
Contextual Biasing Speech Recognition in Speech-enhanced Large Language
Model

Xun Gong1, Anqi Lv2, Zhiming Wang2, Yanmin Qian1∗

1Auditory Cognition and Computational Acoustics Lab
MoE Key Laboratory of Artificial Intelligence, AI Institute

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
2AntGroup, Shanghai, China

gongxun@sjtu.edu.cn

Abstract
Recently, the rapid advancements in audio- and speech-
enhanced large language models (SpeechLLMs), such as Qwen-
Audio and SALMONN, have significantly propelled automatic
speech recognition (ASR) forward. However, despite the im-
provements in universal recognition capabilities, bias word
recognition persists as a prominent challenge for SpeechLLM,
and is not extensively studied. In this study, we introduce two
contextual biasing strategies aimed at improving the bias word
recognition of SpeechLLM. Firstly, we explored two types of
biasing prompts for SpeechLLMs, achieving 10% relative re-
duction in bias word error rate (WER). However, as the size
of the bias list increased, performance significantly declined
due to hallucination. Subsequently, we built the biasing fu-
sion network for SpeechLLM that integrates high-level bias em-
beddings with the SpeechLLM framework. Our experiments
conducted on the LibriSpeech test-clean/-other datasets demon-
strate that our method achieves up to 10%/35% relative reduc-
tion in overall/bias WER compared to our baseline.
Index Terms: contextual biasing, speech recognition, speech-
enhanced large language model

1. Introduction
Leveraging the capabilities of text-only large language mod-
els (LLMs), researchers have sought to integrate audio and
speech within a unified framework. This integration has
achieved performance on par with or surpassing that of tra-
ditional supervised models across various tasks, such as au-
dio captioning, speech understanding, automatic speech recog-
nition (ASR), and so on [1, 2, 3, 4, 5]. This advance-
ment highlights the potential of LLMs in enhancing our in-
teraction with and understanding of audio information, set-
ting a new benchmark for speech recognition technologies.
Qwen-Audio [1] exemplifies the capabilities of speech data fu-
sion, leveraging the powerful generative and cognitive abilities
of LLMs for downstream tasks to achieve performance lev-
els unattainable by traditional end-to-end (E2E) ASR models,
such as attention encoder-decoder (AED), recurrent neural net-
work transducer (RNNT) and connectionist temporal classifica-
tion (CTC) [6].

However, recognition of bias words (also referred to as
named entities, such as proper names) present a significant chal-
lenge not only in the tranditional E2E ASR systems but also
in the above speech-enhanced LLMs (SpeechLLM) [7, 8]. The
recognition of these bias words is particularly problematic com-
pared with conventional models. The issue is that the extensive
textual knowledge embedded within LLMs, which, while bene-
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ficial in many contexts, can mislead the ASR process by intro-
ducing biases that skew recognition away from accurate inter-
pretations of speech input. This complex interplay between the
textual knowledge of LLMs and the speech input underscores
the need for tailored approaches that can mitigate these biases
and enhance ASR performance.

Early approaches borrowed from the DNN-HMM frame-
work are to construct weighted finite state transducer (WFST)
for bias words, and then incorporate into decoding [9]. Sim-
ilarly, joint training and decoding with an additional contex-
tual/personalized language model are explored by shallow fu-
sion or other techniques [7, 10, 11, 12, 13, 14]. The main
issue with constructing additional bias-specific LMs or FSTs
is their lack of flexibility. With the evolution of LLMs, there
has been an increasing interest in leveraging LLMs combined
with prompts to correct ASR results. Personalized databases
for working with LLMs are proposed to update the user bias
list in text-only LLMs [15]. Re-scoring technique is explored
by providing additional contextual information to a LLM [8]
by utilizing the dynamic and zero-shot capabilities of LLMs.
However, when it comes to correcting results, those approaches
cannot utilize any speech information, highlighting a gap be-
tween leveraging contextual textual knowledge and integrating
acoustic signals for more accurate ASR.

