki denotes
the ranking (base 0) of sensitivity of the i-th weight matrix from
highest to lowest. Thus, weight matrices with higher sensitivity
are assigned lower sparsity, allowing for the retention of more
important parameters.

2.4. Post-pruning Fine-tuning

While our proposed method can compensate for the perfor-
mance degradation by updating the remaining parameters, the
pruned model’s performance still suffers a significant reduction
due to approximation errors, particularly under conditions of
high sparsity(≥ 70%). To recover the performance, we intro-
duce two strategies for fine-tuning after pruning:
One-pass. We directly prune the model to the target sparsity
level and then fine-tune the pruned model in a one-pass way.
Progressive. Models are pruned and finetuned in an iterative
manner until the target sparsity is reached. We refer to this
method as SparseWAV-progress. For example, if the target
sparsity is 80%, SparseWAV-progress first prunes the dense
model to 70% and finetunes the pruned model, then subse-
quently prunes it from 70% sparsity to 80% sparsity and fine-
tunes it. Take models with 90% sparsity as another example,
its sparsity increases progressively in increments of 0%-70%-
80%-90%.
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Figure 1: The ASR performance of wav2vec2-base-100h pruned
at different sparsities using SparseWAV.

3. Experiment
3.1. Experimental Setup

Toolkits.Our method is implemented using the PyTorch [16]
and Hugging Face [17]. Pretrained and finetuned models are
downloaded from fairseq [18] and Hugging Face.
Data. The train-clean-100h set of LibriSpeech [19] is utilized
for finetuning, while the test-clean set is utilized for evalution.
The calibration dataset consists of 2048 random samples from
the LibriSpeech train-clean-100h dataset
Model. We examine the performance of the proposed method
on wav2vec2-base, wav2vec2-large and wavlm-base-plus. The
pre-trained weights of these models are downloaded from Hug-
ging Face and fairseq and re-loaded using AutoModeForCTC
from the Hugging Face’s transformer library. It is worth noting
that a CTC decoder without language models is employed.
Pruning. Pruning is performed on a single RTX 4090. The
α for SparseWAV was set to 0.1. It takes 80 seconds to prune
wav2vec2-base, 210 seconds to prune wav2vec2-large.
Fine-tuning. The configuration of fine-tuning depends on the
performance loss of the pruned model, typically requiring more
epochs for models with higher sparsity. For example, with a
sparsity of 50% for wav2vec2-base, we conduct fine-tuning for
40 epochs using the Adam optimizer with betas=(0.9, 0.999)
and epsilon=1e-08. The learning rate was set to 3e-5, with a
warm-up of 1000 steps, and a batch size of 16.

3.2. Main Results

In this section, we examine the performance of SparseWAV on
various large speech foundation models, including wav2vec2-
base/large [2] and wavlm-base-plus. Overall, our method can
prune over 70% of the parameters of the model with almost no
loss in performance.

From Figure 1, 2 and 3, it can be clearly seen that the pro-
posed pruning method can remove over 70% of the parameters
of the model with negligible performance loss. For wav2vec2-
base (Figure 1), when the sparsity is less than or equal to 70%,
the pruned models do not show significant performance degra-
dation, and in some cases, models with lower sparsity even out-
perform the original model. This observation is consistent with
previous work [9, 10], suggesting that pruning may provide reg-
ularization that enhances model generalization. At 90% spar-
sity, the model pruned using SparseWAV-progress only incurs a
3.69% absolute WER increase. As Figure 2 and 3 display, simi-
lar phenomena can been observed on wav2vec2-large-100h and

Figure 2: The ASR performance of wav2vec2-large-100h
pruned at different sparsities using SparseWAV.

Figure 3: The ASR performance of wavlm-base-plus-100h
pruned at different sparsities using SparseWAV.

wavlm-base-plus-100h respectively, illustrating its broad appli-
cability across various pre-trained speech models.

Furthermore, we find that the better the performance of
the original model, the smaller the performance loss caused
by pruning. Figure 4 illustrates the performance of one-shot
pruned wav2vec2-large models finetuned on different datasets.
These models were not finetuned after pruning. Models trained
more extensively have more accurate parameters, allowing
SparseWAV to more effectively offset the impact of pruning
through updates to the remaining parameters. Notably, when
the sparsity is below 50%, the performance of the pruned
wav2vec2-large model remains consistent with the original
model even without post-pruning fine-tuning.

3.3. Ablation Study

In this section, we analyze the effects of the suggested pruning
techniques on performance. Taking wav2vec2-base-100h as an
example, the sparsity ratio is set to 75% in the experiments. Ta-
ble 1 clearly demonstrates that the pruning methods we have
introduced can lead to consistent improvements in the perfor-
mance of the pruned models.

