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Depth-First Neural Architecture With Attentive
Feature Fusion for Efficient Speaker Verification
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Abstract—Deep speaker embedding learning based on neural
networks has become the predominant approach in speaker ver-
ification (SV) currently. In prior studies, researchers have inves-
tigated various network architectures. However, rare works pay
attention to the question of how to achieve a better trade-off on
model performance and computational complexity. In this paper,
we focus on efficient architecture design for speaker verification.
Firstly, we systematically study the effect of the network depth and
width on performance and empirically discover that depth is more
important than the width of networks for speaker verification task.
Based on this observation, we propose a novel depth-first (DF)
architecture design rule. By applying it to ResNet and ECAPA-
TDNN, two new families of much deeper models, namely DF-
ResNets and DF-ECAPAs, are constructed. In addition, to further
boost the performance of small models in the low computation
regime, two novel attentive feature fusion (AFF) schemes, including
sequential AFF (S-AFF) and parallel AFF (P-AFF), are proposed
to dynamically fuse features in a learnable way. Experimental
results on the VoxCeleb dataset show that the newly proposed
DF-ResNets and DF-ECAPAs can achieve a much better trade-off
on performance and complexity than the original ResNet and
ECAPA-TDNN. Moreover, small models can further obtain up to
40% relative improvement in EER by adopting AFF scheme with
negligible computational cost. Finally, a comprehensive compari-
son with various other published SV systems illustrates that our
proposed models achieve the best trade-off on performance and
complexity in both low and high computation scenarios.

Index Terms—Attentive feature fusion, depth-first architecture,
ECAPA-TDNN, ResNet, speaker verification.

1. INTRODUCTION

PEAKER verification (SV) is a task to verify the persons’
S claimed identities according to the biometric characteris-
tics of their voices. Given enrollment and testing utterances, a
SV system can automatically determine whether they belong
to the same speaker or not. In general, two modules exist in
a SV system. One is an embedding extractor which can ex-
tract speaker embeddings from utterances. The other measures
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similarity between the extracted embeddings. Traditionally, i-
vector [1] combined with probabilistic linear discriminant anal-
ysis (PLDA) [2] is the widely-used approach. With the thriving
of deep learning, neural networks have been highly applied
in this task and achieved encouraging results [3]. Typically,
DNN-based SV systems consist of a frame-level feature ex-
tractor, a segment-level embedding aggregator and a speaker
classifier. Given an utterance, frame-level feature representation
is firstly generated by neural network. Then a fixed-dimension
speaker embedding is obtained through a pooling layer. Finally,
a multi-class speaker classifier is adopted to train these systems.
To further improve systems’ performance and robustness, re-
searchers have made great efforts in different aspects, including
network backbones [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], pooling mechanisms [16], [17], [18], [19] and
loss functions [20], [21], [22].

Concerning network backbones, diverse architectures have
sprung up over the recent years, which can be roughly di-
vided into four different types: time-delay neural network
(TDNN) [5], [6], [7], [8], [10], [11], convolutional neural net-
work (CNN) [9], Transformer [13], [14] and multi-layer percep-
trons (MLP) [15]. With the ability to capture signals’ temporal
dynamics under wide context, TDNN is naturally suitable for
speech processing [23]. [5] firstly introduces a TDNN system
for text-independent speaker verification. x-vector [6] and its
variants [7], [8] are proposed to further improve the perfor-
mance. Subsequently, ECAPA-TDNN [11] provides impressive
results by making several architectural enhancements to the
original x-vector. Unlike TDNN-based systems, the winner [9]
of VoxSRC-2019 proves that 2D convolutional neural network
ResNet [24] also works surprisingly well for the SV task, which
not only releases a strong baseline but also makes CNN popular
in the SV field. In addition, a Transformer-based system is
presented in [ 13] by adopting the self-attention encoder to extract
speaker embeddings, which is motivated by Transformer’s roar-
ing success in other fields [25], [26], [27]. [14] further introduces
the local information modeling into Transformer to improve the
performance. Plus, [15] builds a pure MLP network without
convolution or self-attention operation.

Although the existing models obtain promising results for SV
task, neural networks are becoming larger and more complicated
in order to pursue better performance. Big models are not
only computationally unfriendly which require massive storage
and computing resources, but also computationally inefficient
due to the fact that the performance gains are very limited
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when the number of parameters reaches a certain threshold.
On the other hand, small models generally have an obvious
performance gap with big models. How to achieve a good
trade-off on model performance and computational complexity
has been rarely discussed in the SV field. In fact, this is a crucial
problem for SV applications. This paper explores efficient ar-
chitecture design towards a better model performance and com-
plexity trade-off for SV task in both low and high computation
regimes.

Firstly, we systematically study the effect of: 1) depth and
width of network; 2) scaling-up strategy on the SV system’s
performance. Prior works rarely discuss this question and the
existing network scaling-up methods are mostly ad-hoc and
heuristic. For example, ResNet-based SV systems consists of
four computational stages each of which contains several resid-
ual blocks. Due to the memory limit, the number of chan-
nels in each block is directly reduced by half in [9]. On the
contrary, [28] proposes a thin-ResNet trunk architecture by
decreasing the block number of each stage. Additionally, [29]
simply adopts the original ResNet in the experiments. Simi-
lar phenomenon exists in TDNN-based systems. [11] merely
doubles the filter number in the convolutional layers to obtain
a bigger model ECAPA(C=1024) based on ECAPA(C = 512).
Subsequently, [30] further increases the channel number to 2048
and adds an extra layer in a brute-force way. In brief, how the
depth and width of network affect SV system’s performance is
still not well understood. Besides, whether there exists a more
principled scaling-up strategy for the SV task has not been fully
explored. Based on our empirical analyses, it is observed that
depth is more important than the width of networks for speaker
verification task. Accordingly, we propose the depth-first (DF)
architecture design rule through which new base models are con-
structed by significantly deepening ResNet and ECAPA-TDNN
while decreasing or maintaining its complexity. Next, a special
scaling-up strategy is introduced to yield two new families of
much deeper models, namely DF-ResNets and DF-ECAPAs
respectively.

Moreover, we introduce a novel attentive feature fusion (AFF)
scheme to further boost small models’ performance in low
computation condition. It is widely admitted that small models
are much easier for deployment while the performance gap
with large models is significant. How to make small models
have comparable performance to large ones is an urgent and
challenging task for speaker verification. Previous studies [31],
[32] attempts to bridge the gap via knowledge distillation. In
this article, a light-weight attentive feature fusion module is
proposed which can significantly improve small models’ per-
formance with negligible computational overhead. The exist-
ing feature fusion methods used in DNN-based SV systems
are fix-weighted and non-learnable, which are not capable of
modeling dynamic interactions among features. For example,
element-wise addition between features is adopted in residual
blocks of ResNet [9]. And ECAPA-TDNN utilizes concatena-
tion operation in multi-feature aggregation layer. In contrast, our
attentive feature fusion is designed to achieve dynamic fusion
among features. It exploits attention modules to generate fusion
weights based on the features’ content in a learnable way. In
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particular, two different fusion strategies are proposed, including
sequential AFF and parallel AFF.

