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ABSTRACT

Acoustic Scene Classification (ASC) plays a crucial role
in audio signal processing, with applications ranging from
urban soundscapes to smart homes. However, challenges
like domain shift and scarce labeled data hinder its devel-
opment, highlighting the need for semi-supervised learning
strategies. In the context of ICME 2024 Grand Challenge,
aimed at the semi-supervised acoustic scenes classification
under domain shift, our endeavor has been to devise a sys-
tem that navigates these challenges. Our submission outlines
a semi-supervised ASC system that employs pretraining on
available datasets, followed by finetuning through FixMatch
and pseudo-labeling, and concludes with test-time adaptation.
This approach seeks to effectively utilize unlabeled data and
mitigate domain shift, ultimately enhancing the ASC system’s
performance. Our final entry achieved a third-place position
with a macro accuracy rate of 70.0% on the evaluation set.

Index Terms— acoustic scene classification, semi-
supervised learning, domain shift, test-time adaptation

1. INTRODUCTION

Acoustic Scene Classification (ASC) is a pivotal task in the
realm of audio signal processing, aiming to categorize au-
dio recordings into predefined scenes based on their acoustic
characteristics. This technology underpins numerous applica-
tions, from enhancing urban soundscapes to advancing smart
home devices, making its development a focal point for re-
searchers and technologists alike.

However, as ASC research advances, it confronts signifi-
cant obstacles. Challenges such as domain shift significantly
influence ASC, where discrepancies in acoustic properties be-
tween training and testing scenarios can degrade model per-
formance [1]. The issue of domain shift encompasses a vari-
ety of factors such as recording devices, environmental con-
ditions, and language or culture differences, making it par-

† Yanmin Qian is the corresponding author

Fig. 1. Overview of our system’s pipeline. “dev” and “eval”
refer to the development and evaluation sets of the competi-
tion, respectively, while “TAU” and “Cochl” denote the TAU
Urban Acoustic Scenes and CochlScene datasets.

ticularly challenging to address. Numerous studies [2, 3, 4]
have explored various domain adaptation strategies, such as
domain alignment and feature disentanglement, to counteract
discrepancies arising from device or city mismatches within
the TAU urban acoustic scene dataset [1]. Nevertheless, these
techniques often depend on prior knowledge of domain char-
acteristics, posing challenges when the domain information is
unknown or cannot be precisely defined.

Furthermore, due to the high cost of annotating acoustic
scenes, the limited availability of labeled data poses a sig-
nificant challenge for supervised learning approaches. This
scarcity underscores the importance of semi-supervised meth-
ods, which leverage the abundant unlabeled audio data, offer-
ing a practical solution to this constraint. In computer vi-
sion, semi-supervised learning serves as a powerful interme-
diary between supervised and unsupervised learning. It uti-
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lizes techniques like pseudo labeling, Mean Teacher [5], Mix-
Match [6], and FixMatch [7], which meld consistency regu-
larization, data augmentation, and the strategic incorporation
of unlabeled data to enhance model robustness and perfor-
mance. These approaches are not only effective in visual con-
texts but also demonstrate significant potential for adaptation
in audio processing.

The aforementioned challenges also form the core of the
“Semi-supervised Acoustic Scene Classification under Do-
main Shift” challenge [8]. Within this context, the challenge
provides a development dataset from the CAS 2023 collec-
tion, featuring 4.8 hours of labeled and 19.3 hours of un-
labeled data. A significant domain shift characterizes the
evaluation dataset, which includes recordings from cities not
present in the development dataset. Importantly, the dataset
only provides basic information such as the scene category
and filename for each audio clip, presenting additional hur-
dles in managing and understanding domain-specific infor-
mation.

