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ABSTRACT

With the continuous development of deep neural networks (DNN)
in recent years, the performance of speaker verification systems has
been significantly improved with the application of Deeper ResNet
architectures. However, these deeper models occupy more storage
space in application. In this paper, we adopt Alternate Direction
Methods of Multipliers (ADMM) to realize low-bit quantization on
the original ResNets. Our goal is to explore the maximal quan-
tization compression without evident degradation in model perfor-
mance. We implement different uniform quantization for each con-
volution layer to achieve mixed precision quantization of the en-
tire model. Moreover, the impact of batch normalization layers in
ADMM training and layer sensibility to quantization are explored.
In our experiments, the 8 bit quantized ResNet152 achieved com-
parable results to the full-precision one on Voxceleb 1, with only
45% of original model size. Besides, we find that shallow convolu-
tion layers are more sensitive to quantization. In addition, experi-
mental results indicate that the model performance will be severely
degraded if batch normalization layers are integrated into the convo-
lution layer before the quantization training starts.

Index Terms— speaker verification, neural network quantiza-
tion, model compression, mixed precision quantization

1. INTRODUCTION

In recent years, speaker verification systems using deep neural
networks (DNN) as feature extractors have shown excellent perfor-
mance [1, 2, 3, 4, 5]. The most typical and widely used speaker
feature extraction network structures are ResNet [6] and ECAPA-
TDNN [4], and their performance is improved as the network deep-
ens. Large models have more competitive representation capabili-
ties. Nevertheless, the application scenario of deeper architectures
is limited due to oversized memory occupation. Therefore, reducing
the size of deep neural networks has become a crucial research topic.

Previous studies [7, 8] have proved that parameter redundancy
in convolution neural networks exists and reasonable compression of
deep neural networks is theoretically feasible. Previous research has
shown that knowledge distillation [9, 10, 11], model pruning [12],
and model quantization [13, 14, 15, 16, 17] are all effective ways to
reduce the size of deep neural networks. Among these approaches,
knowledge distillation replaces large models with small-footprint
models, while model pruning removes some of the model’s param-
eters. Unlike them, quantization compression retains the structural
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integrity of the original model. Earlier work in the speech domain
[13, 15] confirms that proper model compression has a negligible
impact on model performance. These works inspired us to design a
quantized embedding extractor.

In order to implement a competitive speaker verification system
with a compact model, this paper explores the lowest compression
ratio that can be achieved without performance degradation. The
experimental results show that extreme quantization compression,
such as binary quantization [17], has a more significant impact on the
model accuracy. We adopt a lower compression ratio progressively
to ensure the performance of the model. Meanwhile, the effect of
higher compression ratios on performance is observed.

The main contributions of this paper are as follows: First, we
design a feature extraction network quantization method for speaker
verification system via alternate direction methods of multipliers
(ADMM). The experimental results show that after 8 bit quantiza-
tion compression, the quantized ResNet models can still maintain
the accuracy comparable to the full-precision version with only 6%
of performance degradation. Second, this paper explores the perfor-
mance of mixed precision quantization models. We implement two
mixed precision quantization models of different sizes and analyze
their performance under high compression ratio conditions. The
experimental results demonstrate that mixed precision quantization
is ineffective in improving model performance compared to uniform
quantization. Meanwhile, the function of batch normalization (BN)
layer in model quantization is analyzed. Our results show that the
BN layer is critical in the training session and cannot be removed
before quantization. Finally, we find that shallow convolution layers
are more sensitive to quantization.

2. RELATED WORKS

In this section, we briefly introduce the recent research results
of model compression methods in speaker verification task and
ADMM-based quantization approaches.