More specifically, given the success of deep speaker embed-
ding learning, this paper focuses on efficient architecture design
for speaker verification with the purpose of achieving a better
trade-off on model performance and complexity in both low and
high computation scenarios, which is mostly ignored by previous
studies. The main contributions of this work are summarized as
follows:

1) The question of how the depth and width of networks
affect SV systems’ performance is systematically studied.
Empirical results reveal that depth is more important than
the width of networks for speaker verification task.

2) Based on the above observation, the depth-first (DF) archi-
tecture design rule is proposed. By applying it to ResNet
and ECAPA-TDNN, two new base models are built. Next,
a special scaling-up strategy is developed to yield two new
families of much deeper models, named as DF-ResNets
and DF-ECAPAs respectively.

3) To further boost small models’ performance in low compu-
tation condition, A novel attentive feature fusion scheme
is designed to replace conventional methods, which can
make small models have comparable performance to large
ones with negligible computational cost.

4) Finally, a comprehensive comparison with previous SV
systems is presented, demonstrating that our proposed
models achieve the best trade-off on performance and
complexity in both low and high computation scenarios.

II. REVIEW ON DEEP SPEAKER EMBEDDING LEARNING

In recent years, deep speaker embedding learning has become
the predominant approach for speaker verification. ResNet [24]
and ECAPA-TDNN [11] are the two most widely used network
backbones, providing the state-of-the-art performance. In this
article, they serve as the baseline models.

A. ResNet

ResNet is firstly proposed by [24] for image recognition. In
VoxSRC-2019, [9] introduces r-vector based on ResNet for
speaker verification and wins the competition. Since then, it has
become one of the most popular models in the SV field [29],
[33], [34], [35], [36], [37], [38], [39].

Specifically, the input acoustic feature of ResNet-based SV
system is a 3-dimensional tensor 1 X F' x T where 1, F and T’
represent the channel, frequency and time dimension respec-
tively. For SV task, Fbank or MFCC features are generally
extracted from audio raw waveform. As Table II illustrates, the
following is a 2-dimensional convolutional layer whose output
isa C' x F' x T feature map where C' indicates the number of
channels. Then, there exist four computational stages each of
which contains several residual blocks. There are two different
types of residual block: basic and bottleneck block, which con-
sistof 1 x 1 or 3 x 3 convolutional operation, BatchNorm and
non-linear function. After each stage, the number of channels
will double while the frequency and time dimension will be
reduced by half via setting stride as 2. Next, a statistical pooling
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layer is adopted to map the variable-length frame-level features
into a fixed-length embedding where mean and standard devia-
tion are calculated along the time dimension and the results are
concatenated together. Subsequently, a fully-connected layer is
utilized to project the resulting vector into a low-dimensional
speaker embedding. The network can be effectively trained by
multi-class objective function.

B. ECAPA-TDNN

ECAPA-TDNN [11] is an enhanced TDNN variant of
x-vector [6], which obtains promising results in vari-
ous speaker verification competitions, including VoxSRC-
2019 [11], VoxSRC-2020 [30], SASVC-2021 [37], VoxSRC-
2021 [40].

Different from ResNet, ECAPA-TDNN uses 1D convolu-
tional layers. The input feature is a 2-dimensional representation
F' x T, indicating the frequency and time dimension respec-
tively. As Table IV shows, it is firstly processed by a 1D dilated
convolutional layer. The output is a C' x 1" feature map where
C' denotes the channel number. Then, the result is fed into three
successive SE-Res2Blocks, each of which consists of two 1D
dilated convolutional layers, one 1D dilated Res2Block [41]
and one 1D squeeze-excitation (SE) block [42]. Besides, a
multi-layer feature aggregation module is specially designed to
integrate hierarchical speaker information residing in various
network layers by concatenating the output feature maps from
the above three SE-Res2Blocks. After that, the authors propose
an attentive statistical pooling layer which can focus more on
speaker-specific properties along the channel and time dimen-
sion through self-attention mechanism. Similar to ResNet-based
SV systems, a dense layer is followed to reduce the dimension
of the pooled vector. Finally, AAM-softmax [21] is used as the
loss function for training.

III. DEPTH-FIRST ARCHITECTURE DESIGN FOR DEEP SPEAKER
EMBEDDING

In this section, we first investigate the effect of a network’s
depth and width on the SV system performance. Based on the
empirical analyses, a novel depth-first (DF) architecture design
rule and a special scaling-up strategy are proposed. By applying
them to the current state-of-the-art system ResNet and ECAPA-
TDNN, two new model families named as DF-ResNets and DF-
ECAPAs, are designed respectively.

A. Investigating the Effect of Depth and Width

For a convolutional neural network, depth and width are the
two essential factors to affect its performance [43], [44]. Itis a
common way to obtain a series of models with different perfor-
mances under various resource constraints by scaling network’s
depth or width [45], [46], [47], [48], [49], [50]. However, as
mentioned above, the current scaling methods in the SV field
are mostly ad-hoc and heuristic. How the depth and width of
a network affect SV system’s performance is still not well
understood. In particular, it is not yet clear which dimension
plays a more important role in the SV task.
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Fig. 1.  Speaker verification performance comparison of scaling up ResNet18

with different network width (w) and depth (d) coefficients.

In this part, we systematically investigate the impact of depth
and width of a network on SV system’s performance based
on ResNet. In the experiments, ResNet18, with the number of
channelsin each stage as [32, 64, 128,256], is adopted as the base
model. During scaling-up process, width coefficient w and depth
coefficient d are the ratios to the channel and layer number of
the base model respectively. By setting different (w, d) pairs, we
obtain two series of models under different FLOPs. The specific
scaling configurations are listed below:

¢ Base model: width=[32, 64, 128, 256], depth=18
w = 1.0, d = 1.8: width = [32, 64, 128, 256], depth = 34
w = 1.0, d = 5.6: width = [32, 64, 128, 256], depth = 101
w = 1.4, d = 1.0: width = [46, 92, 184, 368], depth = 18
w = 2.0, d = 1.0: width = [64, 128, 256, 512], depth = 18
w=2.1, d = 1.0: width = [68, 136, 272, 544], depth = 18
w = 4.0, d = 1.0: width = [128, 256, 512, 1024], depth =
18

From Fig. 1, it can be obviously seen that the Vox1-O EER
saturates very quickly when widening the network with larger
w. Specifically, the performance almost reaches the limit after
w = 1.4. When further largening w, the FLOPs significantly
increases while the result even becomes worse (w = 4.0 vs.
w = 1.0). This illustrates that increasing the width of a net-
work can not consistently boost the SV system’s performance.
On the contrary, continuous improvements can be achieved by
deepening the base model from d = 1.0 to d = 5.6. Notably,
the performance gains of deepening ResNet18 are much more
significant than widening it under similar FLOPs. For example,
compared to the base model, w = 1.4 and d = 1.8 result in the
same FLOPs increase. However, the result of d = 1.8 is much
better than w = 1.4. The performance gap between w = 2.1
and d = 5.6 is even getting larger, which reveals that increasing
the depth is a more computationally efficient operation than
increasing the width. All the above empirical analyses lead us
to the following observation:

Observation - Depth is more important than the width of
networks for speaker verification task.
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(a)—(d) The roadmap from ResNet18 to DF-ResNet56. (a) The bottleneck block in the original ResNet. (b) Substitute the standard convolution with

depthwise convolution. (¢) Move down 1 x 1 convolution with 32 channels and move up 1x1 convolution with 128 channels. Also, change the channel number of
depthwise convolution from 32 to 128. (d) A separate downsampling layer placed after the residual block. separate d.s. represents separate downsampling.