To navigate these obstacles, we propose a semi-
supervised ASC system. Figure 1 illustrates our method,
which unfolds in four steps. Initially, we pretrain the model
using a variety of available datasets. Next, we finetune it
on the challenge development dataset employing the Fix-
Match [7] strategy. As the model acquires knowledge and
becomes accustomed to the development set, we generate
pseudo labels for the remaining unlabeled data and further
finetune the model using these labels. Lastly, in the testing
phase, due to the inability to use the evaluation set for train-
ing and the unavailability of domain information, we opt for
a test-time adaptation [9] method to mitigate the domain shift
between the development and evaluation sets. This strategic
approach enables our system to effectively mitigate the chal-
lenges of domain shift and label scarcity, thereby enhancing
the predictive accuracy for acoustic scene classification.

2. DATASETS

In compliance with the challenge rules, apart from the ASC
challenge development dataset [8], we utilize the TAU Urban
Acoustic Scenes (UAS) 2020 Mobile development dataset [1]
and the CochlScene dataset [10] for model pretraining. These
are the only two additional datasets permitted for use in this
challenge.

Challenge dataset. The ICME ASC challenge develop-
ment set comprises approximately 24 hours of audio, encom-
passing a total of 8,700 recordings sourced from eight differ-
ent cities. These recordings span across 10 distinct acoustic
scene classes. Notably, only a fraction of the data, amounting
to 20%, comes with associated scene labels.

TAU UAS. The TAU Urban Acoustic Scenes 2020 Mobile
dataset [1] features 64 hours of recordings from various Eu-
ropean cities across ten acoustic scenes, captured simultane-

ously using four devices (A, B, C, and D). Additionally, it
includes synthetic recordings from devices S1-S11, created
by simulating audio from device A, a high-quality binaural
recorder, to enhance the dataset’s diversity.

CochlScene. The Cochl Acoustic Scene Dataset [10], also
known as CochlScene, is an acoustic scene dataset with
recordings entirely sourced from crowdsourcing participants
in Korea. By selecting a subset pertinent to Acoustic Scene
Classification (ASC) from the full collection, it has 76,115
ten-second audio files across 13 different acoustic scenes,
contributed by 831 participants.

3. METHOD

3.1. Data augmentation

For model training, we primarily employ three data augmen-
tation techniques: SpecAugment [11], Mixup [12] and Freq-
MixStyle [13, 14].

SpecAugment. SpecAugment [11] was initially crafted for
speech data improvement, and can also enhances audio by ap-
plying frequency and time masking to log mel spectrograms.
It randomly hides frequency bins and time segments, thereby
increasing model robustness to frequency and temporal varia-
tions. This dual-masking approach effectively guards against
audio distortions.

Mixup. Mixup [12] creates new dataset entries by blending
the inputs and targets of two audio clips. Given two audio
inputs x1 and x2 with their corresponding targets y1 and y2,
the augmented input x and the target y are formed as x =
λx1 + (1 − λ)x2 and y = λy1 + (1 − λ)y2, with λ being
drawn from a Beta distribution. Typically, this technique is
applied to the log mel spectrogram of the audio clips from
one batch.

Freq-MixStyle. Freq-MixStyle (FMS) [13, 14] is an adap-
tation of the original MixStyle [15] concept but tailored for
frequency. It first normalizes the frequency bands within a
spectrogram, then reintroduces variability by denormalizing
them using the combined frequency statistics from two differ-
ent spectrograms. The application of FMS to any given batch
occurs with a probability determined by the hyperparameter
pFMS , with mixing coefficients drawn from a Beta distribu-
tion shaped by α.

3.2. Pretraining ASC Model

3.2.1. Network architecture

Our ASC model employs the CNN10 configuration from
PANNs [16], adapted for the audio tagging task. This ar-
chitecture consists of 10 layers, including 4 convolutional
blocks. Each block contains 2 convolutional layers with 3x3
kernels. Batch normalization is incorporated between con-
volutional layers to enhance training efficiency and stability,
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Fig. 2. The count of samples per scene in the newly gen-
erated pre-training dataset, adjusted by a weighted sampling
strategy. Each scene’s sample count is multiplied by its cor-
responding dataset weighted ratio to reflect the strategy’s im-
pact on the dataset composition.

along with the ReLU activation function. For downsampling,
average pooling with a 2x2 kernel size is applied within each
convolutional block. The model consists of 6.037M parame-
ters in total.

