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ABSTRACT

Self-supervised contrastive learning has recently emerged as one of
the promising approaches in speaker verification task, due to its in-
dependence from labeled data. Among them, the DINO-based self-
supervised framework, trained without exploiting negative pairs, is
very popular and achieves excellent performance in the speaker ver-
ification task. However, limited by the duration of utterance, there
exist many overlaps which may mislead the model to pay attention to
irrelevant information. To tackle this problem, we propose a cluster-
aware (CA) training strategy to make the model crop positive seg-
ments from several utterances in the same cluster rather than from
a single utterance. Besides, in the clustering stage, we also inves-
tigate strategies of fixed number clustering as well as progressive
clustering. With these strategies, our CA-DINO achieves the state-
of-the-art result on Vox-O test set. Finally, we explore the effect
of fine-tuning CA-DINO with a small amount of labeled data. Our
proposed model with only 10% labeled data outperforms the fully
supervised system trained on all data.

Index Terms— speaker verification, self-supervised, dino,
cluster-aware, progressive clustering

1. INTRODUCTION

Speaker verification (SV) is a task that verifies a person’s identity
based on the features of their voice. Deep learning-based methods
have thrived in recent years and achieved excellent performance in
speaker verification tasks. To achieve better performance and robust-
ness, researchers have designed various model architecture [1–3],
training objection [4, 5], pooling methods [6, 7] for speaker verifica-
tion task. However, these deep learning-based methods are usually
based on the fully-supervised training manner, which requires mas-
sive well-labeled data. Nevertheless, collecting well-labeled data at
scale is difficult and expensive, while unlabeled data is relatively
easy to collect in large quantities.

In this case, to fully utilize these unlabeled data and reduce the
dependence on labeled data, many researchers turn their attention to
self-supervised learning which obtains supervisory signals from the
data itself and designs a pretext task to help the model learn the rep-
resentation. Firstly, with the help of the text-to-speech (TTS) task, a
generative method has been proposed in [8] to separate speaker rep-
resentation based on phone information. Although no speaker anno-
tations are used here, the performance is not ideal. Then, inspired
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by the success of the frame-level pre-trained models in ASR such as
Wav2Vec series [9], Hubert [10] and so on, some researchers [11,12]
explored fine-tuning them on speaker verification task directly but it
will bring huge parameters comparing with traditional models. In the
following, by observing the data structure, a hypothesis is proposed
to assume that speech segments truncated from the same utterances
belong to the same speaker while those from different utterances be-
long to different speakers [13]. Based on this hypothesis, many ef-
forts adopt contrastive learning to obtain discriminative speaker rep-
resentations by maximizing and minimizing the positive and nega-
tive pairs respectively [13–16]. Then, to tackle the problem of nega-
tive pairs caused by inaccurate assumption, a non-contrastive frame-
work DINO (distillation with no labels) [17] is introduced to speaker
verification [18–22] and brought a huge performance improvement.
For traditional DINO, the two distributions of positive pairs are min-
imized by cross-entropy where the positive pair is formed with sev-
eral segments sampled from one utterance. Due to the short duration
of each utterance, there are a lot of overlaps among these segments
which might mislead the model to focus on irrelevant information
(content, channel, and so on) and neglect the speaker information in
the audio.

To tackle this problem, we propose several new strategies for
self-supervised learning in speaker verification tasks. First, we adopt
the traditional DINO framework as the initial model in the first pre-
training stage. Next, we propose a cluster-aware (CA) training strat-
egy for DINO which samples positive segments from the same clus-
ter generated by the clustering algorithm. This strategy can minimize
channel and context effects and increase the diversity of data. Be-
sides, inspired by the clustering work [23], we also explore the pro-
gressive cluster aware strategy in the clustering stage, which works
in adapting to network convergence and preventing the contamina-
tion of pseudo-labels. With these strategies, our progressive CA-
DINO achieves the state-of-the-art performance on Voxceleb [24]
evaluation set. In addition, we also conduct fine-tune experiments
to examine our proposed CA-DINO with only a small amount of la-
beled data. Compared with another self-supervised model such as
SimCLR [14] and the fully supervised model, it outperforms all of
them with only 10% labeled data.

