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Abstract—Self-supervised learning (SSL) achieves great success
in speech recognition, while limited exploration has been attempted
for other speech processing tasks. As speech signal contains multi-
faceted information including speaker identity, paralinguistics,
spoken content, etc., learning universal representations for all
speech tasks is challenging. To tackle the problem, we propose a
new pre-trained model, WavLM, to solve full-stack downstream
speech tasks. WavLM jointly learns masked speech prediction and
denoising in pre-training. By this means, WavLM does not only
keep the speech content modeling capability by the masked speech
prediction, but also improves the potential to non-ASR tasks by
the speech denoising. In addition, WavLM employs gated relative
position bias for the Transformer structure to better capture the
sequence ordering of input speech. We also scale up the training
dataset from 60 k hours to 94 k hours. WavLM Large achieves state-
of-the-art performance on the SUPERB benchmark, and brings
significant improvements for various speech processing tasks on
their representative benchmarks.

Index Terms—Self-supervised learning, speech pre-training.

I. INTRODUCTION

OVER the past few years, self-supervised learning (SSL)
has achieved great success in the fields of natural language

processing (NLP) [1]–[3]. It leverages large amounts of text data
to learn universal text representations, which can benefit almost
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all NLP downstream tasks by fine-tuning. Recently, SSL has
also shown prominent results for speech processing, especially
on phoneme classification [4] and automatic speech recognition
(ASR) [5]–[7]. However, in other speech tasks, it is still the
standard practice to train models from scratch with task-specific
datasets.

Building a general pre-trained model for full stack speech
processing tasks is essential to the further development of speech
processing, because many tasks are short of supervised data,
especially for non-ASR tasks. A model pre-trained on large-
scale unlabeled data is able to boost the performance of these
tasks, reduce data labeling efforts, and lower entry barriers for
individual tasks. Furthermore, it is infeasible to build different
pre-trained models for different downstream tasks, as the pre-
training stage requires huge computational resources. In the past,
it has been infeasible to build such a general model, as different
tasks focus on different aspects of speech signals. For instance,
speaker verification requires the network to learn the speaker
characteristic regardless of the spoken content, while speech
recognition demands the network to discard speaker character-
istics and focus only on the content information. Meanwhile,
unlike verification and recognition tasks, speaker diarization
and speech separation involve multiple speakers, which creates
additional obstacles to learning general speech representations.
Recent advances fueled by large-scale pre-trained models have
changed the situation. [8] proves the potential of pre-trained
models on full-stack speech tasks by using the weighted sum
of embeddings from different layers.1 They find different layers
containing information useful for different tasks. For instance,
the hidden states of the top layers are useful for ASR, while the
bottom layers are more effective for speaker verification.

While exciting as a proof of concept, there are still some
drawbacks in existing pre-trained models: 1) Current pre-trained
models are unsatisfactory for multi-speaker tasks, such as
speaker diarization and speech separation. Our experiments
show that speech separation models trained on top of Hu-
BERT [6], a top-performing speech pre-trained model, achieve
only marginal improvement compared with the models trained
from scratch. This is mainly because the pre-training methods do
not sufficiently enforce speaker discrimination, and the training

1The paper does not explicitly mention it, but their presentation highlights the
contribution of weighted sum hidden states. Details can be found from 28:00 to
31:00 of https://www.youtube.com/watch?v=Fw2ujGzmfNA
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data contain only single-speaker audios. 2) Speech pre-training
crucially relies on high quality and large quantities of unlabeled
audios. The existing system utilizes Libri-Light [9] as the main
source, but the massive audiobook data mismatches the data in
a real scenario and using it exclusively hurts the model per-
formance when the acoustic characteristics of the downstream
tasks are different from those of the audiobook [10]–[13]. [14]
trains wav2vec 2.0 [5] on larger and more diverse datasets, but
there are still over 90% audio data derived from audiobook. To
eliminate the audiobook data bias, we try to gather data from
different sources as much as possible in our experiments.

In this paper, we present WavLM, which learns universal
speech representations from massive unlabeled speech data and
adapts effectively across various speech processing tasks. We
propose a masked speech denoising and prediction framework
for WavLM, where some inputs are simulated noisy/overlapped
speech with masks and the target is to predict the pseudo-label
of the original speech on the masked region like HuBERT. The
framework combines the masked speech prediction and denois-
ing in pre-training. Therefore, the WavLM model learns not
only the ASR information by the masked speech prediction, but
also the knowledge of non-ASR tasks by the speech denoising
modeling. For instance, the process of pseudo-label prediction
on overlapped speech implicitly improves the model capability
on diariazation and separation tasks. The speaker identity infor-
mation and speech enhancement capability are modeled by the
pseudo-label prediction on simulated noisy speech.