On the other hand, attention-based contextual biasing meth-
ods have been explored such as CLAS [16], C-RNNT [17]
and others [18, 19, 20]. PromptASR [21] introduces prompts
into E2E ASR system using BERT, enabling contextualized
speech recognition with adjustable transcription styles. Fine-
grained phoneme information is utilized to boost bias recogni-
tion in [22, 23]. Phone-TCPGen [22] introduces a novel ap-
proach of incorporating subword-level phoneme-aware encod-
ings into TCPGen, whereas Qiu et al. [23] enhances transducer
by utilizing phonemic and text-only information for bias words.
These advancements highlight a trend towards more adaptable,
context-sensitive ASR models.

To address the challenge of bias word recognition in
SpeechLLM, we propose two biasing strategies: the biasing
prompts and the biasing fusion network. Initially, we present
two types of biasing prompts designed to enhance Speech-
LLM’s input. One is to extends the token list with special tags
that surrounds the bias words (referred to as ‘special tagged’
prompt), while the second method embeds bias words within
naturally constructed human language (referred to as ‘natural
language’ prompt). However, we observed a huge performance
decrease with the expansion of the bias list, primarily attributed
to the hallucination of LLM. To counteract this issue, especially
in scenarios with extensive bias lists, we propose a biasing fu-
sion network that builds upon SpeechLLM. This method starts
with a lightweight text encoder dedicated to encode bias words
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Figure 1: Two different biasing strategies proposed for SpeechLLM. The biasing prompt strategy and the biasing fusion network is
shown in yellow color.

into a sequence of bias embeddings. Bias embeddings, com-
bined with intermediate features, are then merged to adjust the
hidden states of SpeechLLM. This strategy is specifically engi-
neered to enhance SpeechLLM’s ability to accurately recognize
targeted words. For these methods, we adopt low-rank adap-
tation (LoRA) [24] for fine-tuning, which effectively reduces
trainable parameters. Our approaches surpass our baseline in
recognizing bias words, and, compared to prior studies, our
experiments demonstrate competitive or even superior perfor-
mance on both overall and bias word accuracy.

2. Speech-enhanced Large Language Model
(SpeechLLM) for ASR

Basically, a traditional E2E ASR model processes acoustic fea-
tures X = [x1, · · · ,xT ] as its input and infers the output to-
kens y = [y1, · · · ,yL] using ASR models.

Recently, the rapid development of large language models
(LLMs) has significantly increased interest in speech-enhanced
LLMs (SpeechLLMs), which demonstrate impressive perfor-
mance in ASR tasks [1, 2]. As depicted in Figure 1, the typi-
cal architecture of a SpeechLLM consists of three components:
the audio encoder, the projection module, and the foundational
text-based LLM. Initially, acoustic features X are input into the
audio encoder, generating H = Audio-Encoder(X). Then, the
projection module maps H into H ′ via H ′ = Projection(H),
aligning it with the dimensional level of the LLM’s textual em-
beddings. H ′ is then fed into LLM along with various textual
prompts, which are designed to direct the LLM towards spe-
cific downstream tasks, such as using ‘recognize the speech’
with <ASR> for the ASR task.

yi
casual←− LLM(H ′, <ASR>,y<i−1). (1)

Multi-task training is used to facilitate knowledge sharing and
collaborative learning across similar speech-based tasks.

To reduce the training cost for SpeechLLM, researchers use
pre-trained modules for most components and employ low-rank
adaptation [24] to speed up the training process. The audio en-
coder is initialized with Whisper-large-v2 [25], while founda-
tional models like Qwen [26] or LLaMA [27] are chosen for
initializing the LLM. The training objective is formulated as a
multi-class cross-entropy loss for each predicted token.

3. Contextual Biasing SpeechLLM
To bias the SpeechLLM, we introduce two strategies, the bias-
ing prompt method and the biasing fusion method in Figure 1.

3.1. Biasing Prompts for SpeechLLM

Harnessing the capabilities of LLMs, we straightforwardly in-
corporate a bias word list into the input of SpeechLLM as pre-
retrieved knowledge [28]. Two biasing prompt templates are
pre-defined for bias words:

• Special tagged prompt We extend the LLM’s token list
to utilize the bias words with <startofbias> and <endof-
bias>. During recognition, LLM is trained to learn bias
words such as ‘<startofbias>Cuthbert<endofbias>’ and
‘<startofbias>Marilla<endofbias>’ before <ASR>. The
<unbiased> token is also added and used for training to
specify biased and unbiased situation, where bias words are
inaccessible for unbiased situation.

