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ABSTRACT

Advancements in monaural speech enhancement (SE) tech-
niques have greatly improved the perceptual quality of
speech. However, integrating these techniques into auto-
matic speech recognition (ASR) systems has not yielded the
expected performance gains, primarily due to the introduction
of distortions during the SE process. In this paper, we pro-
pose a novel approach called FAT-HuBERT, which leverages
distortion-invariant self-supervised learning (SSL) to enhance
the robustness of ASR. To address the distortions introduced
by the SE frontends, we introduce layer-wise fusion modules
that incorporate features extracted from both observed noisy
signals and enhanced signals. During training, the SE fron-
tend is randomly selected from a pool of models. We evaluate
the performance of FAT-HuBERT on simulated noisy speech
generated from LIBRISPEECH as well as real-world noisy
speech from the CHIME-4 1-channel dataset. The experi-
mental results demonstrate a significant relative reduction in
word error rate (WER).

Index Terms— self-supervised learning, robust speech
recognition, Front-end Adaptive Training, HuBERT

1. INTRODUCTION

Robust speech recognition constitutes a pivotal area of study
within the field of automatic speech recognition (ASR) due
to its capacity to significantly augment system performance
in real-world, noise-prone environments [1–4]. The primary
objective of robust speech recognition is to enable accurate
and efficient recognition of speech in the presence of diverse
noise types and varying intensities, which typically interfere
with the accurate extraction of linguistic information.

Research on robust speech recognition can be broadly
divided into front-end and back-end techniques, based on
the stage at which system noise-robustness is integrated.
The recent growth of self-supervised learning (SSL) meth-
ods, emerging as promising ASR back-ends [5–9], has led

† corresponding author

to a wealth of proposed strategies to combat the suscep-
tibility of SSL models to background noise within ASR
tasks. WavLM [10], for example, adopts a masked speech
denoising and prediction framework for pretraining speech
representations. Wav2vec-Switch [11] predicts the quan-
tized representations of the original-noisy speech pairs fed
to wav2vec2.0 [7] network. Furthermore, Wav2vec-C [12]
and [13] incorporate a reconstruction loss into the wav2vec2.0
framework. HuBERT-AGG [14] employs a distinct approach
by distilling layer-wise noise-invariant representations to bol-
ster the robustness of HuBERT [6].

Front-end techniques for robust ASR often employ a
speech enhancement (SE) module as a pre-processing front-
end to reduce noise within the speech signal. The SE and
ASR modules can be trained independently or jointly. How-
ever, as numerous prior studies have observed [15–17], the
enhanced speech output from SE does not consistently trans-
late into optimal recognition accuracy for subsequent ASR
tasks, an issue often attributed to sub-optimal intelligibil-
ity distortions within the enhanced speech. To alleviate this
problem, [18, 19] proposed the joint training of the SE and
ASR modules using ASR objectives, thereby restricting the
loss of linguistic information induced by distortions during
SE. Moreover, it has been demonstrated in [3, 15, 20] that the
fusion of features derived from both observed noisy signals
and enhanced signals can effectively compensate for each
other, resulting in features that are not only noise-robust but
also less susceptible to distortion.

In this study, we introduce a novel training approach for
building distortion-invariant SSL models that adapt to a mul-
titude of diverse pretrained SE front-ends using the HuBERT
framework. We start with a pre-trained HuBERT, which is
refined for distortion robustness without extensive additional
training steps. During pretraining, the model is exposed to
both observed noisy signals and enhanced signals, where
the SE front-end is randomly chosen from a collection of
SE models. We employ a layer-wise fusion mechanism that
combines features from noisy and enhanced signals, resulting
in features with reduced noise and distortion. Additionally,
we propose intra-utterance multi-style training that partially
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enhances each utterance, effectively lowering GPU memory
overhead and minimizing training speed degradation caused
by SE front-ends. To safeguard the initialization parame-
ters against premature continual pretraining, we incorporate
a residual connection for each fusion module. Our work
distinguishes itself from [21], which utilized a data-driven
approach to calculate contrastive loss among various acoustic
conditions. In our case, features from noisy and enhanced
signals are deeply fused via a parameterized module within
the SSL model. Moreover, unlike [22], which jointly opti-
mized the SSL and SE module for distortion robustness, we
retain the SE models’ original state during training. Instead,
we leverage a collection of SE front-ends to train a front-end
adaptive SSL model. In contrast to the study in [16] that used
time-frequency (TF) domain front-ends to train an acous-
tic model, we investigate both time domain and TF-domain
front-ends to train a distortion-invariant SSL model.