In addition, we optimize the model structure and training data
of HuBERT and wav2vec 2.0. We add gated relative position
bias (grep) [15] to the Transformer structure as the backbone,
which improves model performance for ASR and keeps almost
the same parameter number and training speed. Compared with
the convolutional relative position embedding used in wav2vec
2.0 and HuBERT, the gates allow the relative position bias to
be adjusted adaptively by conditioning on the current speech
content. To further improve the model robustness and alleviate
the data mismatch, we scale up unlabeled pre-training data
to 94 k hours of public audios. The dataset consists of 60 k
hours of Libri-Light, 10 k hours of GigaSpeech [16], and 24 k
hours of VoxPopuli [17]. The new dataset consists of training
instances from different scenarios, such as podcasts, YouTube,
and European Parliament (EP) event recordings.

We evaluate our models on nineteen subtasks, fifteen of which
are from SUPERB, and the other four are classic speech tasks
on their representative testsets.
� WavLM achieves state-of-the-art (SOTA) performance on

SUPERB [8]. WavLM Large outperforms HuBERT Large
on 14 subtasks, and achieves an absolute 2.4 point improve-
ment in the overall evaluation. Even WavLM Base+, a 3
times smaller model, is better than HuBERT Large owing
to our three modifications.

� Speaker verification is a task to verify the speaker’s
identity from the voice characteristics. We select this task
to evaluate the model’s capability of extracting speaker-
related features. WavLM Large exceeds the well-known
SOTA system, ECAPA-TDNN [18], by a large margin and

achieves 0.383%, 0.480% and 0.986% EER (Equal Error
Rate) on the three official trial lists of VoxCeleb1 [19].

� Speech separation is a classic multi-speaker task, which
is the key to solving the cocktail party problem. The task
can evaluate the model’s capability of extracting multiple
speech signals from a mixture of sounds. WavLM achieves
SOTA performance on the speech separation LibriCSS
benchmark [20], and significantly outperforms the previ-
ous Conformer model [21] by a 27.7% relative word error
rate (WER) reduction.

� Speaker diarization is a task to recognize “who spoke
when” from an input audio stream [22]. WavLM achieves
SOTA performance on the CALLHOME speaker diariza-
tion benchmark. Compared to the EEND-EDA clustering
method [23], our model achieves a 12.6% diarization error
rate reduction.

� Speech recognition requires the model to learn content
information, which is the main focus of the previous SSL
work. We evaluate our model in the LibriSpeech 960 h
setting. WavLM shows comparable performance to the
wav2vec 2.0 and HuBERT, which achieves 1.8% and 3.2%
WER on the test-clean and test-other sets, respectively.

The contribution of the paper can be summarized as follows:
1) WavLM sheds light on a general pre-trained model for full

stack speech processing tasks, in contrast to the previous
SSL works focusing on a group of similar tasks.

2) We propose simple but effective modifications to the exist-
ing pre-trained models, which show general and consistent
improvements across downstream tasks.

3) We scale-up self-supervised speech pre-training with more
unlabeled data and longer training steps.

4) We achieve SOTA results on the SUPERB benchmark,
and significantly boost the performance for various speech
processing tasks on their representative benchmarks,
including speech separation, speaker verification, and
speaker diarization. The models and code are released2

to facilitate future research.

II. RELATED WORK

SSL methods can be categorized into generative learning,
discriminative learning, and multitask learning, based on the
training objective. The research line of generative learning can
be traced back to the auto-encoding model, which reconstructs
the whole speech from latent variables, either continuous [24]–
[26] or discrete [27]. Recent works propose to predict future
frames from the history with an autoregressive model [28]–
[31], or recover the masked frames from the corrupted speech
with a non-autoregressive model [32]–[37]. Apart from gen-
erative learning, discriminative learning has also gathered in-
terests recently. The well-known examples include CPC [4],
wav2vec [38], vq-wav2vec [39], wav2vec 2.0 [5], Discrete-
BERT [40], HuBERT [6] and w2v-BERT [41]. CPC and the
wav2vec series models use the contrastive InfoNCE loss to

2[Online]. Available: https://aka.ms/wavlm
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discriminate the positive samples from negative samples. Mo-
tivated by the masked language model loss in NLP, Dis-
creteBERT and HuBERT predict discrete targets of masked
regions. w2v-BERT further combines the contrastive loss and
the masked prediction loss in an end-to-end fashion. Multi-task
learning is adopted in PASE [42] and PASE+ [43]. They employ
lots of pre-training objectives such as waveform generation,
prosody regression, and contrastive objectives. UniSpeech [7]
and JUST [44] combine SSL and supervised learning for ASR,
and show impressive results on multi-lingual test sets.