2. METHODS

2.1. DINO-based Self-Supervised Speaker Verification

In this section, we will give a description of DINO and the whole
framework is shown in Fig.1. DINO follows an architecture similar
to knowledge distillation, consisting of not only a student encoder
but also a momentum teacher encoder. Both encoders are trained in
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Fig. 1. Framework of distillation with no label (DINO) for self-supervised speaker representation learning

parallel. The outputs of the teacher encoder are used as ground truth
to optimize the student encoder.

Similar to [17], different views of each utterance are constructed
with the multi-crop strategy. More precisely, from a given utterance,
we randomly sample 4 short {xs

1, x
s
2, x

s
3, x

s
4} and 2 long segments

{xl
1, x

l
2}, these segments should overlap as little as possible. As in

the previous work [13–16], the assumption that segments cropped
from the same utterance belong to the same speaker is still followed.
Then, we apply different kinds of data augmentation on these crops
by adding noise or reverberation for robust performance. After aug-
mentation, all segments are passed through the student while only
the long segments are passed through the teacher.

The teacher and student own the same architecture but with
different parameters due to the different update methods. The stu-
dent is updated by gradient descent while the teacher is updated by
the exponential moving average (EMA) of the student’s parameters.
EMA’s update rule is θt ← λθt + (1 − λ)θs. where λ is adjusted
by a cosine scheduler from 0.996 to 1 during training. Speaker em-
beddings are extracted by Encoder and then fed into the Projection
Head, which contains a 3-layers perceptron with hidden dimension
2048 followed by ℓ2 normalization and a weight normalized fully
connected layer with K dimensions.

We encourage the short-to-long correspondences by minimizing
the cross-entropy loss H(·) between two distributions as the follow-
ing Equation.1:

Lce =
∑

x∈{xl
1,x

l
2}

∑
x′∈{xl

1,x
l
2,x

s
1,...,x

s
4}

H(Pt(x) | Ps(x
′)) (1)

where output distributions of momentum teacher network fθt and
student network fθs are denoted by Pt and Ps respectively. More-
over, P can be computed by using a softmax function to normalize
the output:

Ps(x) = Softmax(
fθs(x)

ϵs
) (2)

where ϵs > 0 is a temperature parameter that can control the sharp-
ness of the output distribution. Similarly, there is a formula holds
for Pt with temperature ϵt > 0, too. Moreover, a mean computed
over batches is used for centering teacher model’s output distribu-
tion. During the training, both sharpening and centering are applied
to avoid trivial solution [17].

Additionally, we add a cosine-based consistency loss to ensure
that the speaker embedding is encoded into cosine space which is
more suitable for later scoring and clustering. It maximizes the
cosine similarity among the embeddings extracted from the same

speaker. Finally, the total loss is summarized with coefficient α:

Ldino = Lce + α
∑

e∈{el1,e
l
2}

∑
e′∈{el1,e

l
2,e

s
1,...,e

s
4}

(1− e · e′

∥e∥ ∥e′∥ ) (3)

where e represents the extracted speaker embedding from encoder.

2.2. Progressive-Cluster-Aware Training strategy

For traditional DINO, the positive pairs are formed by the segments
sampled from the same utterance. As mentioned above, the cross-
entropy between the two distributions of positive pairs is minimized
during the optimization of DINO to encourage short-to-long corre-
spondence. Although we try to make these segments from the same
utterance overlap as little as possible when sampling, in practice
these segments usually overlap to a large extent due to the limited
duration of the utterance. Under the influence of these overlapping
parts, the model might pay more attention to the content, channel
and other irrelevant information of the overlapping parts, while ig-
noring the speaker information in the audio. Although we will also
add different types of data augmentation to them later, the data still
lacks diversity, which may lead the model to optimize in the wrong
direction.

Long

Short

Long

Short

(a) (b)

Fig. 2. Difference between traditional DINO and cluster-aware train-
ing DINO. (a) Traditional DINO: long and short segments are sam-
pled from the same utterance to compose the positive pairs. (b)
Cluster-aware training DINO: through a simple clustering algorithm,
we consider that the same speaker in the same cluster shares the same
identity and segments are cropped from the corresponding cluster.