2.1. Model Compression in Speaker Verification

Some attempts at model compression have been implemented in
speaker verification task. In [10, 11], teacher models can migrate
their performance advantages to smaller models through knowledge
distillation. Binary quantization [17] achieves the extreme compres-
sion ratio. However, the performance of binary model is significantly
degraded. In previous research on speech domain, low-bit quantiza-
tion is considered to enable model compression without compromis-
ing performance [13, 15, 18]. In this paper, we aim to obtain a set
of speaker verification compression models with little degradation in
performance through ADMM quantization.
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2.2. Quantization via ADMM

Alternate direction methods of multipliers (ADMM) [19] has shown
its strong ability in model quantization. ADMM-based quantization
allows iteratively solving the quantized parameters. Unlike previ-
ous methods of training the network from scratch [17], the ADMM
algorithm can be directly applied to the pre-trained model and con-
verge in few epochs, reflecting its excellent efficiency. [16] realizes
ADMM on image recognition, and the proposed algorithm outper-
forms other model compression methods. [15] implements ADMM
in speech recognition and achieves a model size compression ratio
of up to 31 times over the baseline model.

Mixed precision quantization is a method of quantizing differ-
ent parts of a model with different bit precision. Mixed precision
quantization via ADMM first measures the quantization sensitivity
of each module in the model [20]. It then determines the degree of
compression required by each module according to the difference in
sensitivity. Mixed precision quantization achieved impressive per-
formance in speech recognition [21] and speech separation [18].

3. PROPOSED METHODS

In this section, we introduce model quantization method: ADMM
for quantization model training, the design of mixed precision quan-
tization model, and batch normalization layer processing in the pro-
cedure of model quantization.

3.1. Model Quantization

Model quantization aims to replace the original full-precision model
parameters with some low-precision parameters that take up less
space so that the entire model takes up less space. For n-bit uni-
form quantization, the set of integers N that can be selected by the
quantization matrix in the model is defined as:

N e {0,£1,42,...,£2""} 1)
The quantization table is obtained by multiplying the scaling factor
« and n. Under n-bit uniform quantization, the quantized parameter
range in the quantization model is:

g=aN € {0,+a,...,xa (2"} )

For any deep neural network, we can construct a quantization

table for each of its convolution layers. For example, the [-th convo-

lution layer of the model, the value range of the quantized parameter
QW of this layer is shown as follows:

QY =N ¢ {O,j:a(l),...,:lza(l) (2nl—1)} 3)

where o) represents the scaling factor of [-th layer, it flexibly scales
the parameter coverage of the current layer after quantization accord-
ing to the original parameters, n; is the quantization precision num-
ber of [-th layer. In the case of uniform quantization, all n; take the
same value; in the case of mixed quantization, n; varies according
to the parameter sensibility of [-th layer. The quantization operation
is defined as:

f (W(l)) = arg m(llr)l w® _ Q(l) )

Q L

where f denotes the quantization operation. In the training session
of the quantization model, the quantization parameter Q' of the [-th
layer should be as close as possible to the parameter W of the full-
precision model of the {-th layer. In our work, we only implement
quantization for convolution weights.

3.2. Quantization via ADMM

Alternating Direction Multiplier Method (ADMM) [19] is a power-
ful optimization technique that decomposes the original optimization
problem into several relatively easy-to-solve sub-optimization prob-
lems for iterative solutions. In our quantization task, to update the
network parameters and quantization table, we take a similar imple-
mentation like [15] to the pre-trained model, giving the loss function
as follows:

L = Fioss(W) + W = (W) + X5 = ZIAI* )
where W denotes the weight in convolution layer,  represents the
penalty parameter and A is the Lagrangian multiplier, we set v =
1 in experiments. The quantization parameters can be solved by

minimizing the following:

2
min [W* £ A® —an®)| ©)

where N and « can be updated iteratively according to follows:

(e

NEFD arg m]\irn ’Wi(kﬂ) — aN(k)‘ (@)

(WD e a®) N

(k+1) _
o = T ®
after IV and « converge, ) is calculated as follows:
AFTD — A B) | g (etD) f (W(’H-l)) )

The calculation of o and N are realized through multiple rounds of
iterations. The quantized weight can be obtained by multiplying a
and N obtained in the model. Owing to this multi-iteration nature,
we found that the training of ADMM can converge quickly.

