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ABSTRACT

Traditional automatic speech recognition (ASR) systems usu-
ally focus on individual utterances, without considering long-form
speech with useful historical information, which is more practical
in real scenarios. Simply attending longer transcription history for
a vanilla neural transducer model shows no much gain in our pre-
liminary experiments, since the prediction network is not a pure lan-
guage model. This motivates us to leverage the factorized neural
transducer structure, containing a real language model, the vocab-
ulary predictor. We propose the LongFNT-Text architecture, which
fuses the sentence-level long-form features directly with the output
of the vocabulary predictor and then embeds token-level long-form
features inside the vocabulary predictor, with a pre-trained contex-
tual encoder RoBERTa to further boost the performance. Moreover,
we propose the LongFNT architecture by extending the long-form
speech to the original speech input and achieve the best performance.
The effectiveness of our LongFNT approach is validated on Lib-
riSpeech and GigaSpeech corpora with 19% and 12% relative word
error rate (WER) reduction, respectively.

Index Terms— long-form speech recognition, factorized neural
transducer, context and speech encoder

1. INTRODUCTION

End-to-end (E2E) automatic speech recognition (ASR) models, such
as connectionist temporal classification (CTC) [1], attention-based
encoder-decoder (AED) [2, 3], and recurrent neural network trans-
ducer neural transducer (RNN-T) [4] are now dominating over tra-
ditional hybrid models [5]. A common practice is to train the E2E
model with individual utterances without considering the correla-
tion between utterances. However, real scenarios such as conversa-
tions, videos, and meetings are usually under long-form situations,
which induces a significant discrepancy between training and test.
To bridge the gap, long-form ASR, also known as conversational
ASR, dialog-aware ASR, or large-context ASR, is proposed to cap-
ture the relationship of transcription history.

Previous approaches explored the long-form scenario in attention-
based encoder-decoder models (AED) [3]. The most intuitive way
is to concatenate consecutive speech or transcriptions of utter-
ances [6, 7]. Hori et al. [8] extended their prior work to accelerate
the decoding process in the streaming AED architecture. Further-
more, consecutive long-form transcriptions can be used in recurrent
neural language models [9, 10] or re-scoring using BERT [11]. A
more comprehensive way is to use an auxiliary encoder to model the
context information in an AED manner. Masumura et al. [12, 13]

∗Work done during an internship at Microsoft.

proposed a hierarchical text encoder and the distillation of large-
context knowledge not limited to the current utterance, so that
the long-form information can be captured while retaining the ASR
model performance. Likewise, Wei et al. [14, 15, 16] utilized a latent
variational module, context-aware residual attention, and pre-trained
encoders to leverage acoustic and text context.

Recently, transducer-based systems are becoming more and
more popular in industry [4, 17, 18, 19, 20], since it is natu-
rally streaming with low latency, and somehow more robust than
attention-based systems [21, 5]. However, there is little prior work
exploring long-form neural transducer models. Narayanan et al. [22]
have done primitive explorations by simulating long-form train-
ing and adaptation to obtain improvement using short utterances.
Schwarz et al. [23] showed that the combination of input and con-
text audio makes the network learn both speaker and environment
adaptations. Kojima [24] explored the utilization of large context.
However, how to incorporate consecutive transcription history into
the neural transducer model is still not well explored.