Our contributions can be summarized as follows: (1)
We introduce a front-end adaptive training scheme inte-
grated with HuBERT (FAT-HuBERT) that effectively mit-
igates distortions introduced by SE front-ends. (2) We pro-
pose intra-utterance multi-style training that lowering GPU
memory overhead and reduce the time required for data pro-
cessing during FAT-HuBERT pretraining. (3) Experimental
results demonstrate that our FAT-HuBERT framework sig-
nificantly improves the robustness of learned representations
against noise and distortions, leading to substantial word er-
ror rate (WER) improvement on the LIBRISPEECH simulated
noisy speech dataset and CHIME-4 1-channel real-world
noisy speech.

2. FRONT-END ADAPTIVE TRAINING OF HUBERT

2.1. HuBERT

We first revisit Hidden-Unit BERT (HuBERT), the underlying
model for our methodology. HuBERT is a self-supervised ap-
proach for latent representation learning, which demonstrates
superior performance and generalization across varied appli-
cations. Utilizing an offline clustering step like K-Means, Hu-
BERT aligns target labels for BERT-like prediction loss [23],
predicting cluster assignments from masked speech features.
A speech utterance X = [x1, . . . , xT ] with a clustering model
h yields acoustic units h(X) = Z = [z1, . . . , zT ] with zt ∈
[C] as a categorical variable. The prediction loss applied
only to masked regions impels a combined acoustic-language
model over continuous inputs.

HuBERT’s architecture includes a convolutional wave-
form encoder, a BERT encoder, a projection layer, and a code
embedding layer. The model f processes a masked embed-
ding sequence X̃ = r(X ,M), derived from the length-T
CNN encoder output X , to predict distribution pf (· | X̃ , t)
across target indices at timestep t, given by:

pf (c | X̃ , t) =
exp(sim(ϕ(X̃ )tW, ec)/τ)∑C

c′=1 exp(sim(ϕ(X̃ )tW, ec′)/τ)

where, C represents total codewords, ec the codeword c em-
bedding, W a projection matrix, and ϕ(X̃ )t the output fea-
ture sequence at step t. The final prediction loss combines
cross-entropy losses Lm and Lu over masked and unmasked
timesteps, defined as:

Lm(f ;X ,M,Z) =
∑
t∈M

log pf

(
zt | X̃ , t

)
where Lu is similarly defined for t /∈ M . To enhance repre-
sentation learning, cluster ensembles provide supplementary
information, and cluster assignments are refined by applying
a new cluster generation trained over latent representations.

2.2. Time-Frequency and Time Domain SE Front-ends

Speech enhancement aims to enhance the quality of degraded
speech signals. Mathematically, the observed signal y(t) can
be represented as the sum of a clean speech signal x(t) and
additional noise n(t):

y(t) = x(t) + n(t) (1)

The challenge lies in estimating the clean speech signal
x̂(t) from the noisy signal y(t). The effectiveness of the en-
hancement depends on the chosen representation for y(t) and
the specific approach used to generate x̂(t).

In the time-frequency (TF) domain SE, the Discrete
Fourier Transform (DFT) is employed to transform the time-
domain signal into the frequency domain. This transforma-
tion provides both magnitude and phase components that can
be utilized in the enhancement process. Techniques like the
phase-sensitive mask (PSM) [24] have been developed to
incorporate phase information. However, the transformation
and reconstruction process can introduce errors, potentially
impacting the quality of the resulting signal.