B. Depth-First Design Rule

Based on the above observation, we hypothesize that per-
formance improvements can be achieved by largely increasing
the depth of a network for speaker verification. Therefore,
we propose a novel depth-first (DF) design rule and a special
scaling-up strategy. Specifically, the depth-first rule implies that
depth has a higher priority than width in our architecture design.
It should be emphasized that this is not equal to increasing the
number of layers in a network directly. The core idea behind
the DF design lies in significantly deepening a network while
maintaining its complexity. Speaking of a network’s complexity,
parameter number and FLOPs are measured. To achieve this
goal, several design choices are carefully made. By applying
the DF design rule to both ResNet and ECAPA-TDNN, two
new base models are obtained. Subsequently, a special strategy is
adopted to scale up the resulting base models. Consequently, two
novel families of much deeper models, named DF-ResNets and
DF-ECAPAs, are constructed respectively. The trajectories from
ResNet and ECAPA-TDNN to DF-ResNets and DF-ECAPAs
are presented in the following section.

C. Depth-First ResNets

In this section, we first describe the process of deepen-
ing ResNet18 into DF-ResNet56 (Depth-First ResNet56) while
maintaining the model complexity according to depth-first de-
sign rule. Then, a new family of DF-ResNets is constructed by
scaling up DF-ResNet56 in a specific way. Fig. 2 schematically
presents the roadmap from ResNet18 to DF-ResNet56. Table 1
provides the corresponding changes of the number of parame-
ters, FLOPs and performance during this process.

1) A Roadmap From ResNetI8 to DF-ResNet56: The follow-
ing are our specific design choices.

Basic block — bottleneck block: We start from a ResNet18
model. As Table II shows, it comprises of 4 stages, each of which
has 2 basic blocks. The number of channels in each stage is [32,
64, 128, 256] respectively. Firstly, the basic block is substituted

TABLE I

THE ROADMAP FROM RESNET18 TO DF-RESNET56 AND THE CORRESPONDING

CHANGES OF PARAMETER NUMBER, FLOPS AND PERFORMANCE EER (%)

System # Params FLOPs Vox1-O
ResNet18 4.11M 2.22G 1.48
basic block — bottleneck block 8.74M 2.93G 1.68
conv2d — depthwise conv2d 7.18M 1.75G 1.96
invert dimension 2.89M 1.94G 2.20
separate downsampling 3.14M 1.41G 1.65
increase layer number 4.49M 2.66G 0.96
TABLE I
DETAILED CONFIGURATION COMPARISON BETWEEN RESNET18 AND
DF-RESNET56
Stage ResNet18 DF-ResNet56
convl 3 % 3,32, stride 1 3 X 3,32, stride 1
1x1,128
res2 B . iig} x 2 d3x3,128| x 3
) 1x1,32
separate downsample — 3 X 3,64, stride 2
1x 1,256
res3 B . g’gﬂ x 2 d3x 3,256 x 3
) 1x 1,64
separate downsample — X 3,128, stride 2
1x 1,512
resd B . g gg} x 2 d3 x 3,512] x 9
? 1x 1,128
separate downsample — X 3,256, stride 2
1x1,1024
ress B X iggg} %2 d3'x 3,1024| x 3
) 1x 1,256
pooling Global Statistical Pooling | Global Statistical Pooling
FC (5120, 256) (5120, 256)
# params 4.11 x 10° 4.49 x 108
FLOPs 2.22 x 109 2.66 x 109

with the bottleneck block originating from [24] (Fig. 2(a)),
which increases the number of layers from 18 to 26. Although
the parameter number doubles and FLOPs are increased by 30%,
the model’s performance surprisingly becomes worse, as Table |
indicates. This implies that the original bottleneck block in [24]
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ECAPA(C = 512). (b) Replace 3 x 3 dilated convolution with 5 x 5 standard convolution. (c) Downsample the channel number by half. (d) Shrink the channel

number of the first two layers in SE-Res2Block by half in DF-ECAPA244.

is not computationally efficient, which motivates us to re-design
it.

conv2d — depthwise conv2d: The original bottleneck block
adopts the traditional 2-dimensional convolution operation with
3 x 3 kernel size. Inspired by [47], we attempt to replace the tra-
ditional convolution with the depthwise convolution (Fig. 2(b))
in order to reduce FLOPs. It is a variant of grouped convolution
which is widely used in lightweight models. We can see from
Table I that this change can reduce FLOPs to 1.75 G along with a
slight decrease in parameters. As a result, the performance EER
further degrades to 1.96%.

Invert dimension: The previous step reduces FLOPs by 1.6x,
however, the number of parameters is still large (7.18 M). We
adopt the inverted block design in [48] to build an inverted
bottleneck block by swapping the position of the first 1 x 1
convolution with 32 channels and the third 1 x 1 convolution
with 128 channels in the original bottleneck block (Fig. 2(b) to
(c)). Additionally, we further increase the channel number of
depthwise convolution from 32 to 128. The above two choices
can significantly decrease the parameter number from 7.18 M
to 2.89 M at a slight cost of FLOPs. In the meanwhile, the EER
temporarily reaches the highest point 2.20%.

Separate downsampling: The original ResNet performs the
spatial downsampling at the beginning of each stage by directly
setting the stride of convolutional layer as 2, as shown in
Fig. 2(a). Instead, a separate downsampling layer [51] is em-
ployed to replace the traditional method. Specifically, this layer
contains a standard 3 x 3 convolution equipped with stride 2 and
a BatchNorm operator (Fig. 2(d)), which is placed at the end of
each stage except for the last one to achieve the same resolution
downsampling effect as Table II displays. This modification
results in a slight increase in the number of parameters and a large
decrease in FLOPs. At the same time, the EER is significantly
reduced from 2.20% to 1.65%.

Increase layer number: After the above preparations, the
parameter number and FLOPs are decreased by 25% and 37%
so that we get some room to deepen the network. Following the

stage compute ratio from [51], the number of blocks is increased
from [2, 2, 2, 2] to [3, 3, 9, 3] for each stage, providing us the
resulting model named as DF-ResNet56. This step leads to a
significant reduction in EER from 1.65% to 0.96%. Compared
to the original ResNet18, DF-ResNet56 achieves 35% relative
improvement on EER with a slight increase in parameter number
and FLOPs. Table II presents the detailed comparison between
ResNet18 and DF-ResNet56 in terms of architectural structure
and computational complexity.

