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ABSTRACT

In deep-learning-based speech enhancement (SE), an audio-
knowledge-ignorant approach is often used, which estimates
a denoising model to transform the noisy input speech into
clean output speech without understanding the audio events
that constitute the background noises. In this paper, an audio-
knowledge-aware approach is proposed to improve SE, which
explicitly leverages the knowledge from audio taggings to un-
derstand the background noises. Based on the recent progress
in audio pattern analysis, the audio tagging knowledge is ob-
tained using either additional input representations extracted
by pre-trained audio tagging models, or from multi-task
learning with extra audio event classification or regression
tasks. Experimental results based on the DNS-2020 dataset
and the pre-trained Wavegram-Logmel-CNN audio tagging
model show that the proposed approach leads to considerable
improvements in the STOI, SDR, and SI-SNR metrics.

Index Terms— Speech enhancement, pre-trained repre-
sentations, audio tagging, multi-task learning

1. INTRODUCTION

Speech enhancement (SE), the task to improve the quality and
intelligibility of speech signals corrupted by ambient noise,
has many applications, such as automatic speech recognition,
mobile communication, teleconference, and hearing aids etc.
SE has been a prominent research direction in the field of au-
dio signal processing for decades and remains challenging de-
spite the enormous methods being proposed.

With the resurgence and rapid development of artificial
neural networks (ANNs), deep-learning-based methods have
quickly emerged as the mainstream SE approaches. These
methods can be classified into time-frequency (T-F) domain
and time-domain-based methods. In T-F domain methods, the
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Grants 62122050 and 62071288, in part by Shanghai Municipal Science and
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Jiangsu Technology Project (No.BE2022059-4).

input to the neural network is usually the magnitude spec-
trogram of the noisy speech obtained through a short-time
Fourier transform. The network predicts either the clean mag-
nitude spectrogram [1, 2] or a mask to filter the noisy magni-
tude spectrogram [3–5]. In contrast, the time-domain meth-
ods directly estimate the clean speech signal from the noisy
speech signal without any spectral transformation [6–8].

In the existing literature [3–8], most ANN-based SE
methods assume that background noise is meaningless in-
terference and can be directly suppressed. This ignores the
knowledge of the acoustic characteristics of each class of au-
dio event that is not reserved in the output of SE, and thus is
referred to as the audio-knowledge-ignorant approach in this
paper. Although this approach allows ANNs to concentrate
on the target of SE, it also deviates from the mechanism of the
human auditory system since understanding any speech and
non-speech sounds in a complex auditory scene is an inherent
ability of human beings. In situations where multiple speak-
ers coexist, such as a cocktail party scenario, humans possess
a fundamental understanding of the characteristics of the
background noise even if auditory attention is not applied to
it. Research on human auditory perception strategies in noisy
environments [9] further supports this notion, indicating that
individuals with strong prior knowledge about the various
components in the acoustic environment are better equipped
to integrate and separate these components, enabling them to
focus on the desired elements they wish to hear.

In this paper, by expanding on the insight of the need
for understanding the acoustic characteristics of background
noise, an audio-knowledge-aware approach is proposed for
SE, wherein audio tagging knowledge is leveraged to provide
the SE model with information pertaining to the background
noise categories. More specifically, a latent representation
encoding the information about the categories of the back-
ground noise can be extracted using an audio tagging model
pre-trained on the AudioSet dataset [10], which can be fed
into the SE model as an additional input source. To leverage
this information more effectively, multi-task learning (MTL)
can be used to include an extra training target in the SE model
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that either separates the background noise from clean speech
or classifies the noise according to the audio tagging. The ex-
perimental results show that the proposed method achieves an
improvement of 0.38% in short-term objective intelligibility
(STOI), 0.25 dB in signal-to-distortion ratio (SDR), and 0.19
dB in the scale-invariant (SI) source-to-noise ratio (SNR) on
the test set with no reverberation. The increments are more
considerable with reverberation, which are 2.45%, 1.92 dB,
and 2.13 dB for STOI, SDR, and SI-SNR respectively.

