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ABSTRACT

For connectionist temporal classification (CTC) based
speech recognition (ASR) models, text-only domain adapta-
tion still faces several challenges. In this study, we propose an
efficient text-only domain adaptation method for CTC-based
models. We introduce the assistant textual adapter (ATA) to
learn textual features and transform them into the latent space
of the acoustic encoder. With the help of the ATA module,
the adaptation is achieved by fine-tuning the top layers of the
acoustic encoder with the target domain text. Meanwhile,
further improvement can be obtained by the integration with
shallow fusion (SF). Adapted from LibriSpeech, experiments
show that the proposed method can achieve averaged 29.7%
relative WER reduction (WERR) compared with the un-
adapted baseline on WSJ, and 10.5% WERR compared to
SF as well. Moreover, it also shows 15.4∼37.1% WERR for
10 GigaSpeech target domains test sets compared to the un-
adapted baseline, and also 6.5% WERR on average compared
with SF.

Index Terms— text-only domain adaptation, connection-
ist temporal classification, end-to-end speech recognition

1. INTRODUCTION

End-to-end (E2E) speech recognition (ASR) takes audio fea-
ture sequences as the input and generates text sequences
straightforward as the output, such as connectionist tempo-
ral classification (CTC) [1], attention-based encoder-decoder
(AED) [2, 3, 4] and recurrent neural network transducer
(RNN-T) [5]. Particularly, CTC is a non-autoregressive
model which can infer the entire sequence at the same time
efficiently instead of iterative computing depending on the
previous prediction. However, when E2E ASR models come
into use, a mismatch between the source and target domains
could cause dramatic degradation in their performance.

To tackle this problem, many approaches for domain
adaptation have been proposed. Conventional domain adap-
tation methods require speech-text paired data in the target
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domain, such as teacher-student learning [6], adversarial
learning [7], adapter [8, 9] and the mixture of experts [10].
But it is not practical to obtain sufficient paired target domain
data all the time. Text-only approaches can get rid of this data
limitation by using text data of the target domain which are
much easier to collect.

Two traditional approaches for text-only domain adap-
tion, language model integration methods such as shallow
fusion [11] and text-to-speech (TTS) [12], can alleviate the
problem. Shallow fusion [11] introduces an external language
model (LM), which is trained with text data in the target do-
main, to work with the E2E model during the beam search.
But the external LM needs solitary training and takes extra
memory while inferring. Meanwhile, TTS models can gener-
ate paired data from texts in the target domain. However, an
effective TTS model is usually expensive in computation.

Recently, although there are research to develop the text
data in AED [13] or RNN-T [14] architecture, few works have
been done based on CTC architecture. As the decoder of AED
or the predictor of RNN-T can be regarded as a fully linguis-
tic part, efficient methods of text-only domain adaptation are
hardly implemented on CTC architecture, as it only has an
acoustic encoder. An early approach by Hiroaki [15] embeds
acoustic and linguistic information in the same latent space
based on intermediate CTC [16]. However, such a technique
has its limitations, as it requires intermediate CTC [16] as the
backbone model and large fine-tuned parameters for each tar-
get domain.

In this work, we proposed an efficient text-only domain
adaptation method that simplifies the above adaptation pro-
cedure using a redesigned assistant textual adapter (ATA).
Our two-stage adaptation method first trains the ATA module
with CTC sequences predicted by the acoustic encoder in the
source domain. This gives ATA the ability to learn the trans-
formation from text to the acoustic encoder’s latent features.
Then, partial of the encoder layers are fine-tuned to learn the
target domain linguistic information, with generated pseudo
sequence from text data. Meanwhile, we also add a penalty
function to avoid overfitting during adaptation. Furthermore,
the final performance can be boosted by combining it with the
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shallow fusion technique [11]. Experiments are conducted on
the text-only adaptation from LibriSpeech [17] to WSJ [18]
and GigaSpeech [19] and show advanced results compared
with the baseline. Results show that our method improves the
ability of the adaptive module to synthesize hidden features
based on the text data effectively.