3.3. Mixed Precision Quantization

After getting the results of uniform quantization, we seek a more
dedicated quantization compression approach. Since each convolu-
tion layer in the model is at different depths of the ResNet structure,
they have different sensitivity to quantization. A mixed precision
quantization approach is proposed by applying different precision
quantization to each convolution layer according to their sensitivity.
In our work, we evaluate the sensitivity of each convolution layer to
quantization compression by computing the trace of Hessian matrix
H[20], and the total sensitivity of an L-layer ResNet can be calcu-
lated as below:

L

L
=> Q= "Tr(H:)-[|f (W) - Wi|; (10
i=1

i=1

QHes

Since calculating the trace of the Hessian matrix requires a lot of
computational overhead, we adopt an approximate method [21] on
Tr(H), z is a random vector sampled from a Gaussian Distribution
N (0, 1), the trace of Hessian matrix is given as follows:

Tr(H) ~ % >z Hz (11)
=1

We sort all modules by the trace of their Hessian matrix, the
layer with a larger Hessian trace is considered more sensitive to
quantization. We ensure that the quantization precision of the model
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with high sensitivity is not lower than that of the model with low sen-
sitivity. At the same time, limiting the maximum size of the mixed
precision model, a set of mixed precision combinations with the low-
est QF° is selected. With the resulting mixed precision quantization
configuration, a mixed precision quantization model is generated by
initializing the quantization precision of each layer differently. For
the convenience of comparison, 8§ bit and 6 bit size equivalent mixed
precision quantization models are realized in our experiments.

3.4. Batch Normalization Layer Processing in Quantization

In the ResNet structure of speaker verification systems, the convo-
lution layer is always followed by a batch normalization (BN) layer.
According to previous studies [6], BN operation can effectively pre-
vent overfitting and speed up training. However, when quantizing the
model, the BN layer has become an obstacle that affects the model
compression rate. Therefore, we try to merge some of the BN lay-
ers in ResNet into the previous convolution layer before the ADMM
training in the following way:

v

o=~ 12

o 12)

Wmcrgcd =W X« (13)
Bmerged =Bxa+ (ﬂ —pu X Oé) (14)

where Wierged , Bmerged are new weight and bias of convolution layer,
 and o2 represents the mean value and variance of BN, ~ denotes
the BN scaling factor, 3 is the BN offset, € is a very small num-
ber. In our experiments, BN layers of different depths are merged
independently to evaluate their importance in quantization training.

4. EXPERIMENTAL SETUP

4.1. Datasets

We use the Voxceleb1&2 datasets [22, 23] for our experiments. The
training set is the development set of Voxceleb2, and Voxcelebl is
used as testing data. Three official trial lists are used in test sessions
to estimate the performance of proposed models. Data augmentation
and speed perturbation are applied in the experiments in order to gain
model robustness. Noises are added with RIRs [24] and MUSAN
[25] to original training utterances. In addition, we adjust speed of
the original utterances by a factor of 0.9 and 1.1 to add twice as many
speakers to the original dataset.

4.2. Implementation Details

We adopt the state-of-the-art model in speaker verification task:
ResNet34 and ResNet152 as the target model of quantization. Dif-
ferent from the previous setting [10], we train model via ADMM
for 2 epochs and chunk speech segments of length 200 frames as
the training input data of the network. The training loss function is
Additive Angular Margin (AAM) loss [26] with an angular margin
m of 0.2. The equal error rate (EER) and minimum detection cost
function (MinDCF) are referred as performance indicators with the
settings of Prarget = 0.01 and Cra = Chriss = 1.

5. RESULTS AND ANALYSIS

5.1. Model Quantization Results

In this section, the experimental results of uniform and mixed pre-
cision quantization models are analyzed. After 16 bit and 8 bit uni-
form quantization of the original ResNet model, the performance of

Table 1. Partial weight values of the 28-th layer of ResNet34 quan-
tization model and average parameter deviation of the same layer at
different quantization precision.