In this paper, we propose the novel LongFNT to integrate long-
form information into factorized neural transducer (FNT) [25] ar-
chitecture to solve the above challenge. We first tried to embed
long-form text into the predictor of the vanilla neural transducer, but
our experiments showed that adding long-form transcriptions to the
predictor part has little impact to the performance. A possible ex-
planation is that the prediction network in the vanilla neural trans-
ducer does not act as a pure language model (LM), which limits
its capability in long-form transcription modeling. It also indicates
that effective methods for AED-based models [26, 27] cannot be
extended to transducer-based ones, as they heavily rely on the LM
characteristic of the decoder. Therefore, we try to utilize long-form
transcriptions using the FNT architecture, which factorizes the blank
and vocabulary prediction modules so that a standalone LM can be
used for vocabulary prediction. Based on the vocabulary predictor
in the FNT architecture, we propose two approaches to integrating
high-level long-form features from historical transcriptions. Con-
cretely, a context encoder is employed to yield the embedding of
each token in historical transcriptions. Then we obtain a history em-
bedding by an averaged pooling operation and fuse it to the output of
the vocabulary predictor, which is called sentence-level integration.
Meanwhile, we incorporate the token embedding sequence inside
the vocabulary predictor via contextual attention, which is named as
token-level integration. We find that the two approaches complement
each other to achieve better performance, referred as LongFNT-Text.
Moreover, we employ a pre-trained text encoder, RoBERTa [28], to
further improve long-form ASR performance. Finally, we embed
long-form speech into the encoder to propose the LongFNT-Speech
model, and the combination of LongFNT-Text and -Speech is calledIC
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LongFNT model. The proposed method with long-form text tran-
scriptions achieved 17% and 9% relative word error rate (WER) re-
duction on LibriSpeech and GigaSpeech, respectively. By further
adding long-form speech, the final improvement reached 19% and
12% relative WER reduction on these two tasks, respectively.

2. NEURAL TRANSDUCER

2.1. Conformer Transducer

Conformer [20] is a convolutional augmented transformer that is
widely used in attention-based encoder-decoder and neural trans-
ducer architectures. The conformer transducer (C-T) model consists
of three parts, the conformer encoder, the joint network, and the pre-
dictor network:

ht = Encoder(x≤t), (1)
zl = Predictor(y≤l), (2)

zt,l = Joint(ht,zl) (3)

where t, l are the frame and label index, respectively. The predicted
probability of the neural transducer model and loss can be computed
as:

PASR(ŷl+1|x≤t, yl) = softmax(zt,l), (4)

Ltransducer = − log
∑

α∈η−1(y)

P (α|x), (5)

where η is a many-to-one function from all possible transducer paths
to the target y.

2.2. Modified Factorized Neural Transducer (M-FNT)

The factorized neural transducer model (FNT) [25] aims to sepa-
rately predict the blank token and vocabulary tokens, so that the
vocabulary predictor fully functions as an LM. The FNT model
contains four main parts, the conformer encoder, the blank predic-
tor (PredB), the joint network for <blank>, and the vocabulary
predictor (PredV , i.e. LM manner). A main drawback of FNT is that
the accuracy is slightly worse than the standard RNN-T. To tackle
this issue, Zhao et al. [29] proposed some improvements for FNT,
shown in Figure 1(a) by fusing the acoustic and label representations
in the following way:

zB
t,l = Joint(ht, PredB(y≤l)), (6)

zV
l = log softmax(PredV (y≤l))

= logPLM (ŷl+1|y≤l), (7)

zV
t = log softmax(Proj.(ht)),

= logPCTC(πt|x≤t), (8)

zV
t,l = zV

t + βzV
l (9)

where PLM is the predicted probability of the LM, PCTC is the
posterior of the CTC sequence, β is a learnable parameter. And we
can compute the posterior of the transducer model:

PASR(ŷl+1|x≤t, yl) = softmax([zB
t,l,z

V
t,l]) (10)

Finally, the modified factorized neural transducer loss is computed
as

L = Ltransducer + λLMLLM + λCTCLCTC , (11)

where λLM , λCTC are hyper-parameters.

3. LONGFNT: LONG-FORM FACTORIZED NEURAL
TRANSDUCER

3.1. Long-form Context Encoder

The long-form context encoder converts consecutive historical sen-
tences {· · · ,Y p−2,Y p−1} into long-form contextual embeddings
C:

C = Context-Encoder(· · · ,Y p−2,Y p−1), (12)

where the current sentences index is p. The basic context encoder is
jointly trained with long-form FNT in a transformer manner. To ex-
tract stronger features, we directly use a pre-trained RoBERTa [28]
model as the context encoder. The RoBERTa1 is pre-trained using
160GB training text and is frozen during ASR training.