The remainder of the paper is organised as follows: Sec-
tion 2 provides the background knowledge of SE, audio tag-
ging and multi-task learning. Section 3 describes the pro-
posed methods. The experimental setup and results are pre-
sented in Sections 4 and 5, followed by a conclusion.

2. BACKGROUNDS

2.1. Speech enhancement with additional information

Recent SE models [11–21] have shown promising perfor-
mance, yet can be further improved by incorporating addi-
tional input features extracted from audio or other modalities.

With the single audio modality, a prevalent method is to
incorporate the speaker identity into the SE model [22–27],
which facilitates the enhancement of the speech from a spe-
cific speaker. This technique is commonly referred to as
personalised speech enhancement. Similarly, Xin et al. [28]
demonstrate the usefulness of speaker gender information in
improving SE performance. A pre-trained sound event detec-
tion model is used to extract the embeddings representing the
gender of the speaker. Attention scores are computed between
the noisy speech and the embeddings, and higher attention
scores are used when combined with the noisy speech. Li et
al. [29] introduces a technique called “noise token”, which
employs trainable noise templates to construct an embed-
ding that represents the noise within the noisy speech. This
embedding is then used by the SE model to enhance the per-
formance. Additionally, there are also studies leveraging the
text information [30–33] or facial [34, 35] and lip [36, 37]
information from the visual modality.

2.2. Audio tagging task

Audio tagging is the task of predicting the presence or ab-
sence of sound classes within an audio clip. It is essentially a
multi-label classification task. Traditional audio tagging ap-
proaches often use Gaussian mixture models, hidden Markov
models, and discriminative support vector machines to ad-
dress this task. In recent years, ANN models have become
the prevailing paradigm in this domain. Training an ANN-
based audio tagging model requires minimising the following
binary cross-entropy loss function:

L = −
∑N

n=1
(yn · ln f (xn) + (1− yn) · ln (1− f (xn)) ,

where n refers to one of the N total number of audio clips,
K is the number of audio classes, yn ∈ {0, 1}K is the target

label and f(xn) ∈ [0, 1]K is the output of the model.
This success of deep-learning-based audio tagging is not

only attributed to the power of ANN models but also to the
availability of the dataset, in particular AudioSet. AudioSet
contains over 5,000 hours of audio recordings with 527 pre-
defined sound classes, such as music, speech, and vehicle etc,
which encompass the knowledge of real-world noise types.
Consequently, the audio tagging knowledge can be leveraged
in the SE model by either using latent representations ex-
tracted from a model pre-trained on AudioSet or using MTL
with an extra audio tagging training target.

2.3. Multi-task learning

MTL is a machine learning paradigm that improves the train-
ing of a model by jointly learning multiple tasks. It offers
several benefits such as improved generalisation ability, en-
hanced training efficiency, and the leverage of shared knowl-
edge among the training tasks.

In MTL, the overall loss function is typically a linear com-
bination of the individual task-specific losses:

LMTL =
∑T

i=1
αi · Ltaski

,

where T is the number of tasks and the weight αi is used to
modulate the relative importance of taski.

In addition to manual adjustment of αi to control task
relationships, the GradNorm method [38] provides a means
of dynamically adjusting these relationships by scaling the
losses with the gradient norms:

LMTL =

T∑
i=1

1

∥∇θLtaski
∥2

· Ltaski
,

where ∥∇θLtaski
∥2 represents the Frobenius norm of the gra-

dient of Ltaski
with respect to the model parameters θ.

3. PROPOSED METHOD

3.1. Overview

The proposed audio-knowledge-aware SE system, as shown
in Fig. 1(a), comprises a core SE model and an auxiliary audio
tagging model with pre-trained parameters. During training,
the noisy speech is initially processed by the audio tagging
model to extract an embedding that encodes noise-type infor-
mation. This embedding, along with the magnitude spectrum
of the noisy speech, is then fed into the SE model to generate
enhanced audio, and the loss function is computed by com-
paring the enhanced audio with the target clean audio.