Unlike SSL in computer vision (CV) and NLP fields, where
one pre-trained model is adapted to various downstream tasks,
most speech SSL methods focus on phoneme classification and
ASR. Recently, [8] proposed the SUPERB benchmark to evalu-
ate SSL models across different tasks. According to the results,
HuBERT enjoys the best generalization ability in the overall
evaluation. To better learn speaker characteristics, [45] proposed
UniSpeech-SAT, which extends the HuBERT framework with
speaker-aware pre-training. It significantly outperforms other
pre-trained models on the speaker-related tasks with a slight
degradation on the ASR.

Compared with existing works, our model is the first to
explore SSL for full stack tasks instead of focusing on ASR
or other specific tasks. It should be noted that a concurrent work
BigSSL [46] also mentions large SSL model could handle vari-
ous speech tasks. The difference is that our work demonstrates
that the full stack tasks can be handled by the careful pre-training
and fine-tuning strategy design, even without scaling up the
model size to 8 billion parameters.

III. BACKGROUND: HUBERT

HuBERT is an SSL method that benefits from an offline
clustering step to provide target labels for a BERT-like prediction
loss [1]. The backbone is a Transformer encoder [47] with L
blocks. During pre-training, the Transformer consumes masked
acoustic featuresu and outputs hidden stateshL. The network is
optimized to predict the discrete target sequence z, where each
zt ∈ [C] is a C-class categorical variable. The distribution over
codewords is parameterized with

p
(
c|hL

t

)
=

exp
(
sim(hL

t W
P , ec)/τ

)
∑C

c′=1 exp
(
sim

(
hL
t W

P , ec′
)
/τ

) (1)

where WP is a projection matrix, hL
t is the output hidden

state for step t, ec is the embedding for codeword c, sim(a, b)
computes the cosine similarity and τ = 0.1 scales the logit.
HuBERT proposes a masked speech prediction task, where the
prediction loss is only applied over the masked regions, forcing
the model to learn a combined acoustic and language model over
the continuous inputs.

HuBERT adopts an iterative re-clustering and re-training pro-
cess: For the first iteration, the targets are assigned by clustering
the MFCC features of the training data; For the second iteration,
a new generation of training targets are created by clustering
the latent representations generated by the first iteration trained
model.

Fig. 1. Model architecture.

IV. WAVLM

We propose a masked speech denoising and prediction frame-
work, where some inputs are simulated noisy/overlapped with
masks and the target is to predict pseudo-labels of the original
speech on the masked region. Unlike existing masked speech
modeling (HuBERT), which just focuses on the ASR task, the
masked speech denoising allows us to extend pre-trained speech
models to non-ASR tasks, since it implicitly models information
we need in the speaker identification, separation, and diarization
tasks. We further optimize the Transformer backbone and extend
pre-training data to 94 k public English data.

A. Model Structure

Our model architecture uses the Transformer model as the
backbone. As shown in Fig. 1, it contains a convolutional feature
encoder and a Transformer encoder. The convolutional encoder
is composed of seven blocks of temporal convolution followed
by layer normalization and a GELU activation layer. The tempo-
ral convolutions have 512 channels with strides (5,2,2,2,2,2,2)
and kernel widths (10,3,3,3,3,2,2), resulting in each output repre-
senting about 25 ms of audio strode by 20 ms. The convolutional
output representation x is masked as the Transformer input.
The Transformer is equipped with a convolution-based relative
position embedding layer with 128 kernel size and 16 groups at
the bottom.

To improve the model, we employ gated relative position
bias [15] which is encoded based on the offset between the
“key” and “query” in the Transformer self-attention mechanism.
Let {hi}Ti=1 denote the input hidden states for the self-attention
module, each hi is linearly projected to a triple of query, key
and value (qi,ki,vi) as:

qi,ki,vi = hiW
Q,hiW

K ,hiW
V (2)
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The self-attention outputs {h̃i}Ti=1 are computed via:

aij ∝ exp

{
qi · kj√

dk
+ ri−j

}
(3)

h̃i =
T∑

j=1

aijvj (4)

where ri−j is the gated relative position bias added to the
attention logits. It is computed by:

g
(update)
i , g

(reset)
i = σ (qi · u) , σ (qi ·w)

r̃i−j = wg
(reset)
i di−j

ri−j = di−j+ g
(update)
i di−j + (1−g(update)i )r̃i−j

where di−j is a learnable scalar relative position bias, the vectors
u,w ∈ Rdk are learnable parameters, σ is a sigmoid function,
and w is a learnable value.

