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Abstract
Large pre-trained models have demonstrated dominant perfor-
mances in multiple areas, where the consistency between pre-
training and fine-tuning is the key to success. However, few
works reported satisfactory results of pre-trained models for the
machine anomalous sound detection (ASD) task. This may be
caused by the inconsistency of the pre-trained model and the
inductive bias of machine audio, resulting in inconsistency in
data and architecture. Thus, we propose AnoPatch which uti-
lizes a ViT backbone pre-trained on AudioSet and fine-tunes it
on machine audio. It is believed that machine audio is more
related to audio datasets than speech datasets, and modeling
it from patch level suits the sparsity of machine audio. As
a result, AnoPatch showcases state-of-the-art (SOTA) perfor-
mances on the DCASE 2020 ASD dataset and the DCASE 2023
ASD dataset. We also compare multiple pre-trained models and
empirically demonstrate that better consistency yields consider-
able improvement.
Index Terms: machine audio, anomaly detection, pre-trained
models, patch

1. Introduction
Machine anomalous sound detection (ASD) aims to predict
whether the sound of a machine is normal or anomalous when
only normal sounds are provided as prior. Recent years saw a
growing need for robust ASD methods in the field of modern
manufacturing, where machine audio under normal conditions
can be utilized to detect unknown malfunctions, which has been
demonstrated in some scenarios to significantly reduce risks and
boost production efficiency.

Like any binary classification task, the machine ASD task
has to balance between recall and precision. On one hand, to
increase recall, the model is required to overfit with the normal
distribution such that any deviation from the normal distribution
yields a perceivable variation in the output. On the other hand,
to increase precision, the model is required to grasp the univer-
sal features of normal samples and generalize well on unseen
samples. However, these requirements become quite challeng-
ing for the ASD model, since the decision boundary can not be
accurately determined when (i) only one class is presented for
training and (ii) the normal distribution is sparse.

To implicitly derive the ASD boundary, training the model
by deputy tasks is a common solution in previous literature[1,
2, 3]. However, since the normal distribution is sparse and
the training data is insufficient, training the model from scratch
tends to yield non-scalable boundaries, especially when the ma-
chine has diverse working conditions. Thus, we opt to initialize
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the model by the parameters of a large pre-trained model that
has obtained common knowledge of speech and audio by pre-
training on extensive data, which enables the model to learn
scalable boundaries when fine-tuned on machine audio.

Specifically, we focus on pre-trained models that are origi-
nally intended for audio classification and model the audio from
patch level, which involves a dual consideration of data con-
sistency and architecture consistency. To guarantee production
efficiency, machines are operated steadily which can be mod-
eled as stationary processes, while speech generally possesses
more variations over time. It is believed that machine audio is
more information-sparse than speech, which is similar to the
difference between vision and language [4]. On one hand, fine-
tuning audio classification models yields better consistency be-
tween pre-training data and fine-tuning data. On the other hand,
modeling from patch level is more consistent with the induc-
tive bias of machine audio than modeling from frame level.
Here patch level refers to modeling the patches in audio spectro-
grams, while frame level refers to modeling the time frames in
waveforms or spectrograms. Recent works have demonstrated
that modeling the audio from patch level generally has superior
performances in audio classification tasks to modeling it from
frame level [5, 6]. Thus, a pre-trained model with patch-level
representation is adopted, and we will empirically demonstrate
its superiority for the machine ASD task.

In this paper, we propose AnoPatch, in which a ViT [7]
backbone is trained to extract patch-level representations from
mel-spectrograms. The parameters of the ViT backbone are
initialized by a pre-trained audio model, and the backbone is
further fine-tuned on machine audio by classifying the meta-
data associated with the machine (e.g. machine type, entity
ID, speed). During detection, all patch-level representations are
merged into a general embedding for each clip, and KNN [8] is
applied to the embedding for anomaly detection.