On the other hand, time-domain SE methods directly op-
erate on the raw waveform of the noisy speech. For instance,
adaptive front-end approaches [25,26] involve training an en-
coder module to transform the raw waveform into a latent rep-
resentation. This representation is then processed by a separa-
tion module to extract individual signals, followed by recon-
struction using a decoder module. Time-domain methods in-
herently incorporate phase information, avoiding transforma-
tion errors. However, they may have limitations in frequency
representation [27], which can impact speech quality. Addi-
tionally, these methods often require more complex models
due to the larger input space of raw waveforms.
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Fig. 1: The proposed FAT-HuBERT framework: Data preprocessing via augmentation and enhancement with the IMST strategy,
as detailed in Section 2.3.1. Features derived from the enhanced waveform are integrated with those from the noisy waveform
after the CNN encoder and each transformer layer. To protect the initialization parameters from premature continual pretraining,
a residual connection is incorporated at each fusion stage. The HuBERT loss is computed on predicted codewords and the
clustered codewords from original waveforms within the masked regions.

2.3. Front-end Adaptive Training (FAT)

We propose the front-end adaptive training (FAT) framework
that utilizes a collection of pretrained speech enhancement
models during the training phase to introduce diversity in
training conditions and expose the system to a variety of
distortions associated with different SE front-ends.

We incorporate models from both the time-domain and
TF-domain. In the time-domain, we include solutions such
as DPRNNTasnet [26] and ConvTasnet [25], which are well
known for their ability in signal reconstruction. In the TF-
domain, we introduce the Deep Complex Convolutional
Recurrent Network (DCCRNet) [28], Deep Complex Unet
(DCUnet) [29], and Dual-path Transformer (DPTNet) [30],
recognized for their capability to perform advanced spectral
transformations and reconstructions.

During training, our model adopts a dual inputs configu-
ration as illustrated in Fig.1. The first branch directly takes
in the noisy waveform, while the second branch processes an
enhanced waveform. The enhanced waveform is generated by
applying a randomly selected front-end to the noisy waveform
for each batch. Within the FAT framework, we introduce two
techniques: intra-utterance multi-style training (IMST) and
layer-wise feature fusion (LWFF).

2.3.1. Intra-utterance Multi-style Training (IMST)

The intra-utterance multi-style training (IMST) strategy is de-
signed to build a more robust network by exploring various
acoustic conditions within a single utterance.

During the training process, we consider a set of utter-
ances {ui}Ni=1 per batch for the enhanced waveform branch,
where N is the batch size. For each utterance ui, we se-
lect two distinct time intervals, denoted as S1 = ⟨t1, t2⟩ and
S2 = ⟨t′1, t′2⟩. Here, S1 and S2 represent segments of time in
each utterance. Importantly, S1 and S2 are chosen identically
for all utterances in a given batch. S1 and S2 can overlap, be
disjoint, or contained within the other.

Instead of directly enhancing ui, the utterance undergoes
two steps: (1) Augmentation: The interval S1 in ui is aug-
mented with additive noise, creating a noisy segment unoisy

i,S1

within ui. (2) Enhancement: The interval S2 in ui is pro-
cessed using a randomly selected SE front-end, yielding an
enhanced segment uenhanced

i,S2
within ui. The procedure is for-

mally demonstrated in Algorithm 1. Volume normalization is
applied to the modified segments in the fifth and eighth lines.

IMST ensures that each utterance within a batch contains
clean, noisy, and enhanced segments, thereby providing the
network with a multi-style input for learning. The benefits
of IMST are two-fold: (1) Despite many SE front-ends being
demanding in terms of GPU memory and computation time,
IMST efficiently retains the training speed through the strate-
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gic selection of intervals for augmentation and enhancement.
(2) IMST promotes the learning of a more robust representa-
tion by incorporating diverse acoustic conditions within the
same utterance.

Algorithm 1: Data processing with IMST

Input: Training dataset D = {ui}Ni=1, Batch size B
Input: Noise dataset N = {nj}Mj=1

Input: Set of SE front-ends F = {fk}Kk=1

1 Select S1 = ⟨t1, t2⟩ and S2 = ⟨t′1, t′2⟩ for all
ui ∈ b = {ui}Bi=1

2 for ui ∈ b do
3 n← random sample(N )

4 unoisy
i,S1
← ui,S1

+ n

5 unoisy
i,S1
←

unoisy
i,S1

∥unoisy
i,S1

∥
∥ui,S1∥

6 f ← random sample(F)
7 uenhanced

i,S2
← f(ui,S2)

8 uenhanced
i,S2

← uenhanced
i,S2

∥uenhanced
i,S2

∥∥ui,S2
∥

2.3.2. Layer-wise Feature Fusion (LWFF)

As illustrated in Fig.1, a feature fusion module is employed
to integrate features from the enhanced and noisy branches at
each layer. We explore three distinct types of fusion modules:

Observation Adding (OA): Drawing inspiration from
[15], where a scaled version of the observed signal is added
to the enhanced speech to increase the signal-to-artifact ra-
tio (SAR), we apply OA within the latent space for features:

ZOA = Zen + α · Znoisy, (2)

where ZOA, Zen, and Znoisy denote the fused, enhanced, and
noisy features, respectively. α is a learnable scaling factor.