3.2.2. Training strategy

To train the ASC model, we use data from the challenge de-
velopment set, TAU, and CochlScene. These datasets vary in
both classes and quantities, requiring us to reorganize them.
We combine identical classes from each dataset and introduce
new ones, resulting in a total of 20 classes. To ensure each
dataset contributes equally, we apply weighted sampling for
data from the three datasets, setting the weights at a 10:1:1
ratio.

Despite the adjustments, as shown in Figure 2, dispari-
ties in the number of audio clips among various scene classes
persist. Such variation can lead to overfitting in classes with
an abundance of training clips and underfitting in those with
fewer. To mitigate these issues, we implement a strategy that
ensures an equal representation of audio clips from all sound
classes in each minibatch.

For additional robustness, our training includes data aug-
mentations like SpecAugment, Mixup, and Freq-MixStyle,
improving the model’s performance across various acoustic
scenes.

3.3. Two-Stage Finetuning

After pretraining, we finetune the model on the challenge de-
velopment dataset in two stages. In the first stage, we use

FixMatch, a semi-supervised algorithm, to finetune the model
with both labeled and unlabeled data. In the second stage, we
generate pseudo labels for all unlabeled data using the stage
1 model. Then, we finetune the model further using either
labeled data or data with these pseudo labels.

3.3.1. Stage 1: FixMatch

Fig. 3. Diagram of the FixMatch algorithm.

Figure 3 illustrates that during each training step of Fix-
Match [7]. For every iteration, a data batch is retrieved, en-
compassing both the labeled data, denoted as X = {(xi, pi) :
i ∈ (1, . . . , N)}, and the unlabeled data, represented by
U = {uj : j ∈ (1, . . . ,M)}. Here, xi and ui signify the
labeled and unlabeled training instances, respectively, while
pj stands for the one-hot encoded label corresponding to xi.
Furthermore, N and M indicate the counts of labeled and un-
labeled instances in the current batch, respectively. We apply
two distinct augmentation strategies to the data: weak aug-
mentation, symbolized by α(·), and strong augmentation, rep-
resented by A(·). In our framework, SpecAugment is utilized
for the weak augmentation. To constitute the strong augmen-
tation, we extend SpecAugment by integrating an additional
technique, namely Freq-MixStyle.

Training comprises the computation of two varieties of
cross-entropy loss: supervised, denoted as Ls, and unsuper-
vised, denoted as Lu. The supervised loss, Ls, is determined
by calculating the conventional cross-entropy for weakly aug-
mented labeled data, where pm(y|x) represents the model’s
predicted class distribution:

Ls =
1

N

N∑
i=1

H(pi, pm(y | α(xi))) (1)

In the calculation of the unsupervised loss, Lu, we com-
mence by obtaining the predicted class distribution from the
model for the weakly augmented data, indicated as qj . If these
predictions exceed the confidence threshold τ , they are uti-
lized as pseudo labels, q̂j , for the strongly augmented data in
the computation of the cross-entropy loss. This methodology
ensures alignment between the representations derived from
weakly and strongly augmented data, thereby reinforcing the
model’s robustness and consistency across varied augmenta-
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tions.

Lu =
1

M

M∑
j=1

1(max(qj) ≥ τ)H(q̂j , pm(y | A(uj))) (2)

Thus, the total loss for this stage is defined as follows:

L = Ls + λuLu (3)

Here, λu represents the weighting factor for the unsupervised
loss component, which, in our training regimen, is assigned a
value of 0.5.

3.3.2. Stage 2: Pseudo Labeling

During the initial stage of fine-tuning, the number of unla-
beled sample predictions chosen as pseudo labels increases as
the model’s performance improves. Consequently, in the sec-
ond stage, we assume the model has developed the capability
to accurately predict labels for unlabeled data. Therefore, we
utilize the model from stage 1 to generate pseudo labels for
the remaining unlabeled training samples, followed by fine-
tuning the model on this newly labeled dataset. Additionally,
to elevate the challenge of this stage, we apply the strong aug-
mentation techniques, initially used in stage 1, across all data.