• Natural language prompt To avoid the complexities of ex-
tending the token list, we also develop a more naturally tem-
plate, such as ‘The bias words are Cuthbert and Marilla’.
Similarly, we randomly drop the bias prompt above not only
for the unbiased situation but also to make SpeechLLM more
robust to the prompt sentence.

Moreover, to deal the scenarios where the bias list is totally ir-
relevant, we add negative examples during training.
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3.2. Biasing Fusion for SpeechLLM

Although the biasing prompts seems elegant to contextual bias
the SpeechLLM, their effectiveness significantly drop as the
bias list enlarges To address this issue, we introduce a bias-
ing fusion network for SpeechLLM, shown in Figure 1. This
approach enables SpeechLLM to more effectively handle bias
words that may occur in the decoded sentences.

Bias Encoder
The first step in biasing SpeechLLM is encoding the bias

words using a bias encoder. <unbiased> is added, to aid in dis-
tinguishing unbiased words from biased ones. The bias encoder
processes the augmented bias list [z1, · · · , zN , <unbiased>],
producing a sequence of bias embeddings B. With the vari-
able length of bias text post-tokenization, A pooling operation
is added to unify the variable length of bias word. It captures
the statistical properties of zi by incorporating both the mean
and standard deviation.

bi = Pool(Bias-Encoder(zi)), (2)

where bi ∈ RD , B = [b1, · · · , bN+1]. To simplify the net-
work and maintain the compatibility between bias encoder and
SpeechLLM, we use the same tokenizer as the SpeechLLM.

Biasing Fusion We fuse the bias embedding sequence with
intermediate features M inside SpeechLLM. Two different in-
termediate features M = H (pre-projection fusion) and M =
H ′ (post-projection fusion) are explored during the fusion. As
the projection module in SpeechLLM make an important con-
nection between audio and text, the intermediate features H
and H ′ can performs a different role and have a different effect
when fusing with biasing embeddings.

To transition from unbiased intermediate features M into
biased features M b, we introduce an auxiliary multi-head at-
tention (MHA) module, where the key and value comes from
B, the query is M and the dimension of M is also D. The
whole biasing fusion process is:

M b = M+MHA(query=M , key=B, value=B), (3)

where a residual connection is added to maintain the stability.

4. Experimental Setup
Qwen-Audio [1] is adopted as our pre-trained SpeechLLM
model. The audio encoder is based on the Whisper-large-v2
model [25], which has 640M parameters. It is a 32-layer trans-
former encoder with attention dimension equal to 1280, takes
80-dim fbank features as input with two convolution down-
sampling layers of downsampling rate 4. The fundamental LLM
is based on a 32-layer transformer decoder with attention di-
mension equal to 4096, Qwen-7B [26] with totally 7.7B param-
eters. The projection layer is a Linear layer mapping the 1280-
dim audio features to 4096. The vocabulary size is 155947.
Qwen-Audio [1] is then trained with multi-task targets where
ASR task is included.

For the biasing prompt method, we use supervised fine-
tuning (SFT) technique with LoRA [24] applied on the LLM
weights with 70M tunable parameters. As for the biasing
fusion method, the bias encoder have different architectures.
Firstly, train-from-scratch transformer encoder architecture that
has 512 dimension with 8 heads and 12 layers is explored. Then,
when taking LLM as the bias encoder, the same LLM is used
as SpeechLLM’s LLM part, and the first layer’s latent feature
is used as bias embeddings B. Meanwhile, tokenized embed-
dings is also used to simplify the training. To deal with the

dimension mismatch between bias embeddings B and the in-
termediate features M , the projection has changed to match D
in MHA, which also has 8 heads. Besides the trainable MHA,
we also applying LoRA [24] on different parts of SpeechLLM,
where the rank is 8 and alpha is 32 with dropout equal to 0.05.

The experiments are conducted on LibriSpeech [29], where
100 hours train clean set is used by default, and 960 hours
whole training set is used to provide better performance. As
for the division of rare words and common words, we follow
Rare5k [10], where the 209.2K bias words comes out beside
the 5,000 most common words in the 960h training set. Word
error rate (WER) (%), unbiased WER (U-WER) and biased
WER (B-WER) are evaluated over all test sets. Unbiased/biased
WER are counted over common/bias words, and insertion error
is counted to biased error if the insertion word is in the bias list.