In our work, di−j is a bucket relative position embedding [3]
and the embedding parameters are shared across all layers. We
use n = 320 embeddings and each corresponds to a range of
possible (i− j) offsets. The range increased logarithmically up
to a maximum offset of m = 800, beyond which we assign all
relative offsets to the same embedding, i.e.,

d|i−j| =

⎧⎪⎪⎨
⎪⎪⎩

|i− j|, |i− j| < n
4

�n4
(

log(|i−j|)−log(n
4 )

log(m)−log(n
4 )

+ 1

)
�, n

4 ≤ |i− j| < m

n
2 − 1, |i− j| ≥ m

(5)

di−j = d|i−j| +
n

2
· 1{i−j>0} (6)

Compared with the convolutional relative position embedding
in wav2vec 2.0 and HuBERT, the gates take the content into
consideration, and adaptively adjust the relative position bias by
conditioning on the current speech content. Intuitively, the same
distance offset between two frames tends to play different roles
if one frame is the silence while the other belongs to a speech
segment.

B. Masked Speech Denoising and Prediction

We propose a masked speech denoising and prediction frame-
work to improve model robustness for complex acoustic envi-
ronments and the preservation of speaker identity. Specifically,
we manually simulated noisy/overlapped speech as inputs, and
predict the pseudo-labels of original speech on the masked
region.

We simulate the noisy speech with multiple speakers and
various background noise for self-supervised pre-training. We
randomly select some utterances from each training batch and
mix them with a randomly selected noise audio or secondary
utterance at a random region. The noise audio and secondary
utterance are randomly selected from the same batch, randomly
cropped, and scaled by a random source energy ratio. We ensure
that the overlap region is less than 50% and take the speaker from
the first utterance as the main speaker. With the masked speech

Algorithm 1: Noisy/Overlapped Speech Simulation.

1: given a batch of speech utterances U = {ui}Bi=1 with
batch size B and length L, mixing probability p, a set
of DNS noises N = {ni}Mi=1 with size M , mixing
noise probability pn

2: Choose S utterances US ⊂ U by Bernoulli sampling
with probability p

3: for each primary utterance upri ∈ US do
4: Sample a random value v from the continuous

uniform distribution U(0, 1)
5: if v > pn then
6: Sample a secondary utterance usec from discrete

uniform distribution with probability
P (usec = x) = 1

B ,x ∈ U
7: Sample the mixing energy ratio r from the

continuous uniform distribution U(−5, 5)
8: else
9: Sample a noise usec from discrete uniform

distribution with probability
P (usec = x) = 1

M ,x ∈ N
10: Sample the mixing energy ratio r from the

continuous uniform distribution U(−5, 20)
11: end if
12: Sample the mix length l from discrete uniform

distribution with probability
P (l = x) = 2

L , x ∈ {1, . . . , L
2 }

13: Sample a start position spri of upri from discrete
uniform distribution with probability
P (spri = x) = 1

L−l , x ∈ {1, . . . , L− l}
14: Sample a start position ssec of usec from discrete

uniform distribution with probability
P (ssec = x) = 1

L−l , x ∈ {1, . . . , L− l}
15: Calculate the energy of the primary utterance

Epri ←
∑

upri·upri

L
16: Calculate the energy of the secondary utterance

Esec ←
∑

usec·usec

L

17: Calculate the mixing scale scl←
√

Epri

10
r
10 Esec

18: upri[spri : spri + l]← upri[spri :
spri + l] + scl · usec[ssec : ssec + l]

19: end for
20: return U

denoising and prediction task, the model is trained to identify
the main speaker from the noisy/overlapped speech and predict
the content information corresponding to the main speaker with
the mask prediction loss.

1) Noisy/Overlapped Speech Simulation: The details of our
noisy/overlapped speech simulation method are shown in Al-
gorithm 1. Given a batch of speech utterances U = {ui}Bi=1

with batch size B and length L and a set of DNS (Deep
Noise Suppression) noises [48] N = {ni}Mi=1 with size M
(line 1), we first randomly choose S utterances to mix US =
{ui}Si=1 from the batch by Bernoulli sampling with probability p
(line 2). Then, for each utterance upri ∈ US (line 3), we sample

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 06,2024 at 09:10:04 UTC from IEEE Xplore.  Restrictions apply. 
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a random value v the continuous uniform distribution U(0, 1) to
decide whether to mix noise or a secondary utterance (line 4). If
the random value v is greater than the mixing noise probability
pn (line 5), we sample a secondary utteranceusec from a discrete
uniform distribution over the batch U (line 6), and randomly
sample the mixing energy ratio r from the uniform distribution
U(−5, 5) (line 7). Otherwise, we sample a noise usec from a
discrete uniform distribution over the set of DNS noises N (line
9), and randomly sample the mixing energy ratio r from the
uniform distribution U(−5, 20) (line 10). The sample range of
the mixing energy ratio follows the typical training utterance
simulation process of speech separation task [49]. Then, we
randomly select the mixing regions for both the utterances from
the uniform distributions (line 12–14). The mixing length l is
uniformly sampled from

{
1, . . . , L

2

}
(line 12), and the start po-

sitions spri and ssec for utterance upri and usec are both uniformly
sampled from {1, . . . , L− l} (line 13 and 14). Note that as the
mixing portion in each utterance is constrained to be less than
50%, the primary utterance would always be longer than the
secondary utterance, avoiding the problem of the indistinguish-
able main speaker in the mixed speech signals. Next, given
the mixing regions of the primary utterance upri[spri : spri + l]
and the secondary utterance usec[ssec : ssec + l], we calculate
the corresponding mixing scale of the secondary utterance scl
with the energy of the primary utterance Epri, the secondary
utterance Esec (line 15–17). Finally, we mix the selected region
of the primary utterance upri[spri : spri + l] with the secondary
utterance usec[ssec : ssec + l] scaled by the mixing scale scl (line
18).