Stacked Fusion (SF): Features from the enhanced and
noisy signals are stacked and mapped back to the original fea-
ture dimensions by a fully connected layer:

ZSF = FC([Zen;Znoisy]), (3)

where ZSF is the fused feature map, FC represents the fully
connected layer, and [; ] signifies concatenation.

Dual Attention (DA): The DA module, proposed in [22],
is applied in a layer-wise manner:

ZDA = Linear (Multihead (Zen , Znoisy , Znoisy ))+

Linear (Multihead (Znoisy , Zen , Zen ))
(4)

Here, ZDA denotes the fused feature map, while Multihead
refers to the multi-head attention mechanism [31].

3. EXPERIMENTAL SETUP

3.1. Datasets

We validate the effectiveness of the proposed method with
both simulated and real-world noisy data. The preparation
of these datasets employs three widely-used corpora in the
field of ASR: LibriSpeech [32], WHAM! [33], and the 1-
channel track of CHiME-4 [34]. We denote the data employed
for continual pretraining and fine-tuning of FAT-HuBERT as
DP and DF , respectively. The pretraining data, DP , is syn-
thesized by mixing the full 960 hours of LibriSpeech with
noise randomly chosen from WHAM! at Signal-to-Noise Ra-
tios (SNRs) uniformly sampled between 5 to 10 dB.

For testing on simulated noisy data, the original Lib-
riSpeech train-clean-100 partition is utilized for DF .
The original test-clean and test-other partitions are
prepared for testing. Furthermore, by mixing the original test
sets with noise from WHAM! at varying SNRs, we generate
several simulated noisy test sets.

For testing on real-world noisy data, all data from CHiME-
4, excluding the second channel due to its inferior quality, are
used for fine-tuning. For testing, we resort to the official
CHiME-4 1-channel real dev and eval sets.

3.2. Speech Enhancement Front-ends

In the pretraining phase, we incorporate five distinct front-
ends: ConvTasnet, DCUNet, DPRNN Tasnet, DCCRN, and
DPTNet, as described in Section 2.3. These front-ends are
trained on simulated data created by mixing noise from the
WHAM! dataset with speech from LIBRISPEECH uniformly
sampled betwwen 0 to 5 dB. All front-ends are trained with
ESPnet [35] default configs 12.

During the testing phase, in addition to the five front-
ends, we introduce two front-ends unseen during training: a
SKiM [36] front-end in the time-domain, and a BLSTM [37]
front-end in the TF-domain. When evaluating on the CHiME-
4 dataset, all front-ends are trained using the simulated data
from CHiME-4’s 1-channel track.

3.3. Pretraining

We carry out pretraining with the FAIRSEQ toolkit [38]. The
adopted architectural design aligns with the one detailed in
[6], which incorporates 12 transformer blocks, each having
a hidden dimension of 768 and 8 heads. To expedite con-
vergence, all models are initialzed with the officially released
HuBERT BASE 3 checkpoint. Further, we employ k-means
clustering with 500 clusters on the latent features extracted

1https://github.com/espnet/espnet/tree/master/
egs2/chime4/enh1/conf/tuning

2https://github.com/espnet/espnet/tree/master/
egs2/wsj0_2mix/enh1/conf/tuning

3https://dl.fbaipublicfiles.com/hubert/hubert_
base_ls960.pt
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Table 1: WER (%) result on LIBRISPEECH (test clean / test other) simulated noisy datasets. The second line indicates the
enhancement front-end applied during inference.