In addition, MTL is used in training. The use of two auxil-
iary tasks, noise estimation and audio tagging, is investigated.
The training targets for noise estimation are the noises used to
synthesise noisy speech. As for the audio tagging task, train-
ing labels are pseudo-labels generated by a pre-trained audio
tagging model.
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Fig. 1. (a) The overall diagram of the proposed system. The dashed lines mean the relevant connections only exist in training.
The snowflake icon means the parameters of that component are frozen in training. (b) The detailed architecture of the backbone
SE model and the three fusion positions of the tagging embedding are explored in this paper. (c) A simple concatenation-based
fusion method is used in the system.

3.2. Audio tagging model

The pre-trained Wavegram-Logmel-CNN model [39], which
achieves a mean average precision (mAP) of 0.439 on Au-
dioSet tagging, is used as the audio tagging model. It is a
14-layer convolutional neural network (CNN) with 6 convo-
lutional blocks. Each block includes 2 convolutional layers
(3 × 3 kernel), with batch normalization and ReLU applied
between them. Average pooling (2 × 2) is used for down-
sampling after each convolutional block. Global pooling is
performed after the last convolutional layer to summarise the
feature maps into a fixed-length vector. Two linear layers are
then applied to the global pooling output, generating final out-
puts of dimensions 2048 and 527. In this paper, the output of
the penultimate linear layer is referred to as the tagging em-
bedding.

3.3. Speech enhancement model

The SE model in the proposed system is the TCN-DenseUNet
[40], which achieved 1st place in task 1 of the L3DAS22
Challenge [41]. It takes the noisy magnitude spectrum as in-
put and predicts the clean magnitude spectrum.

The model, shown in Fig. 1(b), is a modified U-Net archi-
tecture with a TCN network inserted between the encoder and
decoder. The encoder consists of a 2D convolution layer and
7 convolutional blocks, while the decoder consists of 7 de-
convolutional blocks and a 2D deconvolution layer. The TCN
network has 4 layers, each containing 7 dilated convolutional
blocks. The deconvolutional block in the decoder receives in-
put from both the previous block and the corresponding con-
volutional block in the encoder.

3.4. Fusion of tagging embedding

In order to incorporate the audio tagging knowledge into the
SE model, a simple concatenation method is used to fuse the
tagging embedding with the original input feature map of the
SE model, which has a shape of (C, T, F ). The dimensional-
ity of the tagging embedding is reduced to F ′, which is 256
in this paper, using a linear projection. Following this, the
compressed tagging embedding vector is replicated along the
time and channel dimensions, resulting in another tensor with
a shape of (C, T, F ′). Subsequently, the two tensors are con-
catenated, resulting in a tensor of shape (C, T, F+F ′), which
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serves as the new feature map for the SE model. Fig. 1(c) il-
lustrates the fusion procedure described above. The tagging
embedding captures information about the background noise
in the entire audio clip. Concatenating the embedding with
the original features frame by frame also enables each frame
to have information from its contextual frames, leading to an
improved SE performance. Furthermore, we examined the
effect of embedding fusion at different positions in the SE
system, as illustrated in Fig. 1(b).

3.5. Multi-task learning for speech enhancement

An additional output channel is incorporated into the final
convolutional layer of the decoder in the SE model to facil-
itate the noise estimation (NE) task. Both the SE task and
the noise prediction task share the same loss function and the
total loss can be expressed as:

Ltotal = LSE + LNE, (1)

When audio tagging serves as the secondary task, the
dimension representing speech probability is omitted from
the labels generated by the pre-trained audio tagging model.
This modification results in a 526-dimensional vector, which
serves as the adjusted label, with a focus on the knowledge
associated with background noise. Furthermore, to facilitate
convergence, each element in the vector is normalised by
dividing it by the maximum value within the vector.

To predict the audio tagging label, the output of the last
DenseBlock in the TCN-DenseUNet decoder is used as input
features for a prediction model. A shallow CNN followed by
two linear layers is used as the predictor, which is only used
in training and can be discarded in tests.