Extensive experiments are conducted on the datasets of
DCASE 2020 Task 2 [9] and DCASE 2023 Task 2 [10], both
of which are machine ASD datasets with multiple machine
types. AnoPatch achieves state-of-the-art (SOTA) performances
on both datasets without leveraging model ensembling. We also
compare multiple pre-trained speech and audio models and em-
pirically demonstrate that consistency is crucial when adapting
pre-trained models to the machine ASD task.

The main contributions of this paper can be summarized:
• We propose AnoPatch which fine-tunes a pre-trained ViT

backbone for the machine ASD task in consideration of
better consistency.

• AnoPatch achieves SOTA performances on both the
DCASE 2020 dataset and the DCASE 2023 dataset.

• We empirically demonstrate that pre-trained models with
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better consistency tend to possess better ASD capability.

2. Related Work
2.1. Pre-trained Models for Speech and Audio Tasks

A significant amount of pre-trained models have emerged in re-
cent years, continuously setting up new SOTA performances on
various speech and audio tasks. Most models have a focal point
on either speech tasks or audio tasks, although some may gen-
eralize on both domains.

As for models focusing on speech tasks, Wav2Vec 2.0 [11]
quantizes raw waveforms into discrete units and models them
by a transformer-based encoder. HuBERT [12] generates
pseudo labels by clustering on mel spectrograms while adopt-
ing the network of Wav2Vec 2.0. UniSpeech [13] combines
contrastive learning with supervised learning. WavLM [14] im-
proves HuBERT by applying multiple data augmentations.

As for models focusing on audio tasks [15], AST [16] fine-
tunes a ViT model which is pre-trained on images for audio
classification. BEATs [17] iteratively trains a ViT backbone and
an acoustic tokenizer in which the acoustic tokenizer assigns
pseudo labels for unlabeled data. Imagebind [18] employs a
ViT encoder to align audio with multiple modalities. Recently
both ATST [5] and EAT [6] utilize self-teaching techniques to
unsupervisedly train a ViT model.

It is noted that speech models tend to model speech by
frames, while audio models tend to model audio by patches.

2.2. Approaches for Machine ASD

Approaches for machine ASD can be roughly divided into dis-
entangled approaches and end-to-end approaches. Disentangled
approaches [3] employ neural networks to extract semantic fea-
tures of machine audio and apply statistical anomaly detection
algorithms to these features. Commonly used detection algo-
rithms are KNN [8], LOF [19], and Gaussian mixture models
(GMM). End-to-end models employ neural networks to directly
estimate the anomaly score. Amongst all end-to-end models,
autoencoder [9, 20] assumes that anomalous samples may have
bigger reconstruction error when trained to reconstruct normal
samples, and flow model [21] directly models the normal distri-
bution and estimates the likelihood.

2.3. Pre-trained Models for Machine ASD

Compared to the prevalent applications of pre-trained models
for speech and audio tasks, few works explored the use of
pre-trained models for machine ASD, probably because pre-
trained features have not shown much superiority against pre-
defined features. Previous works [1, 22] explored the use
of OpenL3 [23] embeddings for the machine ASD task, yet
none of which produced satisfactory results. Recently Han et
al. [24] explored the use of multiple pre-trained speech mod-
els [11, 12, 13, 14], which outperform multiple systems in the
DCASE 2023 challenge.

We believe such a result may result from the difference be-
tween speech and machine audio. As pointed out in Section 1,
machine audio is more stationary and information-sparse com-
pared to speech, which is more suitable for modeling it from
patch level. On one hand, the parameters obtained from pre-
training on speech data may not scale well on machine audio.
On the other hand, since the inductive bias is different, the archi-
tecture suitable for speech tasks may not apply well to the ma-
chine ASD task. Therefore, we propose to fine-tune pre-trained

Figure 1: Architecture of AnoPatch

models that are intended for audio classification and leverage
patch-level representation.