5. Experimental Results
5.1. Biasing Prompts for SpeechLLM

Table 1: The performance WER (U-WER/B-WER) (%) on Lib-
riSpeech test sets results with different prompt types and differ-
ent bias number N for biasing-prompted SpeechLLM. <UB>
means the special token for <unbiased> situation.

Bias Prompt Type N test-clean test-other

- - 2.0 (1.3/8.4) 4.2 (2.6/18.4)

special tagged 10 26.9 (24.1/49.7) 34.1 (31.4/58.1)
special tagged 5 6.4 (3.5/30.1) 12.8 (9.5/42.1)
special tagged 3 2.0 (1.3/7.5) 4.0 (2.6/16.4)

w/o <UB> 3 2.1 (1.3/7.8) 4.1 (2.7/16.8)
w/o negative 3 2.1 (1.3/7.6) 4.1 (2.7/16.5)

natural language 5 8.0 (5.0/33.1) 15.6 (9.8/47.1)
natural language 3 2.2 (1.5/7.8) 4.2 (2.7/16.6)

w/o empty 3 2.2 (1.5/8.0) 4.5 (3.0/17.3)
w/o negative 3 2.2 (1.5/7.9) 4.2 (2.8/16.8)

We explore two bias prompt types mentioned in Section 3.1,
the special tagged prompt and the natural language prompt. For
the ‘special tagged’ prompt, at N = 3, the performance is
optimized, maintaining a stable U-WER while improving the
B-WER by approximately 10%. We also observe that adding
<unbiased> token and negative examples do help to the bias
word recognition. As for the ‘natural language’ prompt, it
achieves similar optimal result as ‘special tagged’, but get si-
lightly worse compared to ‘special tagged’, which degrade the
performance of U-WER by 3%. The reason is that the Speech-
LLM (Qwen-Audio-Chat) model we choose has many tasks,
and then wrongly specify the ASR task to ‘keyword spotting’
by our natural language prompt. This also corroborates that
we can see a great performance drop on ”w/o empty” prompts,
because such examples effectively correct the misallocation of
tasks.

Both approaches show a clear trend where performance de-
grades with an increase in the number of bias words (N ), es-
pecially when N > 3, highlighting a threshold beyond which
additional bias words adversely affect model accuracy. The per-
formance drop, particularly observed with the increase in the
number of bias words beyond a certain threshold in the biasing-
prompted SpeechLLM, can be attributed to the hallucination
phenomenon commonly seen in LLMs [30]. This phenomenon
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Table 3: Performance (WER (U-WER/B-WER)) (%) comparsions of different deep biasing methods and our proposed bias-fusion
SpeechLLM method. Bold numbers denotes the best performance of B-WER for our proposed method in each block. Underline number
denotes the best performance of WER compared with all methods with comparable supervised training data. The ‘proposed’ method is
with our biasing fusion network and post-projection fusion with LoRA on LLM and different bias encoding strategies.

ASR Model Train Set N = 100 N = 500

test-clean test-other test-clean test-other

Qwen-Audio (SpeechLLM) [1] - 2.0 (1.3/8.4) 4.2 (2.6/18.4) 2.0 (1.3/8.4) 4.2 (2.6/18.4)

Phone-TCPGen [22] 100h - - 4.9 (-/12.1) 15.6 (-/31.5)
proposed (Encoder=Scratch Encoder) 100h 1.9 (1.3/6.9) 3.9 (2.6/15.3) 2.0 (1.4/7.3) 4.2 (2.8/15.8)
proposed (Encoder=LLM) 100h 1.9 (1.3/6.8) 3.8 (2.6/15.0) 2.0 (1.4/7.1) 4.1 (2.8/15.4)

DB-RNNT+DB-LM [10] 960h 2.0 (1.5/5.7) 5.8 (4.9/14.1) 2.1 (1.6/6.2) 6.1 (5.1/15.1)
Phone-TCPGen [22] 960h - - 2.2 (-/4.6) 6.0 (-/12.3)
PromptASR+history [21] 7000h 1.7 (-/-) 4.1 (-/-) 2.0 (-/-) 4.5 (-/-)
proposed (Encoder=Scratch Encoder) 960h 1.6 (1.3/5.5) 3.8 (2.6/13.5) 1.9 (1.4/6.0) 3.9 (2.7/14.2)
proposed (Encoder=LLM) 960h 1.8 (1.3/6.1) 3.8 (2.6/14.9) 1.9 (1.4/6.5) 4.1 (2.7/15.4)

Table 2: Performance (WER (U-WER/B-WER)) (%) compar-
sions of different deep biasing methods and our proposed bias-
fusion SpeechLLM method on librispeech test-other set. The
training set is 100h and the bias list size N is 100 for both
training and evaluation. N/A denotes no parts of SpeechLLM is
used by LoRA and training.