Method
0 ∼ 5dB test clean / test other -5 ∼ 0dB test clean / test other

ConvTasNet DCUNet SkiM BLSTM NoEnh ConvTasNet DCUNet SkiM BLSTM NoEnh

1. Baseline 19.1/37.1 16.4/33.3 20.8/41.5 27.0/49.0 38.7/60.2 34.6/57.8 31.9/53.1 34.5/64.5 53.4/71.8 70.3/84.2
2. + IMST 16.7/32.9 15.2/29.8 17.1/33.3 21.6/38.6 18.2/34.4 29.0/48.1 26.8/43.8 29.6/48.3 41.5/57.6 34.4/51.7

3a. ++ OA all 14.0/28.9 12.8/27.4 15.1/29.2 16.4/32.6 17.1/34.0 26.1/44.4 23.9/41.4 27.6/44.7 34.7/51.5 35.6/52.3
3b. ++ OA first 13.2/28.9 12.4/26.6 13.9/29.2 17.8/35.0 16.6/33.9 24.2/43.7 22.8/40.5 25.0/43.9 38.0/54.0 35.5/53.1
3c. ++ OA last 14.8/29.8 13.1/28.0 15.5/30.6 17.1/34.1 16.4/33.1 28.2/46.3 25.6/43.4 29.3/46.7 36.8/53.9 34.3/50.9

4a. ++ SF all 40.5/57.8 40.6/57.7 40.8/57.6 40.9/57.3 40.5/57.6 66.0/76.0 65.8/75.4 65.8/75.8 66.1/75.9 66.1/75.9
4b. ++ SF first 14.0/29.3 12.6/26.7 15.0/29.7 18.0/34.6 18.7/35.5 25.5/43.7 23.3/40.5 26.3/44.1 37.8/54.0 37.9/54.4
4c. ++ SF last 13.6/29.3 12.8/27.4 14.4/29.6 16.2/32.8 16.3/32.7 26.6/45.7 25.0/43.4 28.3/46.1 34.9/52.3 33.5/51.0

5a. ++ DA all 46.4/64.1 46.3/64.0 46.3/64.1 46.4/64.3 46.4/64.0 69.8/80.1 69.6/80.2 69.5/80.1 69.8/80.0 69.9/80.1
5b. ++ DA first 14.4/29.4 12.8/26.7 15.1/30.6 18.7/35.3 20.3/36.4 26.2/44.5 24.1/40.9 27.5/45.1 38.8/55.1 40.2/55.6
5c. ++ DA last 14.8/30.6 18.5/28.5 15.9/31.3 17.5/34.5 17.3/33.8 29.6/47.7 27.9/45.6 31.4/48.2 38.8/55.0 36.9/53.0

from the ninth layer of the official HuBERT BASE model due
to its superior phone purity as illustrated in [6]. The continual
pre-training shares the same configuration employed in train-
ing the second iteration of the HuBERT BASE model, except
that a lower learning rate of 1e-4 and fewer training steps 50k
are applied unless indicated otherwise.

3.4. Model Fine-tuning

Given that the CHiME-4 training set, which spans 92.28
hours, and the LIBRISPEECH 100-hour split are similar in
terms of duration, we employ the base 100h configuration
from wav2vec 2.0 for both experiments.

3.5. Decoding and Language Modeling

For the LIBRISPEECH simulated and original test sets, we re-
port the viterbi decoding result without an external language
model. For the CHiME-4 test sets, a word-level language
model based on LSTM is trained on the text part of the WSJ
corpus [39] with the Espresso recipe [40].

4. RESULTS AND ANALYSIS

4.1. Results on Simulated Noisy Speech

Table 1 presents the performance of the fine-tuned SSL model
on simulated test sets derived from the LIBRISPEECH dataset,
enhanced by various SE front-ends. The table includes SE
front-ends used for pretraining, as well as front-ends unseen
during pretraining, encompassing both time-domain and TF-
domain models. The baseline model is a HuBERT model
finetuned on the LIBRISPEECH ls-clean-100 partition.
Since the FAT-HuBERT model takes two branches as input,
both branches are fed with the same noisy waveform in the
NoEnh columns.

Comparing the rows denoted as *.a with those denoted
as *.b and *.c, applying fusion on all layers generally leads
to inferior performance compared to restricting fusion to ei-
ther the first or final layer. This is especially noticeable with
the DA module, possibly due to the extra parameters it intro-
duces. Despite residual connections are applied, these extra
parameters still have an impact on the initial parameters of the
pretrained HuBERT model during continual pretraining.