3. Proposed Method
3.1. Backbone

Figure 1 illustrates the overall architecture of AnoPatch, in
which a ViT backbone is adopted to extract patch-level repre-
sentations of machine audio. The parameters of the ViT back-
bone are initialized from BEATs [17] in consideration of better
consistency between pre-training and fine-tuning, since BEATs
is pre-trained on AudioSet for audio classification purposes.
The input of AnoPatch is a mel-spectrogram which is then split
into 16 × 16 patches. The ViT backbone models each patch as
a single token and outputs an embedding for each patch. An at-
tentive statistics pooling layer from ECAPA-TDNN [29] is em-
ployed to merge patch embeddings into an utterance embedding
ui. Finally, the utterance embedding ui is linearly mapped to
a low-dimensional embedding xi which is further utilized for
anomaly detection.

3.2. Fine-Tuning

AnoPatch is fine-tuned on machine audio by classifying the
metadata associated with the machine, in which each unique
combination of the metadata is considered as a new label.
Since the classification task is rather easy, ArcFace loss [30]
is adopted to reinforce the task, which can be formulated as fol-
lows:

L = − 1

N

N∑
i=1

log
es cos(θyi+m)

es cos(θyi+m) +
c∑

j=1,j ̸=yi

es cos θj

(1)

where yi is the label of sample i, and s and m are two hyper-
parameters. θj is the angle between the embedding of sample i
and the registered embedding of the j-th class, which is the j-th
column of the weight W of the classification head:
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Table 1: Comparison on the DCASE 2020 dataset between AnoPatch and previous SOTA models

Models
Development set Evaluation set All

fan pump slider ToyCar ToyConveyor valve mean fan pump slider ToyCar ToyConveyor valve mean mean

No. 1 [25] 80.65 83.27 93.41 92.72 73.28 94.30 86.27 89.42 87.69 93.68 92.04 82.27 93.51 89.77 88.02
Sub-Cluster AdaCos [1] 82.77 91.81 98.59 94.01 76.77 96.63 90.10 95.42 92.53 93.54 93.96 84.94 97.31 92.95 91.53

MFN [3] 83.71 90.82 98.70 91.97 71.29 96.49 88.83 94.72 92.94 97.58 94.31 77.54 94.88 92.00 90.38
STgram [2] 91.51 86.85 98.58 91.06 69.09 99.04 89.35 - - - - - - - -

AnoPatch (Ours) 86.46 93.10 99.20 96.10 73.20 97.53 90.93 95.56 94.34 99.77 96.00 83.74 96.26 94.28 92.58

Table 2: Comparison on the DCASE 2023 dataset between AnoPatch and previous SOTA models

Models
Development set Evaluation set All

bearing fan gearbox slider ToyCar ToyTrain valve hmean bandsaw grinder shaker ToyDrone ToyNscale ToyTank Vacuum hmean hmean

No. 1 [26] 64.41 76.27 74.78 91.83 51.66 53.17 85.44 68.11 60.97 65.18 63.50 55.71 84.92 60.72 92.27 66.97 67.54
No. 2 [27] 72.39 62.41 74.41 87.84 59.10 58.67 65.53 67.38 55.47 64.76 70.98 52.89 71.90 70.73 91.48 66.39 66.88

Han et al. [24] 57.10 62.76 67.52 79.11 63.47 57.35 67.79 64.31 - - - - - - - - -
FeatEx [28] - - - - - - - 66.95 - - - - - - - 68.52 67.73

AnoPatch (Ours) 70.43 66.65 58.67 81.88 58.78 67.16 53.73 64.24 69.71 64.06 80.25 64.49 85.04 72.60 92.24 74.23 68.87

θj = arccos

(
WT

j xi

∥Wj∥2·∥xi∥2

)
(2)

where xi is the final output of the backbone, T represents the
transpose operation, and ∥·∥ denotes the L2 norm distance.

To further strengthen the fine-tuning task, SpecAug [31] is
adopted before splitting the spectrogram into patches, which is
consistent with BEATs. It is noted that time warping is removed
since it may be associated with anomalies.