In the rest of the paper, we first review the Conformer-
CTC architecture in Section 2. Then we describe our text-
only domain adaptation approach in Section 3. Experimental
results are shown to demonstrate the superiority of the pro-
posed approach in two datasets in Section 4. Finally, we draw
our conclusion in Section 5.

2. CONFORMER-BASED CTC

2.1. Conformer Encoder

The convolution-augmented transformer (conformer) [20] has
shown its impressive performance in ASR. Firstly, a down-
sampling module is passed through to reduce the audio se-
quence length from T to T ′. Then the feature is fed into the
consecutive conformer blocks, and each block structure is as
follows:

H = H +
1

2
FFN(H), (1)

H = H + Conv(H + Att(H)), (2)

H = LayerNorm(H +
1

2
FFN(H)), (3)

where FFN denotes the feed-forward modules, Att denotes
the multi-head self-attention module and Conv denotes the
convolution module. As a combination of the convolution
neural network (CNN) and transformer, the conformer en-
coder has both advantages. It is adept at capturing the global
relations within the context like transformers as well as can
extract the local features well like CNN.

2.2. Connectionist Temporal Classification (CTC)

The E2E ASR system is to find a mapping from a speech
feature sequence O = [o1,o2, . . . ,oT ] to a token sequence
y = [y1, y2, . . . , yL] where oi is the acoustic feature (such as
filter-bank), yi ∈ V and V is the vocabulary set.

For the CTC-based ASR system, it is composed of a front-
end encoder and a classifier. The classifier consists of a linear
layer and a softmax function. Firstly, the front-end encoder
gets speech input O and takes hidden features of the final
layer Hfinal as the output. Then the output of the encoder will
go through the linear classifier to produce Z, a probability
distribution of each candidate symbol at each time:

Hfinal = Encoder(O), (4)
p(Z|O) = Classifier(Hfinal). (5)

Any valid CTC sequence z can be decoded from Z. Since
the length of z equals to that of the input sequence which is
usually different from the label text’s (T ̸= L), CTC intro-
duces a special token <B>into the candidate symbol list to
map with silent or unrecognizable audio frame. In this way,
the CTC model can bring out text sequence y of a flexible
length L (L ≤ T ). A function F works to merge the contin-
uously repetitive tokens and remove <B>from z to produce
the final predicted text. Thus F−1 provides all the valid CTC
sequences that lead to a certain text. The CTC loss follows
a conditional independence assumption that the prediction at
time t is not dependent on any other prediction.

LCTC = − log p(y|O) (6)

= − log
∑

z∈F−1(y)

T∏
t=1

p(zt|O) (7)

where zt is the t-th token in z.

3. EFFICIENT TEXT-ONLY DOMAIN ADAPTATION
FOR CTC

In this section, we present a two-stage text-only domain adap-
tation method for CTC-based ASR shown in Figure 1. In
the first preparation stage, we incorporate an assistant textual
adapter into the top layers of the acoustic encoder to transform
text input into the hidden feature latent space. In the second
adaptation stage, we adapt the top layers of the encoder to the
target domain utilizing the unpaired text data, and then we
evaluate the adapted model.

3.1. Textual Space Transformation with Assistant Textual
Adapter

As we’d like to transform the textual input into the hidden
feature latent space, there are two key points. The first is
how to match the sequence length and the second is which la-
tent layer is the most effective. As the latent features’ length
is equal to the CTC symbol sequence, which is also an in-
verse mapping from token distribution sequence y mentioned
in Section 2.2. The extracted sequence z̃ from the baseline is
regarded as the extended textual input.

Illustrated in Figure 1(a), the Conformer encoder is di-
vided into two parts Encoderbefore and Encoderafter, and the
latent space after Encoderbefore is selected as the target of the
transformation. Encoderbefore includes the bottom layers of
the conformer encoder, which directly accepts the speech in-
put O and extracts latent features H inner. Encoderafter repre-
sents the other top layers. With the linear classifier following,
it is where the final posterior probabilities log p(z) are pro-
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Fig. 1: The proposed two-stage text-only domain adaptation method. In stage one, we train an assistant text adapter (ATA)
for textual space transformation where the source textual data is passed through the purple pipe. In stage two, parameters of
Encoderafter and classifier are tuned for adaptation, and the target textual data is passed through the red pipe with a source
penalty Lsource.