3.4. Test-time Adaptation

A test-time adaptation method [9] based on k-nearest neigh-
bor (KNN) is adopted to bridge the gap between the develop-
ment and the evaluation sets. The embeddings of all labeled
samples of the development set are pre-extracted to form a
memory bank for KNN. During inference, the embedding of
each query sample is compared with the memory bank via
cosine similarity, and the distances to top-k neighbors are uti-
lized as the scoring coefficient. Specifically, let ML denote
the set of embeddings of all labeled samples in the develop-
ment set. For each query embedding xi, we search ML for a
subset of top-k neighbors NML

(xi) by means of cosine sim-
ilarity:

wij =
xT
i xj

∥xi∥2∥xj∥2
(4)

Then the final prediction of the model can be given by:

η(xi) = Softmax

 ∑
xj∈NML

(xi)

wij1{yj}

 (5)

where yj is the label of xj , and 1{yj} denote the one-hot
vector of xj . It is noted that the adopted method neither fine-
tunes the model on the evaluation set, nor utilizes the statistics
of the evaluation set, which is in compliance with the chal-
lenge rules.

Table 1. The performance of the proposed ASC system for
each scene class on the evaluation set.

Scnene Accuracy (%)

Bus 82.0
Airport 84.0
Metro 96.0
Restaurant 74.0
Shopping mall 53.0
Public square 34.0
Urban park 59.3
Traffic street 75.0
Construction site 75.0
Bar 95.0

Average 70.0

4. EXPERIMENT

4.1. Experimental settings

Data preprocessing. In our data preprocessing pipeline, we
standardize audio files to a sample rate of 44,100 Hz. The
process involves generating spectrograms using a Hann win-
dow of 1024 with a 320 hop size and an FFT window of 2048.
These spectrograms are then converted into log-Mel spectro-
grams with 64 Mel bins, ranging from 10 Hz to half the sam-
ple rate.

Data augmentation. In our augmentation strategy, we use
SpecAugment with settings of 64 for time drop width, 2 for
time stripes, 8 for frequency drop width, and 2 for frequency
stripes. Mixup is applied with an alpha of 1.0. For Freq-
MixStyle, we set a probability of 0.5 and an alpha of 0.6.

Training details. In our training process, we first pretrain the
model using the Adam optimizer with a learning rate of 0.001
and binary cross-entropy loss to manage shifted target labels
caused by Mixup. For finetuning, we maintain the Adam op-
timizer but shift to cross-entropy loss. The threshold for fine-
tuning stage 1 is set as 0.5.

Inference details. In our test-time adaptation process, the
number of neighbors k is selected as 33.

4.2. Result

Table 1 illustrates the performance of the proposed Acous-
tic Scene Classification (ASC) system across a range of envi-
ronments. The system demonstrates exceptional accuracy in
“Metro” (96.0%) and “Bar” (95.0%) scenes, highlighting its
capability to accurately identify the distinct acoustic features
specific to these settings. On the other hand, lower accuracies
in “Public square” (34.0%) and “Shopping mall” (53.0%) in-
dicate difficulties in accurately classifying environments that
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may have a wider range of or more ambiguous acoustic char-
acteristics. Despite these challenges, the system achieves an
overall average accuracy of 70.0%, signifying its general ef-
ficacy. However, this also signifies room for improvement,
especially in enhancing the system’s ability to classify scenes
with lower accuracies more reliably.

5. CONCLUSION

In this work, we describe our submission to ICME 2024
Grand Challenge “Semi-supervised Acoustic Scene Classifi-
cation under Domain Shift”. To overcome the domain shift
and label scarcity challeges, we develop a semi-supervised
ASC system. Our methodology involved pretraining on var-
ious datasets, finetuning with FixMatch, generating pseudo
labels for further refinement, and employing test-time adap-
tation to alleviate the domain shift for evaluation. Our final
submission achieved a third-place position with a macro ac-
curacy rate of 70.0% on the evaluation set.
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