Fusion at either the initial or final layer consistently out-
performs the IMST approach, highlighting the effectiveness
of the fusion module in mitigating distortions introduced by
the SE front-ends. Notably, the first-layer for OA fusion and
the final-layer for DA and SF fusion yield the best results.
This distinction can be attributed to the minimal parameter
introduction of OA (α), which has a smaller impact on the
performance of upper layers during pretraining.

The benefits of the fusion module extend beyond the train-
ing front-ends, as it demonstrates generalization capability to
unseen front-ends. Furthermore, the fusion module exhibits
robust performance even under lower SNRs than those en-
countered during front-end training, indicating its ability to
handle challenging conditions effectively.

4.2. Performance at different SNR conditions

Figure 2 presents the WER results of the proposed method un-
der different SNR conditions. The results are obtained by av-
eraging the WER across all seven different front-ends used for
enhancement. Notably, in Figure 2 (a), the original waveform
is enhanced without being mixed with noise, demonstrating
the robustness of the fusion module under clean conditions.

As depicted in Figures 2 (c) and (d), the IMST strategy ef-
fectively enhances the model’s performance in low SNR con-
ditions. However, under high SNR conditions illustrated in
Figures 2 (a) and (b), a slight degradation in performance is
observed when IMST is applied, suggesting its limited utility
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Fig. 2: WER(%) on original test data (test clean / other) and
simulated noisy data under different SNR conditions.

in less noisy conditions.
On the other hand, the fusion module is beneficial in miti-

gating the performance degradation associated with IMST un-
der high SNR conditions. Furthermore, it brings about addi-
tional WER reduction in low SNR conditions.

4.3. Results on Real-World Noisy Speech

In this section, our proposed methods are evaluated on the
CHiME-4 1-channel real noisy test sets as shown in Table 2.
We include recently published SSL results [11,13,14], which
are also SSL based robust ASR models.

Results on the CHiME-4 1-channel real-word test sets are
presented in Table 2. Results for HuBERT and HuBERT-
AGG indicates directly prepending a SE front-end does not
necessarily improves ASR performance. The application of
IMST exhibits a consistent enhancement over the baseline.
It is worth noting that this improvement is achieved without
joint tuning of the SSL backend and the independently re-
trained front-ends using CHiME-4 data. Moreover, the inte-
gration of the fusion module contributes additional enhance-
ments, with the SF fusion module demonstrating notable ben-
efits.

5. CONCLUSIONS

In this study, we introduced the Front-End Adaptive Training
(FAT) approach, utilizing a multitude of diverse pretrained
speech enhancement models to adapt SSL model to various
kinds of distortions introduced by SE front-ends. We pro-
pose Intra-Utterance Multi-Style Training (IMST) strategy,
which proved effective in low SNR scenarios but exhibited
limitations under high SNR circumstances. To address this,
we present the Layer-Wise Feature Fusion (LWFF) method,

Table 2: WER(%) of different systems on CHiME-4 1-
channel real test sets

System front-end CHiME-4 REAL
dev eval

Yang et al. [41]
N/A

3.4 6.3
wav2vec-switch [11] 3.5 6.6
wav2vec (recons) [13] 5.0 9.0

HuBERT-AGG [14]
(50k steps)

N/A 3.3 6.1
ConvTasNet 3.4 6.2

DCUNet 3.5 6.4
SKiM 3.3 6.0

BLSTM 3.7 6.8

HuBERT

N/A 4.4 8.6
ConvTasNet 4.6 8.7

DCUNet 4.1 8.3
SKiM 3.9 7.7

BLSTM 4.3 8.4

+IMST

ConvTasNet 4.1 8.2
DCUNet 4.0 7.7

SKiM 3.8 7.4
BLSTM 4.0 8.1

++ OA first
SKiM

3.3 5.9
++ SF first 3.1 5.7
++ DA first 3.5 6.3

mitigating performance deterioration in high SNR scenarios
and consistently improving results across different front-ends.
Our experiments on simulated and real-world noisy speech
from LIBRISPEECH and CHIME-4 respectively demon-
strated significant performance improvement, validating the
effectiveness of our methods.
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