duced:

H inner = Encoderbefore(O) (8)
Hfinal = Encoderafter(H inner), (9)

log p(Z̃|O) = logClassifier(Hfinal), (10)

where Z̃ has a shape of T ′×(|V|+1), and the greedy-decoded
CTC sequence is z̃ = argmax log p(Z̃|O). Then, the se-
quence z̃ is fed into the assistant textual adapter and extracted
as latent features H:

H text = ATA(z̃), (11)

where the embedding layer is needed in ATA with traditional
positional embedding the same as transformer [3]. Then ATA
is optimized by minimizing the frame-level L2 norm between
the latent features H inner from speech and the latent features
from text H text:

Ltransform =
1

T ′

T ′∑
t=1

√
||Ht

inner −Ht
text||2), (12)

where T ′ denotes the length of the latent features.

3.2. Text-Only Domain Adaptation with Assistant Tex-
tual Adapter

As mentioned above, the target domain text data have to be
extracted to match the length of features H inner and therefore

we propose a text extraction algorithm in 1, inspired by [16,
15]. First, we prepare statistical information for the extrac-
tion, where pb, pnb are the probabilities of consecutive blanks
and symbols in symbol sequences set Z. pb(n), denotes the
occurrence probability that n consecutive <B>occurs in the
whole training dataset, and the symbol sequences set Z is
generated using greedy search. Using the probabilities above,
we generate the pseudo sequence ẑ based on the token se-
quence ytarget = [y1, y2, · · · , yL] in the target domain text,
where ytarget = F(ẑ)). For example, we extract the text
‘LOOK’ in the target domain to a possible symbol sequence
‘L <B>O <B>O <B>K K <B><B>’.

During the adaptation stage, the loss function is the same
as Equation 7 where Encoderafter and the classifier’s parame-
ters will be updated:

Ltarget = Ltarget
CTC(H

target
text ,ytarget). (13)

Although the above Algorithm 1 can significantly enhance the
robustness of the model when dealing with diverse patterns
of CTC symbol sequences, it limits the original ability during
text-only domain adaptation. We add the CTC loss from the
source domain as a penalty:

Lsource = Lsource
CTC(O

source,ysource), (14)

where the regular supervised learning is conducted with the
speech and text data in the source domain to maintain the
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Algorithm 1: Text Extraction for target domain text
ytarget

Function Prepare(baseline, O, y):
estimated sequence set Z := greedy(baseline,
train data) ;
Nb(n) = Count(<B>, Z) ;
Nnb(n) = |Z| −Nb(n) ;
pb(n) =

Nb(n)∑
n′ Nb(n′) ;

pnb(n) =
Nnb(n)∑
n′ Nnb(n′) ;

return pb(n), pnb(n) ;
pb(n), pnb(n) = Prepare(baseline, O, y) ;
target sequence ẑ = [] ;
for i ∈ [1, · · · , L] do

repeat
n = Sample(pb) ;

until i ̸= 1 & n = 0 & yi−1 = yi ;
;
Append(ẑ, n, <B>) ;
n = Sample(pnb) ;
Append(ẑ, n, yi) ;
return ẑ ;

end

model’s ability of speech recognition. And finally the adapta-
tion stage loss is computed as:

L = α · Ltarget + (1− α) · Lsource, (15)

where α is the hyper-parameter to adjust the weights of those
two losses.

4. EXPERIMENTS

4.1. Experimental Setup

Our experiments are conducted on two different target datasets,
WSJ [18] and GigaSpeech [19] . The source domain data is
960h LibriSpeech [17]. The first target domain is WSJ [18],
WSJ collects its scripts from the Wall Street Journal and
was recorded by the DARPA program to support the re-
search on large vocabulary continuous speech recognition
(LVCSR). And train-si-284 text data is used for adaptation
and dev93/eval92 are used for evaluation. In order to verify
the effectiveness of the method, we select GigaSpeech [19]
as another target domain dataset, as it is a multi-domain ASR
corpus. We choose the same setup as [13], where 5 YouTube
domains (education, entertainment, news, people, science)
and 5 different Podcast domains (arts, crime, health, people,
science) are chosen and details are shown in Table 2. Each
subdomain has a dev set of 5 hours and a test set of 10 hours
for the following experiments.