In order to reduce the overlaps of segments and increase the di-
versity of data, we propose a clustering-aware (CA) training strategy
for DINO while maintaining the original assumptions as much as
possible, which is named CA-DINO in the following. The model
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training is divided into two stages. In the first stage of training, we
optimize the model according to the traditional DINO training man-
ner. Then the training process will enter the next stage when the
model is able to extract discriminative speaker representation. In the
following, clustering algorithm such as k-means is adopted here to
cluster the extracted speaker embeddings. With the assumption that
the utterances in the same cluster belong to the same speaker, these
clustered utterances can be used to generate crops with fewer over-
lapped parts and more diversity. As shown in Fig. 2, unlike the tra-
ditional DINO strategy, the current positive pairs are sampled from
several different utterances in the same cluster rather than from a sin-
gle utterance. These positive pairs come from the same speaker but
have different content and channel information, which significantly
enhances the diversity of data and reduces overlapping parts so that
the model can pay more attention to speaker information rather than
irrelevant information. These positive pairs will be used as new in-
puts for subsequent model training. Considering the resource con-
sumption of extracting speaker embeddings, the clustering process
will be performed after several training epochs.

In addition, in the clustering step, we also introduce the Progres-
sive Clustering (PC) method. In the early stage of representation
learning, setting a small number of clusters during clustering may
lead to class-inconsistent samples within some clusters, resulting in
the contamination of pseudo labels, further hindering the growth of
the model’s representation ability. As the network converges, we
can gradually lessen the number of clusters to reduce intra-class dis-
tance and make the feature space more compact and class-consistent.
Specifically, two strategies for reducing the number of clusters are
employed: linear decline and logarithmic decline, which are called
PC-Linear and PC-Log respectively in the following. To represent
the strategy of PC-Log, we note that the initial number of clusters is
Ni, the final fixed number of clusters is Nf , the number of clusters
in the t-th epoch is Nt, which is formulated as:

log(Nt) = max((1− t

T
) log(Ni), Nf ) (4)

where T denotes the total training epochs. As shown in Eq. 4, Nt

declines fast in early epochs and slower in later epochs. When t = 0,
Nt equals to Ni; when t > t0, we fix Nt as Nf .

3. EXPERIMENT SETUP

3.1. Cluster-Aware DINO

3.1.1. DINO

For DINO, following [19,20], we adopt ECAPA-TDNN [2] with 512
channels as the audio encoder to learn discriminative speaker repre-
sentation, which is a time-delay neural network (TDNN) [1] based
backbone with emphasized channel attention, propagation, and ag-
gregation.

The development set of Voxceleb 2 [24] is adopted for train-
ing the networks without using any speaker labels, following [18–
20]. The training set comprises 1, 091, 251 utterances among 5, 994
speakers collected from YouTube. For each utterance, two long (3
seconds) and four short (2 seconds) segments are randomly cropped
and regarded as positive pairs. The extracted segments are aug-
mented with MUSAN [25] and RIR1. After that, they are encoded
into 192-dimensional speaker embeddings by the encoder. Similar
to the configuration in [17], the K in the DINO projection head is
set as 65, 536. Temperatures for the teacher ϵt and the student ϵs are

1https://www.openslr.org/28

0.04 and 0.1 respectively. In addition, we set cosine loss weight α
as 1.0 to balance the two losses. The whole training process will last
150 epochs. Model parameters are updated using stochastic gradient
descent (SGD) algorithm with weight decay 5e-5. The learning rate
is linearly ramped up from 0 to 0.2 in the first 20 epochs, and then
it decays to 1e-5 with cosine scheduler. Moreover, the momentum
also follows the cosine schedule from 0.996 to 1.0.

3.1.2. Cluster-Aware Training

We train the model generally as described in DINO in the first 90
epochs for the cluster-aware training strategy. After that, clustering
algorithm is applied on the whole training set every 5 epochs. Con-
sidering the time complexity and the amount of training data, we
only utilize k-means here which requires few extra computation.