Bias Encoder Fusion LoRA Part WER (%)

Tot U/B

- - - 4.2 2.6/18.4

Pre Audio Encoder 4.8 3.4/16.8
Pre Projection 4.4 3.0/16.2
Pre LLM 4.2 2.8/16.0

Scratch Pre N/A 4.2 2.8/16.3

Encoder Post Audio Encoder 4.4 3.1/16.8
Post Projection 4.1 2.8/15.6
Post LLM 3.9 2.6/15.3
Post N/A 4.1 2.7/16.0

LLM (Qwen) Post LLM 3.8 2.6/15.0
Plain Post LLM 3.8 2.6/15.2

occurs when the input prompts are too long. The first few words
are recognized accurately, but the LLM then proceeds to gen-
erate text that is significantly deviate from the intended audio
content.

5.2. Biasing Fusion for SpeechLLM

Following the setup in Section 3.2, we explore different types of
bias encoders, different fusion positions (pre/post of the projec-
tion module) for bias embeddings and intermediate and differ-
ent LoRA modules to be tuned during biased supervised fine-
tuning in Table 2. Firstly, we explore a train-from-scratch bias
encoder (denoted as Scratch Encoder) and evaluate the effec-
tiveness of different LoRA components. Results show that ap-
plying LoRA on LLM obtains the best performance with rela-
tive B-WER reduction 13% for pre-fusion method and 17% for
post-fusion method, respectively. However, LoRA on the au-
dio encoder or the projection module hurts the recognition of
unbiased words, evidenced by an increase in U-WER for both

pre-/post- fusion. This is because fine-tuning these components
may destroy the robustness of the strong audio part in Speech-
LLM. Experiments also shows that if no LoRA is applied (N/A)
to SpeechLLM, the biased part can still work fine (18.4% →
16.3%), however, not as effectively as LLM with LoRA.

Compared the first and the second sub-block for scratch en-
coder, we can conclude that pre fusion is worse than post fusion
by an average of 4% accross different LoRA parts. This indi-
cate us that post-fusion, which leverages bias embeddings B
derived from textual data, aligns better with the latent space of
H ′, thus proving more effective. Besides, we also tried differ-
ent bias encoders, the first-layer output of LLM (the same as the
LLM part of SpeechLLM) and the plain embeddings are evalu-
ated and the LLM’s hidden features seems to be effective as it
is pre-trained with large text and can capture high-level textual
information more effectively.

Shown in Table 3, we conclude our bias fusion network
with two different architectures, the scratch encoder and the
pre-trained LLM encoder, with post fusion and LoRA on LLM
part. Results show that for the 100 hours train set, the pre-
trained LLM encoder outperforms and achieve 19%/16% for
N = 100/500 relative B-WER reduction. As for the whole
960 hours set, our proposed sctrach encoder performs best
by 35%/25% relative B-WER reduction, for N = 100/500.
Meanwhile, it also outperforms the prior works and reaches
1.8%/3.8% WER for librispeech test sets.

6. Conclusion
In this study, we proposed two innovative approaches to address
bias word recognition in speech-enhanced LLM-based ASR, the
biasing prompt method and the biasing fusion method. The bi-
asing prompt method employs supervised fine-tuning with two
pre-defined prompts, which is evaluted its effectiveness by 10%
relative bias word error rate (B-WER) reduction. As the bias
list grows, the above method drop performances a lot due to
LLM’s hallucination. Therefore, we propose the biasing fu-
sion method to fuse embedded bias words with intermediate
features of SpeechLLM. Different bias encoders are explored
to find the most effective architecture, different fusion positions
are explored to enhance performance. Our method reaches 19%
relative B-WER reduction for 100h training set with N = 100
and 35% for 960h training set, respectively.
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