We take the OBS with uniform sparsity as the baseline for
comparison. As shown in the second row of Table 1, the WER
of the model pruned uniformly reached 57.95%, far exceeding
that of the dense model at 6.1%. The performance of the model
is severely degraded and cannot be used.
Mixed Sparsity. SparseWAV assigns specific sparsity to each
weight matrix. Model with mixed sparsity (third row) outper-
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Figure 4: The ASR performance comparison of wav2vec2-large
models finetuned on datasets of varying sizes, without post-
pruning finetuning.

Table 1: Ablation study conducted to verify the effectiveness of
the improvements we proposed. The experiments were carried
out on the wav2vec2-base-100h model with 75% transformer
sparsity

Method ASR w/o LM

WER(%) ↓

wav2vec2-base-100h 6.1

OBS [11] 57.95

+mixed sparsity 53.79

++improved saliency 53.01

+++post-pruning finetune 7.54

++++progress 7.11

formes model with uniform sparsity with a WER of 53.79%
compared to 57.95% for uniform sparsity., proving the neces-
sity of mixed sparsity. This is because different weight matrices
contribute differently to model performance.
Improved Saliency. Saliency criterion is improved in Sparse-
WAV. The forth row shows that improved saliency could more
accurately identify parameters that can be pruned.
Post-pruning Finetune. SparseWAV finetunes models after
pruning when target sparsity is high. The fifth row demonstrates
that post-pruning finetune can significantly enhance the perfor-
mance of pruned models from 53.01% to 7.54%.
Progress. The performance of pruned model could be further
recovered by SparseWAV-progress. The sixth row shows that
iterative pruning could improved perfomance from 7.54% to
7.11%, closer to the dense model.

3.4. Comparison with Other Compression Methods

This section compares the performance of SparseWAV and pre-
vious model compression methods for speech models. We
prune 85% of the parameters in the transformer part of the
wav2vec2 model to ensure that the pruned model’s size is sim-
ilar to the previously compressed model. The WER of the pre-
vious method originates from leaderboard of SUPERB [21]. As
illustrated in table 2, SparseWAV significantly outperforms dis-
tillation methods and L0 regularization-based structured prun-
ing methods by at least 2% absolute WER. This indicates that

Table 2: Performance comparison of our method versus pre-
vious compression methods on WER. SparseWAV2VEC2 and
SparseWAVLM+ are pruned from wav2vec2-base and wavlm-
base-plus respectively with 85% transformer sparsity.

Method Params ASR w/o LM

Millions WER(%) ↓

Baselines

wav2vec2 Base [2] 95.04 6.43
HuBERT Base [3] 94.68 6.42
WavLM Base+ [4] 94.70 5.59

Prior Compression Methods

DistilHuBERT [5] 23.49 13.37
FitHuBERT [6] 22.49 12.09
12-Layer Half [20] 26.87 10.96
DPHuBERT [7] 23.59 10.47
DPWavLM [7] 23.59 10.19
Wang et al. [8] 26.57 10.61

Ours

SparseWAV2VEC2 22.27 8.08
SparseWAVLM+ 22.98 7.12

SparseWAV can better preserve the speech recognition perfor-
mance of the original model.

Table 3: Time-consuming comparison of our method versus
previous compression methods on WER. We measure the time
costed by SparseWAV to one-shot prune models.

Method Model Time Speedup

Base model

DistilHuBERT [5] HuBERT-base 55 Hours –
DPHuBERT [7] HuBERT-base 24 Hours 1x
SparseWAV (ours) wav2vec2-base 80 Seconds 1080x

Large model

DPHuBERT [7] HuBERT-large 60 Hours 1x
SparseWAV (ours) wav2vec2-large 210 Seconds 1028x

Regarding algorithm efficiency, we list the time consump-
tion in Table 3. Obviously, the time required for SparseWAV
is significantly lower than that of previous methods, offering
an acceleration of at least 1080x. It should be noted that pre-
vious methods require distillation on 960h data and fine-tuning
on 100h data, whereas our approach merely involves fine-tuning
on 100h of data. This indicates the effectiveness and superiority
of the proposed methods.

4. Conclusion
In this work, we introduce SparseWAV, a fast and accurate
method for pruning large speech models. It is a general and
can prune speech models of various sizes such as wav2vec2-
base/large and wavlm base+. SparseWAV effectively preserves
the performance of the original model and surpasses previous
model compression methods for speech models. In the future,
we will continue to explore methods to determine the sparsity
of each layer of the model to further improve performance.
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