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ABSTRACT

In response to the challenges posed by the abundance of
unlabeled acoustic scene data in the real world, along with
the domain differences in acoustic scenes, the ICME 2024
Grand Challenge has introduced the task of “Semi-supervised
Acoustic Scene Classification under Domain Shift.” To tackle
this issue, we propose a multi-stage semi-supervised frame-
work that utilizes the self-supervised learning (SSL) model
– Efficient Audio Transformer (EAT) and the self-learning
fine-tuning method. This framework employs self-supervised
learning to train on a wealth of unlabeled acoustic scene data,
thereby obtaining the capability of extracting audio represen-
tations. It then leverages semi-supervised fine-tuning with
pseudo-labels and utilizes a test-time adaptation strategy to
optimize inference. Our approach achieved a Macro-accuracy
of 0.752 across ten categories on the final evaluation dataset,
ranked second, only 0.006 lower than the first-place system.

Index Terms— Acoustic Scene Classification, Self-
supervised Learning, Semi-supervised Learning, Test-time
Adaptation

1. INTRODUCTION

The realm of audio scenes is remarkably broad, encompass-
ing a diverse range of recording devices, geographical areas,
and the varied cultural and linguistic contexts they represent.
This diversity poses a significant challenge in gathering ex-
tensive datasets for training an Acoustic Scene Classification
(ASC) model[1]. Relying on limited labeled data can hin-
der the model’s ability to generalize effectively when applied
in real-world scenarios. Furthermore, there has been a rising
need to deploy ASC applications on mobile devices, which
impose constraints on model size, adding another layer of
complexity to the development of efficient and robust ASC
systems.

In practice, obtaining labeled acoustic scene data is chal-
lenging due to the high costs and low accuracy of manual

labeling[2], as humans struggle to discern subtle differences
in audio. Meanwhile, unlabeled acoustic scene data is more
readily available. Therefore, finding ways to develop effective
models with limited samples or utilizing unlabeled data to en-
hance a model’s ability to adapt across different scenarios is
crucial. While self-supervised learning and supervised learn-
ing dominate the field of acoustic scene classification, semi-
supervised techniques[3, 4] that leverage unlabeled data are
gaining attention for their potential to improve model training
and generalization. Addressing these challenges has become
a key focus for researchers and practitioners in the field.

To tackle the issue of limited labeled data in acoustic
scene classification, we propose a multi-stage training frame-
work that capitalizes on the strengths of self-supervised learn-
ing (SSL). Initially, we employ the advanced SSL model, the
Efficient Audio Transformer (EAT) [5], leveraging its effec-
tiveness and efficiency on audio SSL. This approach allows
us to harness the intrinsic structure of audio data by recon-
structing the representation of the audio spectrogram, thereby
enhancing the model’s generalization capabilities.

Upon completing the pre-training stage, the model gains
a foundational understanding of audio representation. To fur-
ther tailor the model to the specific domain of the dataset pro-
vided for the competition, we proceed with fine-tuning us-
ing labeled samples. This step aims to address the domain
shift problem, making the model more adept at handling the
dataset’s unique characteristics.

Additionally, we incorporate fine-tuning using labeled
data from the TAU dataset [6] to boost the model’s generaliza-
tion performance. We employ weighted sampling techniques
during this process to maintain label balance and prioritize the
target dataset’s relevance.

After fine-tuning, the system preliminarily acquires the
capability to accurately label the target dataset. To opti-
mally utilize the abundance of unlabeled data, we implement
a pseudo-labeling strategy. This involves generating a prob-
ability distribution for the unlabeled data and setting a high
probability threshold to extract reliable pseudo-labels for fur-
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ther iterative training. This comprehensive approach seeks to
maximize the model’s adaptability and effectiveness in acous-
tic scene classification with limited labeled data.

Also, we incorporate a test-time adaptation strategy[7]
into our ASC system. During inference, the model explic-
itly compares the features of testing data with the aggregated
knowledge of the training data before outputting the predic-
tions. This adaptation process allows the model to account
for the domain shift and improves the robustness of the ASC
model.