The acoustic encoder of 12 Conformer blocks in the base-
line model is divided in half, 6 blocks for the lower layers and

the top layers each. In the adaptation from LibriSpeech to
WSJ, the assistant textual adapter is set to be 4 blocks of Con-
former, the size which outperforms the others in experiments
on different ATA layers. In the adaptation from LibriSpeech
to GigaSpeech, the ATA layer is set as 6. For acoustic fea-
tures, 80-dim standard fbank [21] features are extracted with
global-level cepstral mean and variance normalization from
LibriSpeech, where SpecAugment [22] is used during train-
ing as augmentation. 5000 sentence pieces [23] are trained
using LibriSpeech 960 hours paired text. We use the pre-
trained Conformer-CTC models developed from ESPnet [24].
The subsampling layer is a 2-layer convolution with a down-
sampling rate of 4, and the number of conformer encoder lay-
ers is 12. Each encoder layer has 2048 linear units in each
feed-forward module and 8 attention heads in each multi-head
self-attention module. The kernel size of each convolution
module is 31.

During decoding, a beam search size of 20 is chosen, and
shallow fusion factor β is fixed to 0.8 if added. Word error
rate (WER) (%) is reported over all evaluation sets.

4.2. Text-only adaptation on target WSJ dataset

Model dev93 eval92 average

baseline 17.5 14.1 15.8
baseline+SF 13.9 10.8 12.4
TDA [15] - - 12.2
TDA+SF [15] - - 12.0
proposed 14.8 12.6 13.7
proposed+SF 12.0 10.2 11.1

Table 1: Performance (WER) (%) comparison of our pro-
posed method and other advancing methods on WSJ dev93
and eval92 test sets.

In this section, we aim to validate the proposed method,
explore the best architecture of our model, and evaluate its
performance on the adaptation from LibriSpeech to WSJ.

Firstly, we conduct experiments with varying values of
hyper-parameter α and different block numbers of the acous-
tic encoder or the assistant textual adapter (ATA) and tunable
encoder Encoderafter respectively in Figure 2. In Figure 2a,
we first validate the effectiveness of the hyper-parameter α
mentioned in Equation 15 in stage two. When α equals 0,
which means there is no proposed method applied, the per-
formance degraded badly, which is caused by the over-fitting
on the source domain. From the figure, WER increase can be
observed as α grows from 0.1 to 0.7, and the performance is
even worse than the baseline when α = 0.7. It can be seen
that the basic ability of the ASR model could be impaired if
adaptation is too overwhelming. Therefore, smaller α val-
ues are explored when α ∈ [0, 0.1], and results show that our
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(a) Different α factor in Equation 15. (b) Different tunable Encoderafter layers. (c) Different tunable ATA layers.

Fig. 2: Ablation Studies on different hyper-parameters and architectures of the proposed method.

Model
Dataset YouTube (Y) Podcast (P)

education entertainment news people science arts crime health people science

#words (M) 17.33 3.4 3.74 4.24 3.41 0.69 1.17 1.44 1.38 4.08

baseline 15.7 35.0 25.8 27.6 28.7 19.6 19.4 24.9 26.0 24.5
+SF 12.8 30.7 20.2 22.9 21.9 17.3 15.0 19.4 21.7 16.6
+proposed 15.1 34.2 24.3 25.7 28.2 18.4 17.8 23.0 23.5 23.0
+proposed+SF 12.1 29.6 19.1 21.3 21.0 16.3 13.7 17.9 19.5 15.4

Table 2: Statistics and performance (WER) (%) comparison on 10 different target domains of GigaSpeech. The proposed
method and the target LM are trained separately using only target domain text.

method brings out a decent optimization when α = 0.01 with
over 10% relative WER reduction (WERR).