2) Mask Prediction Loss: Following HuBERT, we use the
mask prediction loss to optimize our network. Suppose that we
have an utterance u and its simulated version u′, we always gen-
erate pseudo-labels z by feeding u to the last iteration network.
We follow HuBERT using the k-means clustering center on
MFCC or latent representations as the pseudo-labels. The details
will be introduced in Section V-A. Then, we obtain the hidden
state hL

t by feeding u′ to the current network, and optimize the
objective function:

L = −
∑
l∈K

∑
t∈M

logp
(
zt|hL

t

)
(7)

where M denotes the set of masked indices in time domain and
hL
t is the L-layer Transformer output for step t. Compared to

previous methods, the framework is more beneficial to various
non-ASR tasks, since it implicitly models the non-ASR infor-
mation in pre-training.

C. Pre-Training Data

We leverage large-scale unsupervised data from diverse do-
mains to improve the robustness of our model. Previous works
use LibriSpeech [50] or LibriLight [9] datasets for pre-training,
which limits the generalization capability of the pre-trained
model since the input data are all extracted from the audiobook.
The background acoustics of the speech obtained from the audio-
book is different from what is observed in other conditions, since

the real captured sounds are usually accompanied by various
types of noise.

Motivated by this, we extend the training data with two
datasets: (1) 10 k hours of the GigaSpeech data [16]. It is
collected from audiobooks, podcasts and YouTube, covering
both read and spontaneous speaking styles, and a variety of
topics, such as arts, science, sports, etc. It should be noted that
the total data size of GigaSpeech is 40 k, but 30 k of them are not
well processed. For example, there is a large segment of silence
at the beginning or at the end of some utterances in the 30 k
data. More seriously, some utterances just contain background
noise without any speech. Thus, we just use the subset of 10 k
hours of GigaSpeech data, which is well processed and validated
with a segmentation pipeline proposed in [16]. (2) VoxPopuli
data [17]). It is a large-scale multi-lingual unlabeled audio
dataset consisting of over 400 k hours of audio in 23 languages,
which is collected from 2009-2020 European Parliament (EP)
event recordings including plenary sessions, committee meet-
ings, and other events. Since our focus is English-only audio,
we use 24 k hours of English data in VoxPopuli for pre-training.
In total, we collect 94 k hours of data, including LibriLight,
VoxPopuli, and GigaSpeech. We believe the enriched dataset
can improve the model robustness as it contains diverse audio
backgrounds, more speakers, and different contents. We call the
dataset Mix 94 k hr to make the description simple.

D. Stabilization of Training

Currently, it is a common practice to use 16-bit float pre-
cision (fp16) or mixed precision to pre-train large models for
faster computation and less GPU memory consumption. Unfor-
tunately, the training is unstable for large models due to the
overflow issue (characterized by NaN losses) [51]. A major
reason is the attention score qi·kj√

d
is larger than the upper bound

value of the fp16, resulting in the overflow issue in training.
We apply a simple trick to alleviate the overflow issue [51].

Given that softmax is invariant under translation by the same
value in each coordinate i.e. softmax(x+ α)k = softmax(x)k,
where α denotes a constant number, the (3) can be implemented
as

αi,j ∝ exp

{
qi · kj√

d
+ ri−j

}

= exp

{(
qi

c
√
d
· kj −max

j′≤T

(
qi

c
√
d
· kj′

))
× c+ ri−j

}
.

(8)

where c is a scale hyperparameter and set to 32 in our
work. In this way, the overflow issue could be solved, since
maxj′≤T ( qi

c
√
d
· kj′) could guarantee the max value is smaller

than 216.

V. EXPERIMENT

A. Pre-Training Setup

The WavLM Base and WavLM Base+ have 12 Transformer
encoder layers, 768-dimensional hidden states, and 8 attention
heads, resulting in 94.70 M parameters. The WavLM Large has
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TABLE I
UNIVERSAL SPEECH REPRESENTATION EVALUATION ON SUPERB BENCHMARK

ParaL denote paralinguistics aspect of speech.