2) Construct a Family of DF-ResNets: In this part, we will
construct a new model family according to a special scaling-up
strategy. Specifically, in order to align with ResNet18/34/101,
we increase the number of blocks B of DF-ResNet56 in a specific
ratio for each stage. In the meanwhile, the channel number C'
of DF-ResNet56 stays the same. Consequently, a much deeper
model family, DF-ResNet56/110/179/233, is built. The detailed
configurations are listed below:

e DF-ResNet56: C' = [32, 64, 128, 256], B = [3, 3,9, 3]

e DF-ResNetl10: C' = [32, 64, 128, 256], B = [3, 3, 27, 3]
e DF-ResNetl179: C' = [32, 64, 128, 256], B = [3, 8§, 45, 3]
e DF-ResNet233: C' = [32, 64, 128, 256], B = [3, 8, 63, 3]

D. Depth-First ECAPAs

Similarly to DF-ResNets, we first present the details about
how to increase the depth of ECAPA-TDNN without adding
extra complexity in this part. Subsequently, a new family of DF-
ECAPAs is constructed following a specific scaling-up method.
Fig. 3 displays the process from ECAPA(C = 512) to DF-
ECAPAS2. Correspondingly, Table I reflects the fluctuations of
parameter number, FLOPs and performance EER (%) in details.

1) A Roadmap From ECAPA(C = 512) to DF-ECAPAS52:
The specific design decisions is provided below.

Kernel size: Our starting point is an ECAPA(C = 512) model.
We first investigate the behavior of different convolution kernel
sizes and dilation spaces between the kernel points. The original
SE-Res2Block in ECAPA(C = 512) adopts dilated convolution
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TABLE IIT
THE ROADMAP FROM ECAPA(C = 512) To DF-ECAPAS52 AND THE
CORRESPONDING CHANGES OF PARAMETER NUMBER, FLOPS AND
PERFORMANCE EER (%)

System # Params FLOPs Vox1-O
ECAPA(C=512) 6.39M 1.05G 0.97
kernel size 5 X 5 6.56M 1.08G 0.94

ResNet-ify 1.94M 0.34G 243
increase block number 5.64M 1.05G 0.83
TABLE IV

DETAILED CONFIGURATION COMPARISON BETWEEN ECAPA(C = 512) AND
DF-ECAPAS2. D INDICATES THE DILATION SPACE

Stage ECAPA(C=512) DF-ECAPAS2
convl 5x 5,512 5x 5,512
r 1x1,512 1x 1,512
res? 3 x3(d=2),512 5 x 5,512 w4
1x1,512 1x1,512
| Squeeze-Excitation | | Squeeze-Excitation |
r 1x1,512 1 x 1,256
res3 3% 3(d=3),512 5 x 5,256 « 8
1x1,512 1x1,256
| Squeeze-Excitation | | Squeeze-Excitation |
r 1x1,512 1x1,128
resd 3x3(d=4),512 5x 5,128 w4
1x 1,512 1x 1,128
| Squeeze-Excitation | | Squeeze-Excitation |
aggregate | Multi-layer Feature Aggregation | Multi-layer Feature Aggregation
pooling Attentive Statistical Pooling Attentive Statistical Pooling
FC (3072, 256) (768, 256)
# params 6.39 x 10° 5.64 x 106
FLOPs 1.05 x 107 1.05 x 107

to increase the receptive field (Fig. 3(a)). Although dilated
convolution is a cheap operator with no increase in parameters,
we claim that it sacrifices the power of modeling complex
relationships. In fact, the larger receptive field can be achieved
by simply increasing the kernel size. Therefore, we decide to
remove the dilated convolution and adopt the standard convolu-
tion with large kernel size instead. In the experiments, several
kernel sizes are examined including 3, 5 and 7. We notice that
the performance becomes better with larger kernel but saturates
at 7 x 7. Finally, we choose to stick with the standard 5 x 5
convolution (Fig. 3(b)), which has a slightly better performance
under similar FLOPs than the original ECAPA(C = 512) as
shown in Table III.

ResNet-ify: In the original ECAPA(C = 512), there exist three
successive SE-Res2Blocks each of which outputs the feature
map with the same shape C' x T" where C' is set to 512, as
Table IV illustrates. In order to reduce the parameter number
and FLOPs, we follow the design paradigm of ResNet and
downsample the channel number C' by a factor of 2 after each
block as shown in Fig. 3(c). Regarding the scale dimension
s in SE-Res2Block, we follow the original configuration of
ECAPA(C =512) and set it to 8 for C' = 512. When the channel
number is downsampled by half, s is reduced by a factor of
2 accordingly. As a result, these design decisions significantly
reduce the parameter number from 6.56 M to 1.94 M and FLOPs
from 1.08 G to 0.34 G respectively. The performance EER
degrades to 2.43%.

Increase block number: After the above steps, the parameter
number and FLOPs are significantly reduced by 3.3x and 3.1x
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respectively. It is time to deepen the model by increasing the
block number. Following ResNet, we introduce the stage idea to
build three computational stages in total each of which contains
several SE-Res2Blocks proposed in the previous step. In our
design, the number of blocks in each stage is set to [4, 8, 4]
respectively. This step significantly reduces the EER from 2.43%
to 0.83%, yielding the final model DF-ECAPAS2 which largely
outperforms the original ECAPA(C = 512) by relative 15%
with similar parameters and FLOPs. The specific comparison
between them is illustrated in Table I'V.

2) Construct a Family of DF-ECAPAs: Based on the above
DF-ECAPAS52, we build a much deeper family of DF-ECAPAs
to align with ECAPA(C = 512)/(C=1024) through a specific
scaling-up strategy. For the width, we follow the channel expan-
sion idea in bottleneck block of ResNet and shrink the channel
number C' in SE-Res2Block by a factor of 2 (Fig. 3(d)). Then
the number of blocks B in each stage is increased to [16, 48, 16].
Finally, the corresponding DF-ECAPAS52/244 are constructed.
The configurations are summarized below:

e DF-ECAPAS52: C' =[512,256,128], B = [4, 8, 4]

o DF-ECAPA244: C' = [256, 128, 64], B = [16, 48, 16]

IV. ATTENTIVE FEATURE FUSION SCHEME

In the previous section, we build two new families of much
deeper models, namely DF-ResNets and DF-ECAPAs, which
can achieve a much better trade-off on performance and com-
plexity than the original ResNet and ECAPA-TDNN in both
low and high computation scenarios. Still, there exist significant
performance gap between small and large models. In this section,
we design a novel attentive feature fusion (AFF) scheme to
further boost small models’ performance in low computation
condition with negligible computational cost. The details of the
proposed method and its application in ResNet, ECAPA-TDNN,
DF-ResNets and DF-ECAPAs are presented below.

A. Attention Modules

In the original ResNet and ECAPA-TDNN, feature fusion
is simply implemented via element-wise addition or concate-
nation. Instead, we introduce attentive feature fusion scheme
which can achieve dynamic fusion among different features by
using attention modules to generate fusion weights based on the
feature contents in a learnable way. It is worth emphasizing that
the proposed AFF scheme is compatible with various attention
modules such as SE [42], T-SE [52] and fwSE [37]. In the
experiments, we explore two different attention mechanisms,
including multi-scale channel attention (MS-CAM) [53] and
coordinate attention (CA) [54]. Different from the existing
methods, MS-CAM and CA aim to simultaneously capture
different cross-dimension interactions in features to enhance
representation ability. Taking 2D convolution as an example,
Fig. 4(a) and (b) illustrate the detailed components of them.

MS-CAM: As Fig. 4(a) shows, MS-CAM consists of two
branches to aggregate the local and global context informa-
tion along the channel dimension respectively. Given a 3D
feature X € RE*F*T where C, F and T mean the channel,
frequency and time dimension respectively, the local context
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Fig. 4. Attention modules.