Since SE is a regression task and audio tagging is a clas-
sification task, there is an inherent need to balance between
these two tasks. The two methods introduced in Section 2.3
are used to keep a balance between the SE and audio tagging
(AT) tasks. Alternatively, a manual weight adjustment strat-
egy can be used based on the following loss function:

Ltotal = LSE + α× LAT. (2)

4. EXPERIMENTAL SETUP

4.1. Datasets and evaluation metrics

We synthesised 100 hours of noisy speech based on the DNS-
2020 dataset, with each audio clip having a duration of 30
seconds. The SNR levels are uniformly sampled from a range
of 0 to 40 dB. For training purposes, 90 hours of data are al-
located, while 10 hours are reserved for validation. To facil-
itate the evaluation of the method’s effectiveness and explore
the impact of specific parameters on its performance, a subset
of 36 hours of audio is randomly selected from the complete
training set.

Two test sets denoted as “no reverb” and “with reverb”
are used for evaluation, both contain 150 noisy-clean pairs.

Within these two test sets, various everyday noises are in-
cluded, such as fan, air conditioner, typing, and more. The
audio clips in the “with reverb” test set not only encompass
background noise but also exhibit reverberation, and reverber-
ation is not included in the training and validation sets.

Three commonly used metrics, namely STOI, SDR and
SI-SNR, are used to assess the performance of SE models.
Higher values indicate better performance for all metrics.

4.2. Model configurations

In Section 3.2, we provide an overview of the configuration
for the audio tagging model. The detailed configuration of
the SE model in the proposed system is shown in Fig. 1(b),
where DenseBlocks is denoted as (g1, g2), and g1 and g2 are
the growth rates. Other convolutional blocks are denoted as
(k, s, p, o), where k, s, p, o are the kernel size, stride, padding,
and output channels correspondingly. ELU and IN stand for
exponential linear units nonlinearity layer and instance nor-
malization layer.

In the experiments, a parameter-reduced variant of the
model, referred to as TCN-DenseUNetsmall, is introduced,
featuring approximately 1/4 of the parameters compared to
the original model. The encoder’s convolutional modules uti-
lize fewer channels (8, 8, 8, 8, 8, 16, 32, 384), and correspond-
ing adjustments are made to the decoder. The TCN network
is downscaled to 2 layers, each incorporating 4 dilated convo-
lutional blocks. The experimental results in Section 5, unless
otherwise stated, are obtained by training this model on the
36-hour training set.

4.3. Training details

• Loss function: For audio tagging task, the loss func-
tion is the binary cross entropy loss. For SE and noise
estimation task, the loss function is the SI-SNR loss.

• Data pre-processing: During training, variance nor-
malisation is applied to each noisy-clean data pair.
Likewise, during the test, the noisy speech undergoes
variance normalisation as well.

• Optimisation setting: The Adam optimizer is utilized
with a learning rate of 1.0× 10−3. The batch size is set
to 8. The maximum number of training epochs is 25,
and training will halt if the loss does not decrease on
the validation set for 5 consecutive epochs.

5. EXPERIMENTAL RESULTS

5.1. Comparisons with different auxiliary tasks

Table 1 presents the results with MTL. The tagging embed-
dings are not used in these systems. The results demonstrate
that integrating audio knowledge through MTL can consider-
ably improve the performance of the SE model.

SE with noise estimation performs better on the “no reverb”
test set compared to SE with audio tagging, possibly due to

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 06,2024 at 09:07:38 UTC from IEEE Xplore.  Restrictions apply. 



Table 1. Performance with MTL with different auxiliary
tasks. “AT” and “NE” stand for audio tagging and noise esti-
mation respectively, and α is the weight parameter in Eqn. (2).
The baseline model is the TCN-DenseUNetsmall trained on
the smaller 36-hour dataset.

Model no reverb with reverb

STOI SDR SI-SNR STOI SDR SI-SNR

Baseline 95.35 16.40 16.39 82.87 11.51 10.75

AT, α = 1 95.43 17.04 17.00 83.68 11.69 11.03
AT, α = 10 95.38 17.22 17.20 84.94 12.66 12.00

AT, GradNorm 95.28 16.52 16.43 85.98 12.48 11.85

NE 95.56 17.29 17.27 83.58 11.74 11.03

AT+NE 95.37 16.96 16.92 83.01 12.29 11.48

the fact that both SE and noise estimation are regression tasks
and are easy to keep balanced during training, and there-
fore resulted in better performance. Meanwhile, SE with
audio tagging outperforms SE with noise estimation on the
“with reverb” test set, showing its superior generalisation
capability in handling training set mismatches. The approach
of incorporating both tasks underperforms compared to se-
lecting either task alone. This demonstrates the challenge in
the simultaneous optimisation of such different tasks.