3.3. Anomaly Detection

KNN [8] is adopted as the anomaly detection backend. Embed-
dings of normal samples form a memory bank, and the cosine
distance between a query embedding and its closest neighbor is
utilized as the anomaly score (k = 1). For the DCASE 2020
dataset, KNN is individually applied to clips of the same ma-
chine type and machine ID. For the DCASE 2023 dataset, KNN
is individually applied to each machine type, and we also adopt
a soft scoring mechanism [10] where two KNN detectors are
initialized by source samples and target samples respectively,
and the minimum score given by two detectors is selected.

4. Experiment
4.1. Datasets

Experiments are conducted on the datasets of DCASE 2020
Task 2 [9] and DCASE 2023 Task 2 [10], which feature 7 and
14 machine types respectively. The DCASE 2020 dataset can
be divided into a development set and an evaluation set, both of
which contain a training subset with only normal audio clips,
and a test subset with normal and anomalous audio clips. Ma-
chine type and machine ID are provided as metadata, where ma-
chine ID corresponds to different entities of a type of machine.
The DCASE 2023 dataset shares a similar structure but intro-
duces domain shift to reflect diverse working conditions. That
is, for the training subset of each machine type, 990 clips are
from the source domain, while only 10 clips are from the target
domain. Machine types and attributes of working conditions are
provided as metadata.

Performances are evaluated by the area under the receiver

operating characteristic (ROC) curve (AUC) and the partial-
AUC (pAUC) following the challenge rules [9, 10]. For the
DCASE 2020 dataset, we report the arithmetic mean of all AUC
and pAUC for each machine type, and an arithmetic mean of
the whole set. For the DCASE 2023 dataset, we report the har-
monic mean of all AUC and pAUC for each machine type, and
a harmonic mean of the whole set.

4.2. Baseline Systems

Multiple SOTA models are adopted as baselines. For the
DCASE 2020 dataset, we adopt the best system of the chal-
lenge [25] and three single models [1, 3, 2] as baselines. Since
MobileFaceNet (MFN) [32] is frequently adopted in previous
literature [2, 3] with competitive performances, we implement
it on the DCASE 2020 dataset as a decent baseline. For the
DCASE 2023 dataset, we adopt the top two systems of the chal-
lenge and two single models [24, 28] as baselines. It is noted
that most top-tier systems of both challenges are ensemble mod-
els, while AnoPatch is a single model.

4.3. Implementation Details

The ViT backbone consists of 12 layers with 90M parameters
in total, which is initialized from BEATs (iteration 3 of pre-
training). Identical with BEATs, the audio waveform is con-
verted to a mel-spectrogram with a windows size of 25ms, a
hop size of 10ms, and 128 Mel bins, and then the network
transforms the whole spectrogram into a 128-dim embedding.
Each unique combination of machine type and machine ID is
regarded as a unique class for the DCASE 2020 dataset, while
each unique combination of machine type and attributes is re-
garded as a unique class for the DCASE 2023 dataset. AnoPatch
is trained by data of all machine types, and all parameters
are learnable. Experiments are conducted separately on two
datasets on an NVIDIA RTX A6000 GPU. Detailed hyperpa-
rameter settings are listed in Table 4.

4.4. Experiment Results

Table 1 compares AnoPatch with previous SOTA models on the
DCASE 2020 dataset. AnoPatch achieves the best performance
with a mean of 92.58 on both sets, setting up a new milestone
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Table 3: Comparison on the DCASE 2020 dataset between multiple pre-trained models