L(X) € RE*"*T can be calculated through:
L(X) = B(Conv2(ReLU(B(Convl(X))))) (1)

where Convl and Conv2 are point-wise convolution with the
channel number of C'/r and C' respectively. r is the channel
reduction ratio. 3 refers to BatchNorm. ReLLU denotes rectified
linear unit.

Similarly, we can obtain the global context G(X) € R¢*1x1
by:

G(X) = B(Conv2(ReLU(B(Convl(GAP(X)))))) (2)

where GAP stands for global average pooling.
Based on the above L(X) and G(X), we can get the attention
map S € RE*F*T through:

S = o(L(X) & G(X)) 3)

where & represents the broadcasting addition. ¢ is the sigmoid
function.

We utilize the resulting attention map S as the fusion weights
for attentive feature fusion in Section IV-B.

CA: CA aims to encode direction-aware information into the
generated attention maps, as shown in Fig. 4(b). Specifically,
for a 3D feature X € RE*F*T two separate attention maps are
independently processed along the time and frequency dimen-
sion respectively. The time attention map S* € R€*¥*1 can be
generated as follows:

S = ¢(Conv2(SiLU(B(Convl (GAP((X))))))  (4)

where GAP, is average pooling along the time dimension.
SiL.U [55] denotes sigmoid-weighted linear unit.

Likewise, the frequency attention map S/ € R**7 can be
obtained via:

S/ = o(Conv2(SiLU(B(Convl(GAP;(X)))))) Q)

where GAP is average pooling along the frequency dimension.
Finally, St and S/ are combined together to generate the final
attention map S € RE*F*T py:

S=S'®s/ (6)

where @ means the broadcasting multiplication.
Also, the resulting attention map S can be used as the fusion
weights in the following attentive feature fusion.
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B. Attentive Feature Fusion

Inspired by [53], two different attentive feature fusion (AFF)
schemes are proposed, including sequential AFF (S-AFF) and
parallel AFF (P-AFF). Also, AFF can be divided into binary
fusion and multiple fusion according to input feature number.

1) Binary Fusion: Binary fusion implies that there are two
input features needed to be fused. The following part presents
the sequential and parallel AFF strategies for binary fusion.

S-AFF: As illustrated in Fig. 5, the input features X,Y are
firstly element-wise added together. Then, the resulting feature
is fed into MS-CAM or CA module to output the attention
map S serving as fusion weights. After that, we re-scale the
original X and Y by multiplying S and 1 & S respectively.
Finally, the fused feature Z is obtained by adding the weighted
features together. The whole calculation process of S-AFF can
be summarized as:

S = MS-CAM/CA(X +Y) (7)
Z=S®X+(1oS)®Y (8)

where © represents the broadcasting subtraction. ® is the
element-wise multiplication.

P-AFF: Different from S-AFF, for two feature maps X, Y, P-
AFF firstly feeds them into MS-CAM or CA module separately
and generates the corresponding attention map SX and SY in
parallel. Next, the original X and Y are re-scaled by using the
resulting attention map S* and SY as fusion weights. The final
fused feature Z is calculated as follows:

S* = MS-CAM, /CA;(X) )
SY = MS-CAM,/CA»(Y) (10)
Z=S*eXe(loSY)+(1oS®)eY®SY (1)

2) Multiple Fusion: Multiple fusion means to fuse three or
more features. The above mentioned sequential and parallel
AFF strategies for binary fusion can be easily extended to
multiple fusion by simply adding extra features. Taking three
input features X, Y and Z as an example, the specific multiple
fusion processes of S-AFF and P-AFF are presented below.

S-AFF': Similar to (7), X, Y and Z are firstly added together.
Then, MS-CAM or CA module is utilized to yield the fusion
weight S. Subsequently, a learnable fusion parameter w;, fol-
lowed by the softmax function to generate [;, is employed to
learn the importance of each input feature. Finally, the re-scaled
features by multiplying o; and S are added to obtain the fused
feature F.

S = MS-CAM/CA(X +Y + Z) (12)
F=LoS®X+LRSRY+I303SRZ (13)
L= ii—123 14
I_W’Z]_ ) 4y ( )

where w; is learnable fusion parameter which is normalized into
o; through the softmax function ((14)).

P-AFF: Similar to binary case, X,Y and Z are firstly fed
into MS-CAM or CA module in parallel and the corresponding
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Sequential and parallel AFF schemes for binary fusion. Sequential: add two features first. Then attention module takes the result to generate fusion

weights. Parallel: process two features in parallel and generate fusion weights independently.

attention maps SX,SY and S% are calculated independently.
Next, we re-weight the original features separately to generate
the fused feature F as (18) shows.

S* = MS-CAM, /CA,(X) (15)
SY = MS-CAM,/CA,(Y) (16)
SZ = MS-CAM;/CA3(Z) 17)
F=S*a2X®(1o8Y)®(1cS%)
+(1esS®)eSYeY®(1os?)
+(1eS®e(1csSY)®S8%20Z (18)

C. Application

1) ResNet/DF-ResNets: In the residual block of ResNet and
DF-ResNets (Fig. 2), there exists binary feature fusion where
the element-wise addition between features is adopted. Our
proposed AFF module can be easily integrated into ResNet
and DF-ResNets by simply replacing the original element-wise
addition in every residual block.

2) ECAPA-TDNN/DF-ECAPAs: For ECAPA-TDNN and
DF-ECAPAs, element-wise addition in SE-Res2Block (Fig. 3)
can be replaced by binary AFF module and concatenation in
multi-layer feature aggregation (Table IV) can be substituted
with multiple AFF module.

V. EXPERIMENTAL SETUPS

A. Dataset and Data Augmentation

Voxcelebl &2 [56], [57] are large-scale benchmark datasets
for speaker identification and verification which contain over
6000 celebrities’ interview audio data collected from YouTube
videos. In the experiments, we evaluate the proposed methods by
training on the Voxceleb2 dev set which consists of around 2,200
hours data including 1,092,009 utterances from 5,994 speakers.
For testing, the three official released trial sets are adopted to
measure performance. Specifically, 37,720 trials coming from

40 speakers are included in Vox1-0. 581,480 trials are sampled
from 1251 speakers in Vox1-E. And Vox1-H has 552,536 trials
with 1190 speakers. Meanwhile, to increase the diversity and
richness of the training data, we utilize three data augmentation
techniques which are listed as follows:

e Speed Perturb: As [58] states, speed perturbation can be
adopted to diversify speakers. Sox is used to change the
utterance speed by 0.9 or 1.1 time, which yields 3,276,027
training utterances from 17,982 speakers.

® Online Data Augmentation: According to [59], we add
the noise from MUSAN and reverberation from RIR to
utterances in an on-the-fly manner.

® SpecAugment: SpecAugment is first introduced in [60]
and has been widely used in speech-related tasks. Follow-
ing this method, we randomly mask the frequency and time
dimension of the extracted acoustic features.

B. Implementation Details

All the proposed models are implemented using PyTorch
framework. For the acoustic features, 80-dimensional Fbank is
extracted from raw waveform with by setting window size as
25 ms and frame shift as 10 ms. During training, a 200-frame
chunk is randomly cropped from one utterance. We adopt AAM-
softmax [21] as the loss function with the configuration of 0.2
margin and 32 scale. The AdamW with 0.05 weight decay is
utilized as the training optimizer. The total number of training
epoch is set to 165 with the exponential scheduler as learning
rate regulator.