2. DATA PREPROCESSING AND AUGMENTATION

2.1. Datasets

In compliance with the challenge rules, we utilize the ASC
challenge development dataset [8], TAU Urban Acoustic
Scenes (UAS) 2020 Mobile development dataset [6] and the
CochlScene dataset [9] for model pre-training. No more
datasets are used for model training.
The Chinese Acoustic Scene Dataset. The CAS 2023
dataset stands as a comprehensive resource for exploring en-
vironmental acoustic scenes, crafted through the collaborative
efforts of the Joint Laboratory of Environmental Sound Sens-
ing at Northwestern Polytechnical University’s School of Ma-
rine Science and Technology. This expansive dataset encom-
passes a total of 10 distinct acoustic scenes, culminating in
over 130 hours of audio recordings, each with segments of 10
seconds. The dataset for the competition was derived entirely
from the CAS 2023 dataset, and the development dataset was
approximately 24 hours long, of which 20% are labeled, in-
cluding recordings from 8 cities. In the evaluation dataset,
data were selected from 12 cities, with a special selection of
5 unseen cities.
TAU UAS. The TAU Urban Acoustic Scenes 2020 Mobile
dataset [6] consists of 64 hours of recordings from various
acoustic scenes. The recordings are captured in different
cities across Europe, using four devices (A, B, C, and D)
simultaneously. To enhance the diversity of the dataset, 11
simulated devices (S1 - S11) are created in the dataset, using
synthetic recordings simulated from device A.
CochlScene. The Cochl Acoustic Scene Dataset [9], abbre-
viated as CochlScene, is an acoustic scene dataset contain-
ing 76,115 ten-second audio files from 13 different acoustic
scenes. The recordings of the dataset are sourced from crowd-
sourcing participants in Korea and manually selected to en-
hance evaluation reliability.

2.2. Feature extraction

Utilizing spectrograms for various audio tasks has proven to
be effective[10, 11]. In our data preprocessing pipeline, all
audio files are standardized to a sample rate of 16,000 Hz.
Spectrograms are then generated using a Hanning window of
25 milliseconds with a hop size of 10 milliseconds and an

FFT window of 400. Subsequently, these spectrograms are
transformed into 128-dimensional log-mel spectrograms.

2.3. Data augmentation

For model fine-tuning, the following data augmentation tech-
niques are mainly employed: SpecAugment [12], Mixup [13]
and Roll Augmentation.

SpecAugment. SpecAugment [12] directly modifies neural
network inputs by warping features, masking frequency chan-
nels, and masking time steps. This technique, originally de-
veloped for speech recognition, helps improve model perfor-
mance by creating diverse training examples.

Mixup. Mixup [13] interpolates between pairs of inputs and
their labels to generate additional samples. This approach
encourages the model to learn more robust features and im-
proves generalization to unseen data. In our pipeline, Mixup
enriches the dataset by creating new samples from log-mel
spectrograms of audio clips.

Roll Augmentation. Roll Augmentation increases audio data
diversity by rolling the audio signal and splicing segments.
This technique generates samples with time-domain varia-
tions, reducing overfitting and enhancing the robustness and
accuracy of acoustic scene classification models.

3. METHOD

In our study, we utilized the EAT model, a self-supervised
learning framework specifically designed for audio, as the
foundation for tasks related to audio scene classification.
Initially, the model was pre-trained using three principal
datasets: the ASC Challenge Development Dataset, the
TAU Urban Acoustic Scenes Development Dataset, and the
CochlScene Dataset. This pre-training stage aimed to capture
a broad and generalized spectrum of audio scene representa-
tions. Subsequently, to enhance the model’s performance on
a validation set drawn from the ASC Challenge Development
Dataset, we implemented a semi-supervised strategy—self-
learning. This approach combines iterative fine-tuning with
pseudo-labeling, demonstrating the effectiveness of integrat-
ing self-supervised and semi-supervised methodologies to
improve audio scene classification.

3.1. Self-supervised Pre-training

Leveraging unlabeled data allows for capturing both low-level
acoustic events and rich semantic information from raw audio
waves or their spectrograms. This approach is crucial for un-
derstanding complex acoustic environments, enabling the ex-
traction of nuanced features often overlooked by traditional
supervised methods. Relying solely on supervised datasets
can lead to overfitting and poor generalization due to their
limited scope and diversity.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 17,2024 at 12:56:56 UTC from IEEE Xplore.  Restrictions apply. 



Stu
d
e
n
t

Tran
sfo

rm
e
r 

E
n
co

d
e
r

Te
ach

e
r 

Tran
sfo

rm
e
r 

E
n
co

d
e
r

Divided Patch 
Spectrogram

Stu
d
e
n
t

D
e
co

d
e
r

Predict Representation 

with UFO loss

EMA 
Update

Fe
atu

re
 E

xtractio
n

*

Mask

Raw Audio
Wave

Stop Gradient

Fig. 1. Architecture of EAT in Self-supervised Pre-training with Acoustic Scene Audio. EAT employs a bootstrap frame-
work, iteratively learning acoustic scene features through a self-teaching method. The student model updates using UFO loss,
while the teacher model is refreshed through exponential moving average (EMA) updates.

To address the problem of limited labeled data, audio
self-supervised learning (SSL) models use pretext tasks like
masked autoencoders (MAE)[14] for pre-training, leveraging
vast amounts of unlabeled data to learn audio features across
various scenes and devices. This pre-training enables supe-
rior performance in downstream acoustic scene classification
tasks. We employed the EAT model, which utilizes a boot-
strap self-supervised training paradigm within the audio do-
main. The Transformer-based EAT model uses the Utterance-
Frame Objective (UFO) as a loss function, integrating global
utterance-level and local frame-level losses to predict audio
scene representations.