To reduce the computational cost, we explore the best ar-
chitecture with a minimum fine-tuning range in the acoustic
encoder Encoderafter illustrated in Figure 2b, and the classi-
fier layer is always tuned. The results show that the perfor-
mance of the model generally gets better when the number
of layers increases, yet the improvement is limited when the
number is larger than 3. Although we choose the last 6 layers
of Encoderafter to be fine-tuned, the acoustic encoder has the
potential for further narrowing down its tunable parameters
while remaining a competitive performance.

Although the ATA module will not join in the inference
process, minimizing its size will reduce the computation cost
during the adaptation. The performance of various model
scales of ATA is shown in Figure 2c. It shows that increasing
ATA scale can lead to slight improvements in accuracy and
ATA with more than four layers have similar performance.
four-layer ATA is chosen for the following experiments.

Finally, we evaluate the performance of our proposed
method in Table 1. Compared with the unadapted baseline,
the final proposed method shows a relative WER reduction of
13.3%. It means that our method can provide effective adap-
tation with text data alone in the target domain. Although
the plain method we proposed lags a little bit compared with
shallow fusion (SF) or text-only adaptation (TDA)[15] alone,
it achieves the best results when combined with SF. With an
external language model applied, our model not only outper-

forms the traditional SF method (baseline+SF) with WERR
of 10.5% but also exceeds the result (TDA+SF) by 7.5%
WERR.

4.3. Text-only adaptation on various GigaSpeech datasets

To further verify the effectiveness of the proposed method,
10 subsets of GigaSpeech are selected as the target domain
adapted from LibriSpeech to make the quantitative evalua-
tion. Optimization in recognition accuracy has shown in all 10
subsets when the proposed method is applied. Compared with
the unadapted baseline, the final ‘+proposed+SF’ method
can achieve 15.4∼37.1% which is such a huge improvement.
Even compared with shallow fusion (baseline+SF), our model
can perform better by 6.5% WER reduction. Also we find
that arts of podcast dataset improvement is limited compared
to the others, as it has such a small text scale. And consistent
improvements can be observed when the text scale (#words)
grows.

5. CONCLUSION

In this work, we propose an efficient text-only domain
adaptation method with the help of the assistant textual
adapter (ATA). The proposed method exploits the differ-
ences between linguistics and other latent features inside the
encoder. We first train the ATA module in the source do-
main and then fine-tune partial layers of the encoder to the
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target domain with only text data. The model adapted by our
method needs no more extra parameters during the inference,
which is quite potential to be used in mobile devices. What’s
more, the number of parameters that need to be updated dur-
ing the text-only adaptation is kept to a minimum. We explore
the effectiveness of the proposed method on the adaptation
from LibriSpeech to WSJ/GigaSpeech datasets, which both
obtain great performance improvements compared with the
baseline.

6. ACKNOWLEDGEMENT

This work was supported in part by China NSFC projects un-
der Grants 62122050 and 62071288, and in part by Shang-
hai Municipal Science and Technology Major Project under
Grant 2021SHZDZX0102.

7. REFERENCES

[1] Alex Graves and Alex Graves, “Connectionist tempo-
ral classification,” Supervised sequence labelling with
recurrent neural networks, pp. 61–93, 2012.

[2] William Chan, Navdeep Jaitly, et al., “Listen, attend and
spell,” arXiv:1508.01211 [cs, stat], Aug. 2015.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin, “Attention is all you need,” Ad-
vances in neural information processing systems, vol.
30, 2017.

[4] Linhao Dong, Shuang Xu, and Bo Xu, “Speech-
transformer: a no-recurrence sequence-to-sequence
model for speech recognition,” in ICASSP 2018. IEEE,
2018, pp. 5884–5888.

[5] Alex Graves, “Sequence transduction with recurrent
neural networks,” arXiv preprint arXiv:1211.3711,
2012.

[6] Vimal Manohar, Pegah Ghahremani, Daniel Povey, and
Sanjeev Khudanpur, “A teacher-student learning ap-
proach for unsupervised domain adaptation of sequence-
trained asr models,” in 2018 IEEE Spoken Language
Technology Workshop (SLT), 2018, pp. 250–257.

[7] Zhong Meng, Jinyu Li, et al., “Adversarial teacher-
student learning for unsupervised domain adaptation,”
in Proc. ICASSP, 2018, pp. 5949–5953.