C. Evaluation Metrics

For evaluation criterion, trial scores are calculated using
cosine distance. For a pair of enrollment and testing speaker
embedding 7., 17¢, cosine similarity is measured by (19) where
(-,+) stands for the inner product between two embeddings,
I - || is the magnitude of embeddings. Subsequently, adaptive
score normalization (AS-Norm) [61] is utilized to normalize the
resulting cosine scores. And we set the imposter cohort size as
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TABLE V TABLE VI
RESULTS COMPARISON BETWEEN THE ORIGINAL RESNETS AND PROPOSED RESULTS COMPARISON BETWEEN THE ORIGINAL ECAPA-TDNNS AND
DF-RESNETS PROPOSED DF-ECAPAS
(v,
System # Params ~ FLOPs EER (%) System # Params ~ FLOPs EER (%)
Vox1-O  Vox1-E  VoxI-H Vox1-O  Vox1-E  Vox1-H

ResNetl8 4.11M 2.22G 1.48 1.52 2.72 ECAPA(C=512) 6.39M 1.05G 0.97 1.22 231

ResNet34 6.63M 4.63G 0.96 1.01 1.86 ECAPA(C=1024) 14.85M 2.67G 0.81 1.01 2.04

ResNet101 15.89M 10.07G 0.62 0.80 1.48 DE-ECAPA52 5.64M 1.05G 0.83 101 1.87

DF-ResNet56 4.49M 2.66G 0.96 1.09 1.99 DF-ECAPA244 11.03M 1.98G 0.71 0.89 1.72
DF-ResNet110 6.98M 5.15G 0.75 0.88 1.64
DF-ResNet179 9.84M 8.64G 0.62 0.80 1.51
DF-ResNet233 12.33M 11.17G 0.58 0.76 1.44

600. The equal error rate (EER) is used to report performance.

S1Mcos (nea 'rlt) = <TIE7 nt>

= T 19)
el lI7e]

VI. RESULTS AND ANALYSIS

In this section, we first evaluate the proposed depth-first ar-
chitecture design rule in Section VI-A. Then, the detailed results
of attentive feature fusion scheme on small models in low com-
putation condition are presented in Section VI-B. Section VI-C
analyses the trade-off on model performance and complexity. In
Section VI-D, we provide a comprehensive comparison between
our proposed model families and various previous SV systems.

A. Evaluation on Depth-First Architecture Design

1) DF-ResNets: We first evaluate the performance of
DF-ResNets proposed in Section III-C2. The original
ResNet18/34/101 are implemented as the baselines.

From Table V, it can be observed that DF-ResNets achieve
promising results in both low and high computation regimes.
Take DF-ResNet56 as an example, 35%, 28% and 27% relative
improvements are obtained on Vox1-0O, Vox1-E and Vox1-H re-
spectively with similar complexity compared to ResNet18. The
same phenomenon can be seen for large models. This illustrates
the effectiveness and superiority of our proposed depth-first
architecture design rule. We can conclude that the deeper the
model, the better the performance is under a fixed parameter and
FLOPs constraint for speaker verification task. This is consistent
with our empirical results in Section III-A. On the other hand,
we can see from Table I that the newly-proposed computational
block is more efficient than the bottleneck block in ResNet,
which reflects that the series of design choices in Section II-
I-C1 are effective and powerful. At the same time, DF-ResNets
display the outstanding scalability in which performance can be
consistently boosted with the increase in depth. It reveals that
our special scaling-up strategy is simple and effective.

2) DF-ECAPAs: Inthis part, we make a comparative analysis
between DF-ECAPAs introduced in Section III-D2 and the
original ECAPA-TDNN.

In the original ECAPA-TDNN, the authors provide two dif-
ferent model configurations in terms of the channel number
(C=512 or 1024). However, increasing the width of ECAPA-
TDNN is not a computationally efficient choice. From Table VI,

we can see that doubling the number of channels leads to the
increase in parameters by 2.3x and FLOPs by 2.5x respectively,
but the performance gains are not promising. In fact, there exists
significant redundant computing in the original configuration.
Instead, our design choices proposed in Section III-D1 focus
on the depth of model. By shrinking the width, we success-
fully deepen ECAPA-TDNN while maintaining its complexity.
Compared with ECAPA(C = 512), the resulting DF-ECAPAS2
achieves the relative improvements in EER by 15%, 18%, 20%
on Vox1-O, Vox1-E, Vox1-H respectively under similar com-
plexity. Moreover, following the channel expansion idea, we
propose bottleneck-like SE-Res2Block and further increase the
number of blocks, through which DF-ECAPAS?2 can be easily
scaled up to DF-ECAPA244. It outperforms ECAPA(C=1024)
even with 25% fewer parameters and 26% fewer FLOPs. The
above analyses reveal that our proposed design decisions tailored
for ECAPA-TDNN are more efficient than the original ones.
Meanwhile, it re-confirms our statement that depth is more
important than width for the SV task.

B. Evaluation on Attentive Feature Fusion Scheme

1) ResNet/18/34/DF-ResNet56: To examine the effect of at-
tentive feature fusion scheme on small models for low com-
putation condition, we first apply it to ResNet18, 34 and DF-
ResNet56. As stated in Section IV-C1, the element-wise ad-
dition in residual block can be replaced by our proposed AFF
module. Specifically, we implement both sequential and parallel
AFF based on MS-CAM and CA respectively, which provides
four different configurations: S-AFF(MS-CAM), S-AFF(CA),
P-AFF(MS-CAM) and P-AFF(CA).

From Table VII, we can see that both S-AFF and P-AFF can
bring great performance improvements with negligible compu-
tational overhead compared to the baselines for both ResNet
and DF-ResNet. For S-AFF, MS-CAM based and CA based
modules are both light-weight and powerful. The advantage of
attentive feature fusion originates from the ability of dynami-
cally learning and generating fusion weights according to the
features’ contents. Compared to the conventional fix-weighted
fusion methods, AFF scheme enjoys the benefit of focusing
more on speaker-related information in intermediate features.
Interestingly, CA based S-AFF can perform much better with
fewer parameters and FLOPs compared to MS-CAM based
S-AFF. This phenomenon can be attributed to the characteristic
of CA where frequency and temporal information in features are
independently modeled. Prior studies [37], [62] have unveiled
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TABLE VII
RESULTS OF THE PROPOSED AFF SCHEME ON RESNET1S, 34 AND
DF-RESNET56. S-AFF: SEQUENTIAL AFF. P-AFF: PARALLEL AFF
System # Params ~ FLOPs EER (%)
Vox1-O  Vox1-E  VoxI1-H
ResNetl8 4.11M 2.22G 1.48 1.52 2.72
+S-AFF(MS-CAM) +0.18M +0.07G 1.29 1.36 2.49
+S-AFF(CA) +0.13M +0.01G 0.93 1.05 1.94
+P-AFF(MS-CAM) +0.36M +0.15G 1.19 1.29 2.37
+P-AFF(CA) +0.26M +0.01G 0.86 0.99 1.82
ResNet34 6.63M 4.63G 0.96 1.01 1.86
+S-AFF(MS-CAM) +0.33M +0.15G 0.79 0.89 1.71
+S-AFF(CA) +0.24M +0.01G 0.65 0.82 1.59
+P-AFF(MS-CAM) +0.66M +0.30G 0.75 0.84 1.68
+P-AFF(CA) +0.48M +0.03G 0.62 0.79 1.57
DF-ResNet56 4.49M 2.66G 0.96 1.09 1.99
+S-AFF(MS-CAM) +0.38M +0.17G 0.82 0.96 1.82
+S-AFF(CA) +0.28M +0.02G 0.73 0.89 1.71
+P-AFF(MS-CAM) +0.76M +0.34G 0.79 0.93 1.79
+P-AFF(CA) +0.56M +0.03G 0.71 0.86 1.65