Quantl.z?mon Partial Quantized Parameter Ave:ra.ge

Precision Deviation
Full-precision [ 0.0283 0.0249 0.0180

(31’2 bit —0.0222 —0.0057 —0.0235 -

L—0.0373 0.0006 0.0092 |
[ 0.0283 0.0248 0.0179

16 bit quantization —0.0220 —0.0055 —0.0233 +0.90%
L—0.0374 0.0006 0.0091 |
[ 0.0264 0.0264 0.0198

8 bit quantization —0.0231 —0.0033 —0.0231 +5.95%
L—0.0363 0.0000 0.0099 |
[ 0.0270 0.0270 0.0135

6 bit quantization —0.0270 0.0000 —0.0135 +24.11%
L—0.0405 —0.0000 0.0135 |
[ 0.0512 0.0000 0.0512

4 bit quantization —0.0000 —0.0000 —0.0000 +87.68%
L—0.0512 0.0000 0.0000 |

the model is basically not affected. The model performance begins
to decrease after 6 bit uniform quantization. And after 4 bit uni-
form quantization, the model accuracy is seriously damaged. Such
results can be found from the gap of parameters. As shown in Table
1, when the model is quantized with a higher quantization precision,
such as 16 bit and 8 bit, the quantized parameters can basically keep
the same as the full-precision parameters(+5.95%). As the compres-
sion ratio continues to increase, the gap between the quantized and
original parameters becomes larger(+24.11%, £87.68%). When the
input data passes through such layers with significant parameter er-
rors, serious calculation errors will occur, and such errors will grad-
ually accumulate as the number of layers increases. Our experimen-
tal results support this interpretation: the 6 bit uniform compression
result of ResNet152 is even worse than ResNet34 at the same quan-
tized precision.

We found that 8 bit is the maximum compression level with-
out sacrificing the performance of the model. Table 2 shows the
results of our quantized model tested on Voxceleb 1. According
to the compression results of ResNet34, the EER (%) of the com-
pressed model has a relative increase against to original model of
5.61%, 2.97%, and 3.24%; minDCF is relative increased by 13.6%,
3.1% and 4.6% on Vox1-0O, Vox1-E, and Vox1-H, respectively. On
ResNet152, 8 bit quantization can save 55% model size, which
makes the size of ResNet152 35% larger than that of the original
full-precision ResNet34, but obtains a relative 35% improvement in
model performance.

Similar to [13], in our experiments, the performance of mixed
precision quantization does not outperform uniform quantization
models with corresponding sizes. There are two main reasons:
firstly, the performance of 8 bit uniform quantization is quite close
to the full-precision model, and quantization compression cannot
improve the performance of the original model, so there is little
room for improvement. The poor performance of the 6 bit mixed
precision quantization model can be explained by the poor perfor-
mance of 4 bit quantization component, who makes it impossible to
effectively transmit high-quality data streams throughout the model.

5.2. Analysis of BN Layer in Quantization Training

We focus on the function of batch normalization layers in the quan-
tization training process in this section. In our experiments, any
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Table 2. Performance comparison of the full-precision baselines and the proposed quantization compression systems on the Voxcelebl
dataset. “mixed precision 8 bit” represents a mixed precision quantization model with a size comparable to 8 bit uniform quantization. The

corresponding quantization precision of each convolution layer of ResNet34 can be found in Figure 1.