24 Transformer encoder layers, 1024-dimensional hidden states,
and 12 attention heads, resulting in 316.62 M parameters. The
relative position embeddings are shared across all layers, which
avoids significantly increasing the number of parameters. We
pre-train the WavLM Base model for 400 k steps on LibriSpeech
960 hours audio [50] using the label generated by clustering
the 6-th transformer layer output of the 1st-iteration HuBERT
Base model. The WavLM Base+ and WavLM Large models are
pre-trained for 1 M and 700 k steps on 94 k large-scale diverse
data using the labels generated by clustering the 9th transformer
layer output of the released 2nd-iteration HuBERT Base model.3

Even if the 1st iteration WavLM is better than HuBERT, we
find using the 1st iteration pseudo-label of HuBERT results in
a slightly better 2nd iteration WavLM (0.2 WER reduction on
LibriSpeech dev-other). The masked speech denoising modeling
is considered in 20% utterances, where the mixing noise proba-
bility pn is set to 0 for WavLM Base model, and 10% for WavLM
Base+ and Large model. For other training configurations, the
same hyperparameters are used following [6], which are shown
in Appendix A.

B. Universal Representation Evaluation

1) Setup: We first evaluate our models on SUPERB, which
is designed to provide a standard and comprehensive testbed
for pre-trained models on various speech tasks. It covers
fifteen tasks, including Speaker Identification (SID), Auto-
matic Speaker Verification (ASV), Speaker Diarization (SD),
Phoneme Recognition (PR), Automatic Speech Recognition
(ASR), Out-Of-Domain Automatic Speech Recognition (OOD-
ASR), Keyword Spotting (KS), Query by Example Spoken Term
Detection (QbE), Speech Translation (ST), Intent Classification
(IC), Slot Filling (SF), Emotion Recognition (ER), Speech En-
hancement (SE), Speech Separation (SS) and Voice Conversion
(VC). These tasks can be grouped into five aspects of speech:
content, speaker, semantics, paralinguistics, and generation.

We follow the settings created by SUPERB. 1) We use the
same downstream models as the SUPERB implementations for
each downstream task. 2) Pre-trained models are frozen to limit
the space of the fine-tuning hyperparameter search. 3) The down-
stream models consume the weighted sum results of the hidden
states extracted from each layer of the pre-trained model. The
detailed hyperparameters for fine-tuning our WavLM models
on SUPERB downstream tasks are shown in Appendix A. The

overall score is computed by ourselves: we multiply the QbE
score with 100, replace each error rate score with (1 - error
rate), and average the scores of all tasks.

2) Evaluation Result: Table I shows the evaluation results.
We compare our WavLM with several SSL models which are
evaluated by [8]. In general, WavLM is very powerful in uni-
versal representation learning. Our WavLM Base+ model has
outperformed HuBERT large and wav2vec 2.0 large in the
overall score.

WavLM Base: From Table I, we can observe that WavLM
Base performs better than wav2vec 2.0 Base and HuBERT Base
on all downstream tasks. It is a fair comparison as the three
models use the same amount of pre-training data and the number
of parameters. The results indicate the effectiveness of our
structure and the masked speech denoising modeling in universal
speech representation learning. We find the most impressive
result is speaker diarization, where the WavLM Base outper-
forms HuBERT Base by 22.6% relatively. Our explanation is
that the additional overlapped speech forces the model to deal
with multi-speaker signals during pre-training. To verify this
assumption, we conduct an ablation study to remove simulated
noisy/overlapped speech in pre-training. The performance of
the “w/o denoising task” drops significantly for the speaker di-
arization task. We also evaluate the contribution of the structure
change. We can see that, in the “w/o structure modification”
setting, performance degradation can be witnessed especially
for PR and ASR tasks. It indicates that the gated relative po-
sition bias contributes to the performance improvement of the
content-related tasks. Meanwhile, we can observe that WavLM
performs very well on semantic, paralinguistics, and generation
tasks as well, demonstrating our model is general for the full
stack speech processing tasks.

WavLM Base+: WavLM Base+ shows the contribution from
larger and more diverse pre-training data. It consistently im-
proves WavLM Base and even outperforms the wav2vec 2.0
Large and HuBERT Large in the overall score. This indicates that
the 960 h data are insufficient to fulfill the capacity of the Base
model. The combined dataset especially boosts the performance
of the testsets which are not extracted from the audiobook, such
as ASV, OOD-ASR, IC, SF, and ER.

3[Online]. Available: https://github.com/pytorch/fairseq/tree/main/examples
/hubert
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Fig. 2. Weight analysis on the SUPERB Benchmark. Layer 0 corresponds to the input of the first Transformer layer. The y-axis represents different tasks, while
the x-axis represents different layers.

WavLM Large: Most tasks benefit from the larger model size,
especially for the ASR. We obtain 38%word error rate reduction
on the ASR by model scaling-up. Furthermore, there is 6.07%
absolute improvement on the SID task, indicating the large
model size also impacts the speaker-related tasks. Compared to
the HuBERT Large model, WavLM Large is consistently better
across 14 downstream tasks, demonstrating the modifications
are effective for the large-scale models.