Our models are evaluated on 3 trials as defined in [24]: the Orig-
inal, Extended, and Hard Voxceleb test sets. Vox-O is the original
test set of Voxceleb 1 contains 37, 720 trials from 40 speakers. Vox-
E is an trial list which (using the entire dataset) contains 581, 480
trials from 1251 speakers. Vox-H is a hard evaluation list consisting
of 552, 536 pairs sampled from 1190 speakers in Voxceleb 1, all of
which are from the same nationality and gender.

3.2. Fine-tuning pre-trained self-supervised model

Fine-tuning experiment is conducted on in-domain Voxceleb 1 [26]
and out-of-domain CN-celeb 1 [27] to prove the robustness of our
model. The dev set of Voxceleb 1 consists of 148, 642 utterances
from 1, 211 speakers. And CN-celeb 1 contains 53, 288 (we con-
catenate the short utterances from the same genre and same speaker
to make them longer because there exists many short utterances less
than 2s) from 800 speakers.

In the fine-tuning phase, we use 2s training segments. Additive
angular margin (AAM) [4] loss is used here to optimize the model.
And we set the margin and scale of AAM to 0.2 and 32.0 respec-
tively. The fine-tune process will last 100 epochs with learning rate
decrease from initial 0.01 to final 1e-5 exponentially.

4. RESULTS

4.1. Comparison with other self-supervised models

Table 1 reports the speaker verification performance of our proposed
methods and other previous self-supervised models. All the methods
are trained on Voxceleb 2 without any speaker label and evaluated on
the Vox-O test set following the setup of previous works. From the
table, we can find out that negative-pairs-free DINO outperforms all
previous traditional methods [28–30] and contrastive-based meth-
ods [13–16], which prove that negative pairs are indeed a bottleneck
for performance improvement. In addition, we also provide the ab-
lation study of DINO at the bottom of Table 1. We can observe
that DINO without exponential moving average (EMA) obtains an
abysmal result, which reveals that EMA is indispensable to prevent
the model from collapsing. After applying the progressive cluster-
aware (CA) strategy when training DINO, the performance has been
further improved. It outperforms the best system [20] by relative
23.74% on Vox-O test set, which is a great performance leap.

We also provide the experiment to explore the effects of the dif-
ferent numbers of clusters and different decline strategies on perfor-
mance. And the results are reported in Table 2. Compared with
the baseline system (1080k), it can be found that the cluster-aware
strategy can improve the Normalized Mutual Information (NMI) ef-
fectively, and show its robustness to the number of clusters because it
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Table 1. Performance comparison of the proposed CA-DINO with
other self-supervised speaker verification methods. SSL means Self-
Supervised Learning. EER (%) and minDCF (p=0.05) are evaluated
on Vox-O test set.

SSL Methods EER (%) minDCF0.05

Disent [28] 22.090 -
CDDL [29] 17.520 -
GCL [30] 15.260 -
i-vector [13] 15.280 0.630
AP + AAT [13] 8.650 0.450
SimCLR + Uniform [14] 8.280 ∗0.610
MoCo + WavAug [15] 8.230 ∗0.590
Unif+CEL [16] 8.010 -

DINO [18] 6.160 ∗0.524
DINO [19] 4.830 ∗0.463
DINO + Curriculum Learning [20] 4.470 0.306

DINO 31.233 0.989
+ EMA 4.221 0.299
+ + Cluster Aware (CA) 3.536 0.247
+ + + Progressive Cluster (PC) 3.409 0.232

* The minDCF are given with p=0.01.

Table 2. Performance comparison of cluster-aware training with dif-
ferent cluster numbers. EER (%) is evaluated on Vox-O, Vox-E and
Vox-H test sets. 1080k here means that one utterance is one class,
which is equivalent to training without the cluster-aware strategy.