3.2. LongFNT-Text: Long-form Context Integration

Here we explore different integration designs for FNT. As shown
before, FNT factorizes out the vocabulary predictor part by jointly
training the speech-text pair data, therefore the historical transcrip-
tions can be injected inside the vocabulary predictor PredV or after
it.

Sentence-level integration: To integrate it in a statistical way,
we first do mean and standard variance (mean+std) of contextual
embedding sequence C to get sentence-level

∼
c, with PredV ’s output

zVl shown in the yellow box of Figure 1 (b), which needs an auxiliary
linear layer to match the dimension:

z
′V
l = zVl + Linear(

∼
c). (13)

Moreover, the contextual embedding
∼
c can be further utilized at

the linear layer LinearV of the vocabulary predictor PredV :

p = Pred-EncoderV (y≤l), (14)

P = LinearV · ReLU(p), (15)

P ′ = LinearV · ReLU(p⊕ Projection(
∼
c)), (16)

where zVl = log softmax(P or P ′) to match Equation 7, and ⊕ is
implemented as concatenation.

Token-level integration: The second method is to add an aux-
iliary cross-attention layer inside PredV transformer blocks:

pi = MHA(pi,pi,pi), (17)

pi = MHA(pi,C,C), (18)

pi = FFN(pi), (19)

where i is the layer index, FFN is the feed-forward layer inside
the transformer encoder layer and MHA is the multi-head attention
layer, respectively.

Finally, the sentence-level integration and the token-level inte-
gration can be combined to achieve better utilization of contextual
embedding sequence C, which is named as LongFNT-Text.

3.3. LongFNT-Speech: Long-form Speech Encoder

Motivated by [23], we can propose the LongFNT-Speech encoder
with extended historical speech {· · · ,Xp−2,Xp−1} to utilize the
long-form speech information:

· · · ,hp−1,hp
{1:t} = Encoder(· · · ,Xp−1,Xp

{1:t}), (20)

1https://huggingface.co/sentence-transformers/all-roberta-large-v1
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Fig. 1. Architecture of modified factorized neural transducer (M-FNT) and the long-form factorized neural transducer. Two integration
methods are proposed for long-form text, and the speech encoder is extended for long-form speech.

where h = hp matches Equation 1. More specifically, historical
speech is only used in attention score computation, and the label
representations zV

t is calculated by hp
t as in Equation 8. Using

such extension, the speech encoder receives a longer history and
thus benefits training and evaluation. Combining LongFNT-Text and
LongFNT-Speech, the final proposed method is called as LongFNT.

4. EXPERIMENTS

4.1. Experimental Setup

We conduct experiments with two datasets, LibriSpeech [30] and
GigaSpeech Middle (abbr. as GigaSpeech) [31]. LibriSpeech has
around 960 hours of audiobook speech, while GigaSpeech has
around 1,000 hours of audiobook, podcasting, and YouTube au-
dio. The word error rate (WER) averaged over each test set is
reported. For acoustic feature extraction, 80-dimensional mel fil-
terbank (Fbank) features are extracted with global level cepstral
mean and variance normalization. Frame length and frame shift are
25ms and 10ms respectively. Standard SpecAugment [32] is used
for both datasets, respectively. Each utterance has two frequency
masks with parameter (F = 27) and ten time masks with maximum
time-mask ratio (pS = 0.05). 5,000 sentence pieces [33] are trained
using LibriSpeech and GigaSpeech datasets separately. The baseline
follows the settings of FNT [25, 29]. The subsampling layer is a
VGG2L-like network, which contains four convolution layers with
the down-sampling rate of 4. The encoder has 18 conformer layers,
in which the inner size of the feed-forward layer is 1,024, and the
attention dimension is 512 with 8 heads. The PredB has two LSTM
layers with 1,024 hidden size and the joint dimension is set to 512.
The PredV use vanilla 8 transformer layers, which has 256 attention
dimension with 8 heads. The hyper-parameter weights are fixed as
λCTC = 0.1, λLM = 0.5. The context encoder has the same shape
as PredV if training from scratch, and using the frozen RoBERTa
model else. As for the FNT’s large LM adaptation, we use 16
transformer layers with 512 attention dimension with 8 heads. For
LibriSpeech, we use the extra text corpus, and for GigaSpeech, we
use the 10,000 hours of training text data.