the importance of processing the spectrogram’s frequency and
temporal dimension separately rather than regarding them as
a whole for the SV task. On the other hand, P-AFF can lead
to the double increase in parameters and FLOPs than S-AFF.
Accordingly, better performance can be achieved by P-AFF.
In addition, similar trend exists between MS-CAM based and
CA based P-AFF modules. The above analyses demonstrate the
effectiveness and superiority of our proposed AFF scheme over
the conventional fusion methods.

2) ECAPA(C = 512)/DF-ECAPAS2: Then, AFF scheme is
applied to ECAPA(C = 512) and DF-ECAPAS52. According to
Section I'V-C2, there exist two places where AFF scheme can be
adopted for ECAPA and DF-ECAPA models. Specifically, we
implement binary AFF scheme to replace the residual addition
in SE-Res2Block and multiple AFF scheme to substitute the
concatenation in multi-layer feature aggregation module. CA is
specially designed for 2D convolution, which can not be directly
applied to 1D ECAPA/DF-ECAPAs. In addition, we notice
that P-AFF for binary fusion will lead to significant increase
in parameter with similar performance gains. Therefore, we
finally adopt the combination of S-AFF based on 1D convolution
MS-CAM for binary fusion and P-AFF based on 1D convolution
MS-CAM for multiple fusion.

As shown in Table VIII, for ECAPA(C = 512), the parameter
almost stays the same and FLOPs decreases by 0.16 G after
using the above mentioned AFF modules. Surprisingly, the
performance becomes better than the baseline. This reveals that
the proposed AFF scheme is also beneficial to ECAPA and
DF-ECAPA models. Compared to the original feature fusion
methods, AFF scheme is not only more powerful to extract
speaker-related information, but also more efficient in computa-
tion. On the other hand, after applying AFF to DF-ECAPAS52, al-
though the increase in parameters is 1.63 M, the FLOPs increase
is still small, merely 0.16 G. Compared to the baseline, around
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TABLE VIIT
RESULTS OF THE PROPOSED AFF SCHEME ON ECAPA(C = 512) AND
DF-ECAPAS2. “+AFF” STANDS FOR S-AFF FOR BINARY FUSION IN RESIDUAL
BLOCK AND P-AFF FOR MULTIPLE FUSION IN MULTI-LAYER FEATURE

AGGREGATION MODULE
System # Params  FLOPs EER (%)
Vox1-O  VoxI-E  Vox1-H
ECAPA(C=512) 6.39M 1.05G 0.97 1.22 231
+AFF +0.02M -0.16G 0.92 1.10 2.11
DF-ECAPAS2 5.64M 1.05G 0.83 1.01 1.87
+AFF +1.63M  +0.16G 0.76 0.95 1.81

mean: 0.70 std: 0.18
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Fig. 6.  Visualization of the learned fusion weights in proposed AFF module.

10% relative improvements are achieved, which re-verifies the
effectiveness of our attentive feature fusion scheme.

3) Visualization of the Learned Fusion Weights: To further
verify the effectiveness of the proposed AFF scheme, we visu-
alize and analyse the distribution of the learned feature fusion
weights in this part. Take CA-based AFF module as an exam-
ple, we randomly sample several utterances from one speaker
in Voxcelebl test dataset and feed them into the pre-trained
ResNet18-AFF model to calculate the corresponding attention
map S? and S/ on average. Specifically, the fusion weights
generated by AFF module in the first and last layer are illustrated
in Fig. 6.

As Fig. 6 displays, AFF module exhibits the capability to
produce speaker-specific features throughout various network
layers. In the first layer, the weight distribution is more diverse
with low mean value. By comparison, the variance of fusion
weights in the last layer is much lower and the weight values
become larger or even close to 1. This phenomenon is reasonable
because features in shallow layers of neural network contain
much rawer and coarser speech information, which means that
speaker-related and non speaker-related information co-exist.
AFF module has the ability to focus more on speaker information
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and suppress speaker-unrelated one. On the contrary, much
denser and more speaker-specific information exists in deep
layers. Accordingly, the weight values generated by AFF module
are becoming much larger or even close to 1, and the distribution
is more even. This demonstrates that compared to the traditional
fix-weighted feature fusion methods, our proposed AFF module
can dynamically generate fusion weights based on the contents
of features and effectively attach more importance to speaker-
related information, yielding more robust and discriminative
speaker representation.

C. Analysis of Performance and Complexity

In this section, we present a detailed analysis of our pro-
posed models and the baseline systems from the perspective
of the trade-off on performance and complexity. Fig. 7 sum-
marizes the comparison in terms of performance-parameter and
performance-FLOPs trade-off.

1) Performance vs. # Params: Firstly, we examine the pro-
posed depth-first model families. From Fig. 7(a), it can be ob-
served that DF-ResNets significantly exceed the corresponding
ResNets in both low and high parameter regimes. Similarly, DF-
ECAPAs achieve better performance than the original ECAPA-
TDNNs with roughly the same or even fewer parameters. For
example, 28% relative performance gains are obtained by DF-
ResNet56 compared to ResNet18 with similar parameters. Also,
DF-ResNet110 exhibits much better results than ResNet34 and
ECAPA(C = 512). Plus, our DF-ResNet179 cuts down 38% pa-
rameters while maintaining almost the same EER as ResNet101.
Likewise, DF-ECAPA244 obtains better results with 25% fewer
parameters compared with ECAPA(C=1024). The above results
demonstrate the superiority and efficiency of our depth-first
version of ResNet and ECAPA over the original ones.

In addition, in low computation scenario, our proposed AFF
scheme can further improve the performance of small mod-
els with a slight increase in parameters for ResNet, ECAPA,
DF-ResNet and DF-ECAPA. Specifically, up to 40% relative
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The comparison of our proposed models and the baseline systems in terms of performance and complexity.

improvements can be obtained after applying AFF to ResNet18,
ResNet34 and DF-ResNet56. In particular, ResNet34-AFF has
similar performance compared to ResNet101 with 2.3x fewer
parameters. And DF-ResNet56-AFF achieves better results than
ECAPA(C=1024) with 3.1x fewer parameters. This illustrates
that our newly-designed AFF module can significantly bridge
the performance gap between small and large models.