The EAT framework employs a teacher-student structure
where the teacher model has access to full spectrograms while
the student model sees a masked version. This setup allows
the student to learn from the teacher’s representations[15].
The model dynamically refines the teacher using exponential
moving average (EMA) adjustments based on the student’s
updates, ensuring efficient learning and superior performance
in acoustic scene classification.

In our experiments, we pre-trained the EAT framework
on the ICME ASC challenge dataset, TAU, and CochlScene
datasets. We used a weighted pre-training approach with a
1:1:10 ratio, prioritizing the ASC data. This strategy en-
hanced the model’s adaptability and performance in target
acoustic scene classification tasks, demonstrating the efficacy
of a fine-tuned, self-supervised learning approach in audio
scene analysis.

3.2. Semi-supervised Learning

Given the limited labeled data in the ASC Development
Dataset (1,740 labeled instances versus 6,960 unlabeled in-
stances), relying solely on supervised learning poses chal-
lenges in enhancing the model’s generalization capabilities.
To address this, we implemented a self-learning-based semi-
supervised learning method that leverages the abundant unla-
beled data in both the TAU dataset and the ASC Development
Dataset.

Our semi-supervised learning method unfolds iteratively
in two main stages: fine-tuning and pseudo-labeling. Initially,
the pre-trained EAT model is fine-tuned on the labeled ASC
data using the standard cross-entropy loss function:

L = −
M∑
c=1

yo,c log(po,c) (1)

After fine-tuning, the EAT model predicts the classes of
the unlabeled data from both the TAU and ASC Develop-
ment datasets. A confidence threshold is applied to gener-
ate pseudo-labels, ensuring that only predictions above this
threshold are retained as hard labels. This approach enhances
the quality of pseudo-labels, creating an augmented dataset
that combines both labeled data and high-confidence pseudo-
labeled data.

The model is then re-trained on this augmented dataset,
adjusting and improving based on the broader set of exam-
ples, including pseudo-labeled data. This iterative cycle of
pseudo-labeling and fine-tuning continues, with each iteration
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Fig. 2. Architecture of EAT in Semi-supervised Learning with Labeled and Unlabeled Data. Within the semi-supervised
framework, labeled data undergo data augmentation before being used to fine-tune the student model. Unlabeled data is first
subjected to inference, with softmax applied to obtain a probability distribution for the labels. If these probabilities exceed a
certain threshold, the model is then fine-tuned through supervised training.

aiming to enhance the model’s generalization ability by lever-
aging insights from the expanded training dataset.

To improve initialization parameters, we iteratively
trained models that had already been fine-tuned, carefully
controlling the number of iterations to avoid reinforcing in-
correct labels. This strategy helps refine the model’s per-
formance by continually incorporating high-quality pseudo-
labels into the training process.

3.3. Test-time Adaptation

To address the domain shift between the development and
evaluation datasets, our approach employs a test-time adap-
tation (TTA) strategy using the k-nearest neighbor (KNN)
methodology, inspired by Zhang et al. [16]. We start by ex-
tracting embeddings from all labeled samples in the develop-
ment set to create a memory bank. During inference, each
evaluation sample’s embedding is compared to those in the
memory bank using cosine similarity to identify the k-nearest
neighbors.

For an embedding xi from the evaluation set, its similarity
to a neighboring embedding xj in the memory bank ML is
quantified using the cosine similarity metric:

wij =
x>i xj

‖xi‖2‖xj‖2
. (2)

This allows for a weighted aggregation of the neighbors’
labels. The final output for xi, denoted by η(xi), is calculated

by applying the softmax function to the combined weighted
sum of the one-hot encoded labels of its nearest neighbors:

η(xi) = Softmax

 ∑
xj∈NML

(xi)

wij1{yj}

 . (3)

Our methodology ensures that the model’s predictions
adapt to domain-specific characteristics, enhancing accuracy
and reliability. This strategic use of KNN, supported by a ro-
bust memory bank, improves the model’s capability to handle
domain shifts.

4. EXPERIMENT

4.1. Dataset Split

In the dataset provided by the challenge, a significant number
of highly similar audio recordings are present, which raises
the likelihood of the model overfitting on the validation set
allocated within the ICME ASC challenge dataset. Through
experimental analysis, we discovered that allocating a larger
portion of the dataset for training tends to make the model
overly specialized to data resembling the validation set, re-
sulting in an artificially high validation accuracy, often stabi-
lizing at 100%. This scenario masks the true effectiveness of
the model.