3) Analysis: Following the SUPERB policies, we weighted-
sum the hidden states of different layers and feed it to the
task-specific layers. Fig. 2 shows the weights of different layers
of HuBERT and WavLM models on the different downstream
tasks of the SUPERB benchmark. The larger weight indicates the
greater contribution of the corresponding layer. We normalize
the weights from different layers based on the hidden state values
of their corresponding layers, which eliminates the weight bias
to layers with smaller hidden state values.

As for the Base models, the contribution patterns of different
layers are similar between WavLM and HuBERT, as shown
in Fig. 2(a) and (b). We can observe that the bottom layers
contribute more to speaker-related tasks, such as speaker identi-
fication, automatic speaker verification, and speaker diarization.
On the other hand, for automatic speech recognition, phoneme
recognition, intent classification, and slot filling tasks, the top
layers are more important. It indicates the Base models learn
speaker information with the bottom layers while the content and
semantic information are encoded in the top layers. The model
behavior is similar to Large models. In Fig. 2(c) and (d), we can
see that the top layers contribute most to content and semantic
tasks, while the middle layers have a great impact on speaker
tasks. The phenomenon indicates how to leverage hidden states
of middle layers is the key to the success of speaker-related tasks.

Since SUPERB requires the pre-trained model frozen in
fine-tuning, it cannot show the power of pre-trained models. To
explore the limit of our models, we further select typical speech
tasks to evaluate our pre-trained model performance. Four tasks
are used to evaluate our model from different perspectives, and
the training data amount is not on the same scale for the four
tasks. The details of the tasks can be found in Appendix A.

C. Speaker Verification

1) Problem Formulation: The training dataset for speaker
verification contains audio and speaker id pairs asD = {xi,yi}.
Given audio clip x and a reference x′, the goal of speaker
verification is to determine whether x′ is from the same speaker
as x.

2) Datasets: VoxCeleb1 [19] and VoxCeleb2 [53] datasets
are used in our experiments for speaker verification. For data
pre-processing, we apply online data augmentation using the
MUSAN [54] noise, DNS noise [48] and the RIR 4 reverberation
with probability 0.6. Voice activity detection (VAD) processing
is not adopted. We use all three official trial lists Vox1-O, Vox1-
E, and Vox1-H to evaluate the system.

3) Setup: We choose the ECAPA-TDNN (small) [18] archi-
tecture as the downstream model and compare different input
speech representations, including handcrafted features and the
pre-training features. The model contains a frame encoder to
extract speaker information from the input sequence, a statistic
pooling layer to transform input to a fixed-dimensional represen-
tation, and a fully connected layer to extract speaker embedding.
For the handcrafted feature, we compare the reported results

4[Online]. Available: https://www.openslr.org/28/
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TABLE II
SPEAKER VERIFICATION RESULTS ON VOXCELEB1. FOR THE LINES WITH ∗

NOTATION, WE ADD THE LARGE MARGIN FINE-TUNING AND QUALITY-AWARE

SCORE CALIBRATION [57] TO PUSH THE LIMIT OF THE PERFORMANCE

in [18] with our re-implemented results, where we extract the
40-dimensional Fbank feature with 25 ms window size and
10 ms frameshift. For pre-trained representations, we compare
WavLM with HuBERT model. Following SUPERB evaluation,
we weighted-sum the representations from different transformer
layers with learnable weights as the input to the downstream
speaker verification task.

In the training stage, all the recordings are chunked into 3 s
segments to construct the training batches. We use the additive
angular margin (AAM) loss [55] for model optimization and
set the margin to 0.2. We also add an Inter-TopK penalty [56]
on the 5 easily misclassified centers with a penalty margin of
0.1. We train the ECAPA-TDNN system with Fbank feature
for 165 epochs. For systems using pre-trained representations,
we first fix the pre-trained model to train ECAPA-TDNN for
20 epochs and then finetune both the pre-trained and ECAPA-
TDNN models for another 5 epochs. When we add the large
margin fine-tuning strategy [57], we train the systems for an
extra 2 epochs, during which we sample 6 s training segments
and set the AAM margin to 0.4.

In the evaluation stage, the whole utterance is fed into the
system to extract speaker embedding. We use cosine similar-
ity to score the evaluation trial list. We also use the adaptive
s-norm [58], [59] to normalize the trial scores. The imposter
cohort is estimated from the VoxCeleb2 dev set by speaker-wise
averaging all the extracted speaker embeddings. We set the
imposter cohort size to 600 in our experiment. To further push
the performance, we also introduce the quality-aware score cal-
ibration [57] for our best systems, where we randomly generate
30 k trials based on the VoxCeleb2 test set to train the calibration
model.