4.2. Evaluation Results

Model M Libri-test Giga
clean other dev test

C-T - 3.1 6.6 16.1 15.7
+ long text gt 3.1 6.5 15.8 15.5
+ long text hyp 3.1 6.7 16.1 15.9
+ sentence-level integ. gt 3.1 6.5 16.0 15.5
+ sentence-level integ. hyp 3.2 6.9 16.4 16.2

M-FNT - 3.2 6.4 16.8 16.3
+ long text gt 3.2 6.3 16.5 16.2
+ long text hyp 3.2 6.4 16.7 16.4
+ large LM - 3.0 6.1 16.4 16.0
+ large LM and long text hyp 3.0 6.1 16.4 16.1

LongFNT-Text hyp 2.5 5.5 15.2 14.9
LongFNT-Speech hyp 2.8 6.0 15.9 15.7
LongFNT hyp 2.4 5.4 14.8 14.3

Table 1. LongFNT performance (WER) (%) on LibriSpeech test
sets and GigaSpeech dev/test sets. M has two modes, ‘gt’ denotes
the historical text is obtained from ground truth, while ‘hyp’ is from
the decoded hypotheses.

We first explore whether the vanilla C-T model can be improved
by the long transcription history, as shown in the first block of Ta-
ble 1. It indicates that the C-T model reaches little gain with ex-
tended long-form text or the sentence-level integration method. If
we use it in real cases (i.e. the previous text is decoded instead of
ground truth), the performance even gets worse. Our explanation
is the predictor network is not a pure language model, so it cannot
utilize longer history.

In terms of M-FNT, shown in the second block of Table 1,
enlarging the text input (‘+long text’) does a little help to the Gi-
gaSpeech corpus, but no more gain to LibriSpeech. When the
predictor is trained with unpair text data (+large LM), the perfor-
mance of all models is increased by at least 2%. It demonstrates that
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the M-FNT architecture can be benefited from a powerful language
model. However, the long-form text does not benefit from large LM
either, which means it is non-trivial to explore how to better leverage
long-form information in the context of FNT.

Our proposed LongFNT model achieves 19/12% rel. WERR
compared to the M-FNT baseline and 20/9% rel. WERR compared
to the C-T baseline. It demonstrates that LongFNT can better uti-
lize long-form history information. Furthermore, we can observe
both LongFNT-Text and LongFNT-Speech are better than baselines,
indicating two types of historical information are helpful for long-
form speech recognition. The LongFNT-Text is slightly better than
the LongFNT-Speech model, showing the transcription history is
more valuable to our model. Compared to the limited gain from
the long text in C-T and M-FNT, the WER reduction from long text
is relatively larger, around 10% (LongFNT v.s. LongFNT-Speech),
verifying the effectiveness of the proposed method.

4.3. Ablation Study

Model M Libri-test Giga
clean other dev test

LongFNT-Text hyp 2.5 5.5 15.2 14.9
- RoBERTa hyp 2.5 5.6 15.6 15.2

- token-level integ. hyp 2.8 5.8 15.9 15.3
- - RoBERTa hyp 2.9 5.9 16.0 15.5
- sentence-level integ. hyp 2.6 5.6 15.4 15.0
- - RoBERTa hyp 2.6 5.7 15.8 15.4

LongFNT-Text (gt or hyp) w/o large LM and RoBERTa
- - token-level integ. gt 2.9 6.1 16.0 15.8
- - token-level integ. hyp 3.0 6.3 16.5 16.2
- - sentence-level integ. gt 2.9 6.0 15.7 15.4
- - sentence-level integ. hyp 3.0 6.1 16.0 15.7

Table 2. The ablation study of different components in LongFNT-
Text.