# Cluster NMI Vox-O Vox-E Vox-H

1080k 0.753 4.221 4.508 7.614
30k 0.891 3.680 3.816 6.784
20k 0.902 3.536 3.779 6.681
10k 0.912 3.547 3.726 6.604
5k 0.898 3.546 3.776 6.713

PC-Linear (from 30k to 5k) - 3.404 3.699 6.575
PC-Log (from 30k to 5k) - 3.409 3.642 6.541

can bring significant and stable improvement for all fixed clustering
numbers. Meanwhile, CA-DINO with progressive clustering (PC)
outperforms other systems with a fixed number of clusters, show-
ing that progressive clustering can improve performance to a certain
extent.

4.2. Fine-tuning CA-DINO with a few Labeled Data

In order to better illustrate the superior performance of CA-DINO,
experiments of self-supervised learning with the pretrain-finetune
framework are conducted. We fine-tune the self-supervised model
with different amounts of labeled data in the downstream speaker
verification task. We split the dev set of Voxceleb 1 in different pro-
portions 10%/20%/50%/100% from ‘the number of speakers’ or ‘the
number of utterances for each speaker’ respectively.

As shown in Table 3, frame-level pre-trained model Wav2Vec
only obtains unpromising results which is reasonable because it is
designed for speech recognition, not speaker task. Then, we can
observe that self-supervised models SimCLR and our proposed CA-
DINO show significant improvements compared to the model train-
ing from scratch. This suggests that pre-trained models with better
initialization are important under low-resource conditions. More-
over, the proposed CA-DINO performs significantly better than Sim-
CLR, and CA-DINO still performs well with only a small amount of

Table 3. EER(%) comparison of finetuning the pre-trained self-
supervised model with different amounts of labeled data from Vox-
celeb 1. Results are evaluated on Vox-O which is the test set of
Voxceleb 1.
Initial Random SimCLR Wav2Vec [11] CA-DINO

None 32.78 8.547 15.62 3.409

10% utts 6.893 4.388 - 2.510
10% spks 8.595 6.481 - 4.620
20% utts 5.276 3.797 - 2.408
20% spks 6.529 5.412 - 3.329
50% utts 3.691 3.266 - 2.111
50% spks 3.643 3.649 - 2.626

100% 2.755 2.936 3.61 1.930

labeled data. The reduction of labeled data does not cause tremen-
dous performance degradation. More promisingly, with only 10% la-
beled utterances, finetuning with pretrained CA-DINO even achieves
a better result than the fully supervised system trained on all labeled
data, i.e., 2.510% vs. 2.755%.

In addition, from Table 3, we can also find that when the sam-
pling ratio is the same, the training performance of using a small
number of utterances for each speaker is better than using a small
number of speakers with all utterances. This discovery also gives
us a new idea for collecting data in the case of limited resources. It
seems better to collect data from different speakers as much as pos-
sible, rather than collecting utterances from each speaker as much
as possible, which is very meaningful to economize lots of manual
annotation.

Table 4. EER(%) and minDCF(p=0.01) comparison of finetuning
the self-supervised model with out-of-domain dataset CN-celeb 1.
Results are evaluated on the evaluation set of CN-celeb 1.

Initial EER(%) minDCF0.01

Random 12.076 0.6162
SimCLR [14] 10.120 0.5681
DINO + Curriculum Learning [20] 10.980 -
CA-DINO 10.031 0.5387

Finally, we also provide results of fine-tuning CA-DINO on out-
of-domain CN-celeb 1 in Table 4. According to the results, it’s ob-
served that our proposed CA-DINO still has better performance even
fine-tuning on different domains which demonstrates the robustness
and generalization of CA-DINO.

5. CONCLUSION

In this work, we propose the cluster-aware (CA) strategy to reduce
the overlap problem when training traditional DINO. With this strat-
egy, the model can utilize positive pairs sampled from several differ-
ent utterances in the same cluster rather than from a single utterance
which can increase the diversity of data and obtain the state-of-the-
art performance. Besides, in the clustering stage, we also investigate
strategies of fixed number clustering or progressive clustering. Fi-
nally, we explore the effect of fine-tuning different self-supervised
speaker verification models with a small amount of labeled data.
With only 10% labeled data, our proposed CA-DINO exceeds the
fully supervised system trained on all labeled data.
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