Set Domain Models Size fan pump slider ToyCar ToyConveyor valve mean

dev

Speech

Wav2Vec 2.0 [11] 316M 79.04 80.16 89.55 94.04 70.11 92.49 84.23

HuBERT [12] 316M 75.81 84.99 85.13 92.44 67.91 92.37 83.11

UniSpeech [13] 316M 77.13 84.64 91.31 92.41 71.87 93.51 85.14

WavLM [14] 316M 79.37 85.52 86.96 92.93 69.23 94.69 84.78

Audio

AST [16] 86M 80.51 82.34 98.21 91.37 61.15 97.55 85.19

Imagebind [18] 86M 82.44 87.98 98.41 92.24 68.86 91.42 86.89

ATST [5] 85M 76.22 82.81 89.46 94.85 72.02 95.34 85.12

BEATs [17] (Adopted) 90M 84.01 92.87 94.72 96.55 71.42 99.62 89.87

eval

Speech

Wav2Vec 2.0 [11] 316M 85.67 81.03 87.86 93.23 82.29 93.76 87.31

HuBERT [12] 316M 82.42 76.76 95.69 92.30 78.51 95.61 86.88

UniSpeech [13] 316M 83.33 79.39 92.98 93.96 81.91 91.89 87.24

WavLM [14] 316M 84.35 77.72 94.53 92.40 77.13 90.16 86.05

Audio

AST [16] 86M 90.68 86.08 93.92 90.65 63.91 92.14 86.23

Imagebind [18] 86M 91.56 88.92 95.65 92.36 70.74 87.27 87.75

ATST [5] 85M 86.76 84.11 88.07 94.04 79.87 96.87 88.29

BEATs [17] (Adopted) 90M 93.98 93.83 98.05 96.95 84.24 94.53 93.60

Table 4: Detailed hyperparameter settings

Items DCASE 2020 DCASE 2023

Number of classes 41 167
SpecAug-freq 40 80
SpecAug-time 80 80

Total steps 10k
Batch size 32

Gradient accumulation 8
Optimizer AdamW [33]

Learning rate 1e-4
Warmup steps 960

of 94.28 on the evaluation set.
Table 2 compares AnoPatch with previous SOTA models

on the DCASE 2023 dataset. As expected, AnoPatch outper-
forms all baseline models with a mean of 68.87 on both sets,
also setting up a new milestone of 74.23 on the evaluation set.

4.5. Comparison between Pre-trained Models

Multiple large pre-trained models for speech and audio tasks
are compared on the machine ASD task. Four speech models
are employed, namely Wav2Vec 2.0 [11], HuBERT [12], UniS-
peech [13], and WavLM [14], all of which are pre-trained on
speech datasets with a network suitable for grasping the dense
semantics in speech, inheriting data inconsistency and architec-
ture inconsistency. Four audio models are employed, namely
AST [16], Imagebind [18], ATST [5], and BEATs [17], all of
which are trained on audio datasets and model the audio from
patch level. It is noted that AST is initialized from a ViT model
pre-trained on images, thus inheriting data inconsistency. All
models are fine-tuned by the same labels and ArcFace loss. Four
speech models are implemented following [24], while weighted

sum, status augmentation, and transformer pooling are removed
for fair comparison. The fine-tuning processes of three other au-
dio models are mainly the same as BEATs. If the audio model
has incorporated a special token that aggregates the features
over time (e.g. [cls] token), this token is adopted as the utter-
ance embedding ui. If not, an attentive statistics pooling layer
is appended to the model to aggregate the features. It is noted
that SpecAug is also removed for a fair comparison.

Table 3 compares the performances of these pre-trained
models on the DCASE 2020 dataset. As for the development
set, the best performance of speech models is 85.14, while the
worst performance of audio models is 85.19. As for the eval-
uation set, all audio models except AST outperform the best
speech models, which can be explained by the data inconsis-
tency of AST. The improvement even goes up to 4.73 and 6.29
on two subsets. Thus, it is believed that pre-trained audio
models leveraging patch-level representation shall have supe-
rior performances for the machine ASD task.

5. Conclusion
In this paper, we focused on adapting large pre-trained models
to the machine ASD task. It was believed that the inconsistency
between pre-training and fine-tuning deprecates the perfor-
mances of previous attempts, which was empirically proved by
the comparison in Table 3. Therefore, we proposed AnoPatch
which contains a ViT backbone initialized by BEATs. As a re-
sult, AnoPatch demonstrates SOTA results on the DCASE 2020
dataset and the DCASE 2023 dataset.
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