[8] Xun Gong, Yizhou Lu, et al., “Layer-wise fast adapta-
tion for end-to-end multi-accent speech recognition,” in
Proc. Interspeech, 2021, pp. 1274–1278.

[9] Yanmin Qian, Xun Gong, and Houjun Huang, “Layer-
wise fast adaptation for end-to-end multi-accent speech
recognition,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 30, pp. 2842–
2853, 2022.

[10] Yizhou Lu, Mingkun Huang, et al., “Bi-encoder trans-
former network for mandarin-english code-switching
speech recognition using mixture of experts,” in Proc.
Interspeech, Oct. 2020, pp. 4766–4770.

[11] Anjuli Kannan, Yonghui Wu, Patrick Nguyen, Tara N
Sainath, Zhijeng Chen, and Rohit Prabhavalkar, “An
analysis of incorporating an external language model
into a sequence-to-sequence model,” in ICASSP 2018.
IEEE, 2018, pp. 1–5828.

[12] Yan Deng, Rui Zhao, Zhong Meng, Xie Chen, Bing Liu,
Jinyu Li, Yifan Gong, and Lei He, “Improving rnn-t
for domain scaling using semi-supervised training with
neural tts.,” in Interspeech, 2021, pp. 751–755.

[13] Xun Gong, Wei Wang, Hang Shao, Xie Chen, and Yan-
min Qian, “Factorized aed: Factorized attention-based
encoder-decoder for text-only domain adaptive asr,” in
ICASSP 2023. IEEE, 2023, pp. 1–5.

[14] Xie Chen, Zhong Meng, et al., “Factorized neural trans-
ducer for efficient language model adaptation,” in Proc.
ICASSP, 2022, pp. 8132–8136.

[15] Hiroaki Sato, Tomoyasu Komori, Takeshi Mishima,
Yoshihiko Kawai, Takahiro Mochizuki, Shoei Sato, and
Tetsuji Ogawa, “Text-only domain adaptation based on
intermediate ctc,” in Proceedings of the Annual Con-
ference of the International Speech Communication As-
sociation, INTERSPEECH, 2022, vol. 2022, pp. 2208–
2212.

[16] Jaesong Lee and Shinji Watanabe, “Intermediate loss
regularization for ctc-based speech recognition,” in
ICASSP 2021. IEEE, 2021, pp. 6224–6228.

[17] Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur, “Librispeech: an asr corpus based on
public domain audio books,” in ICASSP 2015. IEEE,
2015, pp. 5206–5210.

[18] Douglas B Paul and Janet Baker, “The design for the
wall street journal-based csr corpus,” in Speech and
Natural Language: Proceedings of a Workshop Held at
Harriman, New York, February 23-26, 1992, 1992.

[19] Guoguo Chen, Shuzhou Chai, et al., “GigaSpeech:
An Evolving, Multi-Domain ASR Corpus with 10,000
Hours of Transcribed Audio,” in Proc. Interspeech,
2021, pp. 3670–3674.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 06,2024 at 09:07:31 UTC from IEEE Xplore.  Restrictions apply. 



[20] Anmol Gulati, James Qin, et al., “Conformer:
Convolution-augmented transformer for speech recog-
nition,” in Proc. Interspeech, May 2020, pp. 5036–5040.

[21] Frank Seide, Gang Li, Xie Chen, and Dong Yu, “Feature
engineering in context-dependent deep neural networks
for conversational speech transcription,” in 2011 IEEE
Workshop on Automatic Speech Recognition & Under-
standing. IEEE, 2011, pp. 24–29.

[22] Daniel S. Park, William Chan, et al., “Specaugment: A
simple data augmentation method for automatic speech
recognition,” Proc. Interspeech, pp. 2613–2617, Sept.
2019.

[23] Philip Gage, “A new algorithm for data compression,”
C Users Journal, vol. 12, no. 2, pp. 23–38, 1994.

[24] Shinji Watanabe, Takaaki Hori, et al., “Espnet: End-
to-end speech processing toolkit,” arXiv preprint
arXiv:1804.00015, Mar. 2018.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 06,2024 at 09:07:31 UTC from IEEE Xplore.  Restrictions apply. 