To devise a more effective training strategy, we adopted
a small-sample training method. This involves using a small
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fraction of the data for training while reserving the rest of the
labeled data for validation. This approach helps in assess-
ing the impact of various components and hyperparameters
on the model’s performance. We set the ratio of the training
set to the validation set at 1:9 for the subsequent experiments.
Ultimately, the final model is trained using the entire dataset,
applying the optimal strategy derived from the small-sample
experiments to the full-sample training process.

4.2. Training details

In the pre-training stage, we utilized 4 GeForce RTX 3090
GPUs, with a batch size of 12, and conducted 20,000 updates
using the EAT model framework. The model was optimized
with an Adam optimizer set to a learning rate of 0.0005,
Adam betas of [0.9, 0.95], a weight decay of 0.05, and em-
ployed a cosine learning rate scheduler. For the exponential
moving average (EMA) method, the EMA decay was set to
0.9998, and the EMA end decay to 0.99999. The student
model input spectrogram featured a mask scale of 0.8.

In the fine-tuning stage, we carried out 3,000 updates us-
ing a single GTX 3090 Ti. This was followed by iterating on
the inference of unlabeled data, filtering out instances with
confidence above a certain threshold as pseudo-labels, and
then reintroducing them into the model for further training.
Mixup and SpecAugment techniques were incorporated into
the training. Additionally, a portion of the TAU dataset that
overlaps with the ICME challenge was included, with the
training of this data weighted to ensure that the labels re-
mained relatively balanced.

After obtaining the pseudo-labels, in order to ensure that
the effect of model tuning with labeled data is not forgotten,
we chose to keep the initialization parameters of the fine-
tuned model and use the pseudo-labeled data to iteratively
train on the original fine-tuned model.

4.3. Experimental Results

Comparison of dataset proportions. Table 1 compares the
effect of different datasets and sampling weights for pre-
training and fine-tuning on given datasets. The TAU dataset
for fine-tuning uses the same seven classes from the CAS
dataset for supervised training and weighted sampling. The
best results were obtained with three datasets for sampling-
weighted pre-training and fine-tuning with CAS and TAU.

Comparison of different thresholds in semi-supervised
learning. Table 2 compares the effect of different thresh-
olds for screening pseudo-labels on the results. We found
that higher thresholds screened pseudo-labels have a better
effect on model tuning, but if the threshold is too high then
the decrease in the number of pseudo-labels has reduced the
diversity of samples. In the ablation experiments, a threshold
of 0.85 gives the best results. Therefore, 0.85 threshold was
used as the last submitted system.

Pre-train Data Weighted Fine-tune Data Acc (%)
CAS CAS 89.78

CAS+TAU+CS CAS 93.36
CAS+TAU+CS CAS+TAU 94.05
CAS+TAU+CS CAS+TAU 94.76

Table 1. The accuracy score results of pre-training and
fine-tuning with different datasets and different sam-
pling strategies. CAS, TAU, and CS stand for ICME ASC
challenge dataset, TAU UAS, and CochlScene respectively.
Weighted refers to whether or not weighted sampling was
used in the pre-training stage, using a sampling ratio of 10:1:1
in all cases in our experiment.

The result on the ASC challenge evaluation dataset. Ta-
ble 3 showcases the results of our model on the competi-
tion’s evaluation dataset, where our outcomes significantly
surpassed those of the baseline semi-supervised framework
based on Squeeze-and-Excitation and Transformer. Ulti-
mately, our model achieved second place in the competition.

Threshold Accuracy (%)
0 93.74

0.5 93.86
0.7 94.53
0.8 96.52
0.85 96.61
0.9 95.67
0.95 93.46

1 93.36

Table 2. Accuracy scores on the test set with pseudo-
labels at different confidence thresholds. Only samples
with prediction probabilities above the threshold were
used for training.

5. CONCLUSION

In the ICME-2024 challenge, we leveraged the self-
supervised model EAT to capture representations rich in in-
herent audio information. To achieve a more robust model,
we maximized the use of the provided dataset and applied
a weighted method to ensure equitable balance across each
dataset. Subsequently, we adopted semi-supervised learning,
selecting an appropriate threshold to guarantee both the quan-
tity and quality of pseudo-labels, thus enhancing the utiliza-
tion of unlabeled data. Furthermore, we implemented a test-
time adaptation strategy to boost the model’s performance
and generalization capability. Ultimately, our efforts culmi-
nated in achieving a Macro-accuracy of 0.752 on the evalua-
tion dataset.
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Scnene Our (%) Baseline (%)

Bus 76.0 40.0
Airport 94.0 54.7
Metro 99.0 90.0
Restaurant 59.0 69.0
Shopping mall 68.0 51.0
Public square 51.0 29.0
Urban park 60.7 46.0
Traffic street 76.0 65.0
Construction site 69.0 68.0
Bar 99.0 87.0

Average 75.2 60.0

Table 3. Final results for each class on the evaluation set.
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