The results of using different task balance strategies are
presented in Table 1. The GradNorm strategy exhibits lower
overall performance compared to the manually weighted ap-
proach, as it treats both tasks equally during optimisation,
compromising the more critical SE task.

In the manually weighted approach, compared to α = 10,
the performance is inferior when α = 1. This difference can
be attributed to the divergent scales of the loss functions. With
α = 1, the gradients from the SE loss dominate, prohibiting
the impact of the audio tagging task. However, with α = 10,
more balanced training is achieved, resulting in substantial
improvements in the final SE performance.

5.2. Comparisons with different fusion positions

Table 2 presents the SE results with different fusion positions.
The MTL strategy is not used to train these systems. The
terms “Early”, “Middle”, and “Late” in the table correspond
to the three fusion positions shown in Fig. 1(b). The term
“All” means to integrate the tagging embeddings at all three
positions simultaneously.

The results presented in Table 2 demonstrate that inte-
grating the tagging embedding at any of the three positions
improves the SE performance. In particular, the later stage
the fusion position is in the model, the smaller the improve-
ments in SE performance on the “no reverb” test set, whereas
the improvements are more obvious on the “with reverb” test
set. A possible reason is that when the fusion position is in
an earlier stage, the model is more effective in leveraging the
audio knowledge from the tagging embedding, resulting in

Table 2. Performance with different audio tagging embed-
ding fusion positions. The baseline model is the TCN-
DenseUNetsmall trained on the smaller 36-hour dataset.

Model no reverb with reverb

STOI SDR SI-SNR STOI SDR SI-SNR

Baseline 95.35 16.40 16.39 82.87 11.51 10.75

Early 95.63 16.89 16.85 86.17 12.47 11.93
Middle 95.53 16.65 16.66 85.15 12.55 11.93

Late 95.06 16.44 16.48 85.61 12.65 12.09
All 95.67 16.53 16.56 88.26 13.73 13.37

improved SE performance. However, this increases the risk
of over-fitting and compromises the network’s ability to gen-
eralise to unseen test data, such as reverberation. The simulta-
neous fusion at all three positions considerably enhances the
performance in the “with reverb” condition.

5.3. Performance of the full-scale system

TCN-DenseUNet is used as the backbone SE model to train
the full-scale system using the proposed method on the full
90-hour training set. The results are shown in Table 3. Based
on preceding experiments, the audio tagging task is used as
the auxiliary task in MTL, with the weight parameter α set to
10. The tagging embedding is fused at all three positions.

The proposed method is compared to Backbone and DC-
CRN [18], and the results show the superior performance of
our proposed method on both test sets. It is worth noting that
the “with reverb” results in the last row of Table 3 suffer from
a slight decline compared to the last row of Table 2. This is
due to the overfitting with larger models, and the overfitted
training data does not have any reverberant audio.

Table 3. Perfromance and computational burden of the full-
scale systems trained on the complete 90-hour dataset. The
backbone model is TCN-DenseUNet. The tagging embed-
ding is fused at all positions, and MTL is used with the audio
tagging task with α = 10.

Model no reverb with reverb MACs

STOI SDR SI-SNR STOI SDR SI-SNR (G/s)

Noisy 91.52 9.09 9.23 86.62 9.16 9.19 —
DCCRN 96.00 17.69 17.50 81.00 10.45 9.72 13.10

Backbone 96.81 18.83 18.84 84.88 11.86 11.03 21.36

Proposed 97.19 19.08 19.03 87.33 13.78 13.16 22.60

6. CONCLUSIONS

In this paper, an audio-knowledge-aware speech enhancement
approach is proposed, which uses the knowledge from audio
tagging by fusing the embedding extracted using a pre-trained
audio tagging model or using MTL. Experimental results on
the DNS test sets show considerable improvements over the
baselines. Future work includes exploring more efficient fu-
sion methods and alternative loss functions.
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