In this subsection, we validate the effectiveness of the proposed
LongFNT model to explore which part is the most important. Shown
in Table 2, we explore the efficiency of different integration methods
for LongFNT-Text based on M-FNT or LongFNT-Speech architec-
ture. The token-level integration is more important than sentence-
level integration, as after removing token-level integration (i.e. only
sentence-level integration), the system degrades by 12/5% relative
WER reduction in LibriSpeech and 5/3% relative WER reduction
in GigaSpeech while removing sentence-level integration only de-
grades ∼4% and ∼1% in LibriSpeech/GigaSpeech corpus.

Then, we also explore the importance of contextual encoder
replacement from the train-from-scratch one to the pre-trained
RoBERTa. Results show that the importance is different from
LibriSpeech and GigaSpeech datasets. For LibriSpeech, we can see
that the performance only degrades by 0.1 absolute WER reduc-
tion, and even no degradation can be found in the test-clean set for
the LongFNT-Text model. As for GigaSpeech, we can observe a
consistent drop by at least 0.3∼0.5 absolute WER reduction. This
interesting phenomenon is that the RoBERTa model has little im-
pact on the LibriSpeech which may be because the influence of
transcriptions is relatively smaller than the Gigaspeech dataset, and
the contextual encoder has a similar ability to model the long-form
textual information.

We also evaluate our models when the large pre-trained predic-
tor network is absent. Detailed training data and model description
can be found in the setup Section 4.1. After replacing the larger in-
domain LM with a trained-from-scratch PredV , the performance of
all models decreases by at least 2%, in the third block of Table 2.
Furthermore, we find that long-form transcriptions are further uti-
lized with large LM. Strong large LM also outperforms the original
one in both integration methods.

As mentioned previously in Section 4.2, in the real scenario,
ground truth (gt) text can not be accessed, and we evaluate the above
methods using decoded transcriptions (hyp) to get real performance
and explore the importance of those two types in different LongFNT-
Text modes. Shown in the 3rd block of Table 2, models that is de-
coded using ‘(hyp)’ drop the performance by 1∼5% compared to
the ‘(gt)’ one. Results show the degradation is much higher on Gi-
gaSpeech compared with on LibriSpeech. One possible reason is
that the basic error rate influences the performance of hypo mode, a
system with low WER is necessary for the long-form speech recog-
nition improvement. Moreover, we find that the sentence-level inte-
gration (i.e. - - token-level integ.) is more sensitive to the long-form
transcriptions compared to the token-level one (i.e. - - sentence-level
integ.), as it drops more 0.1∼0.2 absolute WER. And this indicates
the shortcoming of statistical averaging pooling for sentence-level
integration.

4.4. The Number of Long-form Sentences

#Previous 1 2 3

+ sentence-level integ. 16.6/16.2 16.4/16.1 16.3/16.1
++ speech 16.0/15.7 15.5/15.1 15.2/15.9

Table 3. Performance (WER) (%) comparison of successive sen-
tence counts. ‘++ speech’ here means use (longFNT-Speech with
sentence-level integration. The baseline performance is 16.8/16.3%,
which means # Previous=0 (no historical sentence).

From Table 3, we can find the correlation between the number
of historical sentences and the recognition error rate. As #Previous
grows, the WER of the current sentence is reduced. However, after
#Previous > 2, the improvement is limited but training resources are
consumed, where the most important information can be achieved
in the previous two sentences. Therefore, we select two previous
consecutive sentences to learn appropriate long-form information for
all experiments.

5. CONCLUSION

In this paper, we propose a novel long-form architecture LongFNT
based on factorized neural transducer (FNT) architecture. Long-
form sentence-/token-level transcription integration methods are
proposed with pre-trained RoBERTa to acquire the LongFNT-Text
model. LongFNT-Text achieve 17% relative WER reduction on
LibriSpeech test sets and 9% relative WER reduction on Gigaspeech
corpus. Then LongFNT-Speech is proposed to integrate long-form
speech. And LongFNT is obtained combining LongFNT-Text and
LongFNT-Speech. After utilizing history speech, the final system
archives 19% relative WER reduction on LibriSpeech test sets and
12% relative WER reduction on Gigaspeech corpus. In future work,
we will explore streaming mode FNT, and more efficient training
and testing methods to improve long-form speech.
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