Architecture  Quantization precision Model size Voxceleb-O Voxceleb-E Voxceleb-H
EER(%) MinDCF EER(%) MinDCF EER(%) MinDCF

32bit(full-precision) 26.7MB 0.89 0.0980 1.01 0.1206 1.85 0.1837

16 bit 16.0MB 0.90 0.1002 1.03 0.1215 1.88 0.1859

8 bit 10.7MB 0.94 0.1113 1.04 0.1243 1.91 0.1922

ResNet34 6 bit 9.4MB 1.73 0.1904 1.83 0.1996 3.32 0.2881
4 bit 8.1MB 26.82 0.9970 26.5 0.9995  34.72 0.9993

mixed precision 8 bit 10.7MB 0.93 0.0979 1.08 0.1236 1.96 0.1946

mixed precision 6 bit 9.4MB 1.82 0.1974 1.95 0.2083 3.47 0.2935
32bit(full-precision) 79.7MB 0.54 0.0496 0.72 0.0787 1.35 0.1263

16 bit 50.7MB 0.55 0.0493 0.74 0.0812 1.38 0.1295

8 bit 36.1IMB 0.58 0.0546 0.76 0.0847 1.44 0.1361

ResNet152 6 bit 32.5MB 2.44 0.2643 2.42 0.2356 4.13 0.3281
4 bit 28.9MB 38.04 0.9981  37.28 0.9990  41.27 0.9991

mixed precision 8 bit 36.1IMB 0.59 0.0979 0.77 0.0847 1.42 0.1328

mixed precision 6 bit 32.5MB 6.12 0.5042 6.11 04712 9.63 0.5809

Table 3. The experiment results of 8 bit uniform quantized Fig. 1. The quantization precision number of each layer of ResNet34

ResNet34. BN layers are merged at the beginning of train session.
v'means the layers of ResNet where BN parameters are merged, X
means BN layers work independently in corresponding layers.

Layerl Layer2 Layerd Layer4 Vox1-O EER(%)
X X X X 0.94
X X X v 5.89
X X v v 30.63
v v X X 34.12
v X X X 35.86

transformation of the BN layer before training prevents the whole
model from maintaining its performance. Plus, shallower BN lay-
ers are more critical to the model training. The results of the BN-
merged model are shown in Table 3. Even if we only merge the
first few BN layers, this operation has a catastrophic impact on the
performance of the entire quantized model, EER of the model with
layerl merged is 35%. In our experiments, the transformation of
batch normalization parameters in layer4 causes the least negative
impact on performance. Despite this, the corresponding EER still
drops to 5.89%. The performance drop reflects the vital role of the
BN layer in speaker verification system. The specialized quantiza-
tion method of normalization layer is necessary to further improve
the overall quantization compression rate.

5.3. Quantization Sensitivity Analysis of Convolution Layers

We conduct a discussion of layer sensitivity differences in this sec-
tion. For the ResNet architecture, the first layers of the network
require the highest precision of parameters. As the depth of the net-
work continues to increase, the quantization sensitivity of convolu-
tion layers gradually decreases. Our experiment results are shown
in Figure 1. Shallower layers are the initial computational units
to process the raw data. If the precision of these layers is inade-
quate, the model performance can hardly be compensated by deeper

in mixed precision quantization.

—— Mixed precision 6 bit
Mixed precision 8 bit

Quantization Precision(bit)
- = N N w
o w o [5,] o

w
L
P
AN
~
P
~

6 _;z 1'0 1'5 2‘0 2‘5 3‘0
Convolution Layer Position

convolution layers. Our experimental results also confirm this argu-
ment. Therefore, in the case of limited model size after compression,
deeper convolution layers should be quantized in the first place.

6. CONCLUSION

In this paper, we apply the alternate direction methods of multipli-
ers (ADMM) to model quantization of speaker verification system.
Our results prove that 8 bit is the minimum quantization bit num-
ber that ResNet architecture can achieve so far without affecting
the performance. In addition, our study verifies the importance of
batch normalization layers in quantization training through related
ablation studies. Compared with the original model, the quantized
model using ADMM can keep the performance drop by less than
6% under the condition of about 55% compression in experiments
on Voxceleb. We also find the shallower convolution layers are more
sensitive to quantization and the batch normalization is indispens-
able to quantization training. In future work, we will aim to maintain
the performance of quantization models at high compression ratios.
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