2) Performance vs. FLOPs: Regarding FLOPs, Fig. 7(b)
shows that both DF-ResNets and DF-ECAPAs possess more
superior performances over ResNet and ECAPA across the
full range from low FLOPs region to high one. Specifically,
DF-ResNet110 has similar performance to ResNetl01 while
containing 50% fewer FLOPs. For DF-ECAPA244, 12% relative
performance improvements are obtained than ECAPA(C=1024)
with 26% fewer FLOPs. In the low FLOPs condition, AFF
scheme can further boost the performance of ResNetl8/34,
DF-ResNet56, ECAPA(C = 512) and DF-ECAPAS?2 with neg-
ligible FLOPs overhead. For example, ResNet34-AFF achieves
roughly the same results as ResNet101 with 2.2x fewer FLOPs.
DF-ResNet56-AFF can obtain 42% performance gains over
ResNetl8 under similar FLOPs. These results confirm that
significant reduction in EER can be achieved by equipping small
models with AFF module at the negligible cost of FLOPs.

In summary, a much better trade-off on performance and
complexity is achieved through our proposed depth-first design
rule and attentive feature fusion scheme over the baseline models
in both low and high computation scenarios.

D. Comparison With Other Systems

In this section, we present a comprehensive comparison
between our proposed models and other advanced SV sys-
tems published recently. Specifically, various systems including
CNN-based, TDNN-based, Transformer-based, MLP-based and
Pretrain-based, are thoroughly listed and analysed.

From Table IX, it can be obviously observed that our pro-
posed models outperform previous published SV systems across
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TABLE IX
PERFORMANCE COMPARISON BETWEEN OUR PROPOSED MODELS AND OTHER ADVANCED SV SYSTEMS ON VOx1-0O, VOx1-E AND VOx1-H. THE SYSTEM,
ARCHITECTURE TYPE, PARAMETER NUMBER, FLOPS AND THE CORRESPONDING RATIO ARE PRESENTED IN DETAILS

System | Architecture | # Params Ratio | FLOPs Ratio | Vox1-O Vox1-E  Vox1-H
DF-ResNet56 CNN 4.5M Ix 2.7G Ix 0.96 1.09 1.99
DF-ResNet56-AFF CNN 5.0M 1.1x 2.7G Ix 0.71 0.86 1.65
E-TDNN [7] TDNN 6.8M 1.5x - - 1.49 1.61 2.69
ResNet34 [9] CNN 6.0M 1.3x 3.3G 1.2x 1.46 1.55 2.76
MLP-SVNet [15] MLP 15.2M 3.4x 4.4G 1.6x 1.36 1.46 2.49
PRN-50v2 [62] CNN 4. 7™M 1.1x - - 1.08 1.43 2.67
ECAPA(C=512) [11] TDNN 6.2M 1.4x - - 1.01 1.24 2.32
DF-ECAPA244 TDNN 11.0M 1x 2.0G 1x 0.71 0.89 1.72
SAEP [13] Transformer 20.5M 1.9x 5.9G 3.0x 291 2.87 4.75
E-TDNN(large) [7] TDNN 20.4M 1.9x - - 1.26 1.37 2.35
ECAPA(C=1024) [11] TDNN 14.7M 1.3x - - 0.87 1.12 2.12
ECAPA(C=2048) [30] TDNN 56.2M 5.1x 10.7G 5.4x 0.86 1.08 2.01
DF-ResNet179 CNN 9.8M 1x 8.6G Ix 0.62 0.80 1.51
GCSA [14] Transformer 47.2M 4.8x 13.4G 1.6x 1.96 2.07 3.65
ResNet34-ISKConv [35] CNN 10.1M 1.1x - - 1.26 1.32 2.47
SpineNet-49 [52] CNN 28.6M 2.9x 26.0G 3.0x 1.11 1.17 2.14
T-SE-Spine2Net-49 [52] CNN 58.0M 5.9x 26.2G 3.0x 0.92 0.99 1.95
SimAM-ResNet34 [29] CNN 21.5M 2.2x 18.5G 2.2x 0.72 0.99 1.65
DF-ResNet233 CNN 12.3M 1x 11.2G Ix 0.58 0.76 1.44
Wav2Vec2.0(Large) [63] Pre-train ~320M 26.0x ~26G 2.4x 0.80 0.73 1.39
HuBERT (Large) [63] Pre-train ~320M 26.0x ~26G 2.4x 0.81 0.78 1.51
UniSpeech-SAT(Large) [63] Pre-train ~320M 26.0x ~26G 2.4x 0.70 0.69 1.43
WavLM(Large) [64] Pre-train ~320M 26.0x ~26G 2.4x 0.62 0.66 1.32

the full scope of computation regimes. DF-ResNet56 and DF-
ResNet56-AFF achieve promising results among other systems
under the constraint of small parameter number and FLOPs.
Particularly, ~50% relative EER improvements are obtained but
with 3.4x fewer parameters and 1.6x fewer FLOPs compared to
MLP-SVNet. In addition, in the line of TDNN-based models, our
DF-ECAPA244 achieves the best performance among E-TDNN,
ECAPA and its variants. Notably, the performance improve-
ments are very limited by simply doubling the channel number
of traditional ECAPA from 1024 to 2048. In contrast, our depth-
first version ECAPA can obtain 18% relative EER improvement
but with 5.1x fewer parameters and 5.4x fewer FLOPs, which
reflects the superiority of depth-first design rule again.

In addition, we also include the results of recently published
pre-train based systems for speaker verification. It is widely
known that pre-trained models achieve the state-of-the-art re-
sults across various downstream speech tasks including speaker
verification [63], [64], benefiting from large-scale architectures
and training datasets. For example, WavLM(Large) contains 24
Transformer layers with around 320 M parameters which is
pre-trained on 94,000 hours speech data. Surprisingly, our best
model DF-ResNet233 is on a par with all the pre-train based
SV systems, including Wav2Vec2.0(Large), HuBERT(Large),
UniSpeech-SAT(Large) and WavLM(Large), however just with
roughly 26x fewer parameters and 2.4x fewer FLOPs.

Moreover, doing the comparison between the proposed DF-
ResNet56-AFF system (the second line of Table IX) and the
other ones, it is observed that our proposed depth-first neu-
ral architecture with attentive feature fusion is very efficient,

compact and high-performance. It only demands 5.0 M
parameters with 2.7 G FLOPs, which is obviously much smaller
than all the others, however it still owns the strong ability on
speaker modeling, which approaches the current state-of-the-art
on Voxceleb speaker verification.

VII. CONCLUSION

In this work, we explore efficient architecture design for
speaker verification. Firstly, the effect of depth and width on
the performance of SV system is investigated, and we em-
pirically conclude that depth is more important than width of
networks for the SV task. Then two new model families of
much deeper networks named DF-ResNets and DF-ECAPAs are
constructed according to the depth-first design rule. To further
boost the performance of small models in low computation
condition, attentive feature fusion (AFF) scheme is introduced
to replace the conventional feature fusion methods. Specifically,
two different fusion strategies are proposed including sequential
AFF (S-AFF) and parallel AFF (P-AFF). Experiments on the
Voxceleb dataset demonstrate that the newly proposed DF-
ResNets and DF-ECAPAs can achieve a much better trade-off
on performance and complexity than the original ResNet and
ECAPA-TDNN for speaker verification. Besides, AFF scheme
can further significantly boost small models’ performance with
negligible computational overhead. Comparison with other pub-
lished SV systems confirms that our proposed methods achieve
the best performance-complexity trade-off in both low and high
computation scenarios.
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