4) Results: Table II shows the results for the speaker verifi-
cation task. From the results, we find that all the systems with
pre-trained representations exceed the Fbank baseline system on
the Vox1-O and Vox1-E trials. The system with HuBERT Base
representations is slightly worse than the Fbank feature on the
Vox1-H trial. Interestingly, the representations extracted from
our proposed pre-trained models, WavLM Base+ and Large,
both outperform the SOTA ECAPA-TDNN system. Compared
with the Fbank feature, the representations from WavLM Large
achieve over 35% relative EER improvement on all three trials

for the VoxCeleb1 evaluation set. To further push the limit of
the speaker verification system, we introduce the large margin
fine-tuning and quality-aware score calibration strategies [57]
into our best systems and the corresponding results are listed at
the bottom of Table II. With these two strategies, our best system
exceeds the winner system [56] (Vox1-O: 0.461, Vox1-E: 0.634,
Vox1-H: 0.993) in VoxSRC challenge 20215 on all the three
trials.

D. Speaker Diarization

1) Problem Formulation: Speaker diarization is the task to
answer “Who spoke when?”. Given a speech recording x =
(x1, . . ., xT ), we should assign one or more labels to each xt

according to the speaker identity. When we assign more than
one label to xt, it indicates more than one person is speaking
at time t, i.e. speaker overlap. Normally, we cannot know the
number of speakers of a whole recording in advance. Thus, the
built diarization system should have the ability to predict the
speaker number for the whole recording and the speaker labels
for each frame at the same time.

2) Datasets: The dataset used in our experiments is split
into two parts. The first part is the large-scale simulation train-
ing data. The second part is the real data, which is used for
evaluation and adaptation. Following the data simulation setup
in [64], all the speech data from Switchboard-2 (Phase I & II
& III), Switchboard Cellular (Part 1 & 2), the NIST Speaker
Recognition Evaluation (2004 & 2005 & 2006 & 2008), the
noises from [54] and the simulated room impulse responses used
in [65] are leveraged for multi-talker speech simulation. Based
on the simulation pipeline introduced in [66], we generate almost
7000 hours simulation data by setting Nspk = 3 and β = 10.
We use the telephone conversation dataset CALLHOME [67]
for evaluation and adaptation. CALLHOME dataset has 500
sessions of multilingual telephonic speech where each session
contains 2 to 6 speakers. Following the data usage in [64], we
split the CALLHOME dataset into two parts. The first part is
used for adaptation and the second part is used for evaluation.

3) Implementation Details: We leverage the system in [64]
as our downstream speaker diarization model. In the system, a
long-form recording is first segmented into short blocks, where
each short block is assumed to contain at most SLocal speakers.
As with [64], we set SLocal = 3 in our experiment. Then, the
Mel-filterbank-based features extracted from each short block
are fed into a Transformer encoder to get the diarization results
and SLocal speaker embeddings. With the predicted diarization
results and estimated speaker embeddings, the whole system
is trained by a diarization loss and a speaker loss. During
the inference, the diarization results and speaker embeddings
are first predicted for each block. A clustering method is then
applied to associate the embeddings from the same speaker but
in different blocks.

Following the implementation in [64], we set the block length
to 15 s, 30 s, 30 s for the training, adaptation, and evaluation

5[Online]. Available: https://www.robots.ox.ac.UK/∼vgg/data/voxceleb/
interspeech2021.html
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TABLE III
DIARIZATION ERROR RATE (DER %) RESULTS ON CALLHOME WITH ESTIMATED NUMBER OF SPEAKERS

†Oracle speech segments were used.
‡Results for these systems are provided in [64].

TABLE IV
SEPARATION RESULTS ON LIBRICSS DATASET. WE FREEZE THE PRE-TRAINED

PARAMETERS BY DEFAULT FOR THE SEPARATION TASK. THE RESULTS DENOTE

%WER SCORE EVALUATED WITH E2E TRANSFORMER BASED ASR
MODEL [68]. 0S AND 0 L ARE UTTERANCES WITH SHORT/LONG

INTER-UTTERANCE SILENCE. THE AVG IS THE WEIGHTED AVERAGED WER OF

DIFFERENT OVERLAPPED TESTSETS

stage respectively. The constrained AHC (Agglomerative Hier-
archical Clustering) method is used for embedding clustering
during the evaluation stage. When leveraging the pre-trained
representations, as with the implementation in Section V-C3, we
just replace the handcrafted Fbank feature with the pre-trained
representation H. Unlike [64], when we feed the diarization
system with the pre-trained representations, we do not concate-
nate the context features for each frame and do not apply the
10 times down-sampling. We find that updating the parameters
of the pre-trained model does not improve performance on the
CALLHOME dataset. Thus, we freeze the pre-trained model in
the fine-tuning stage. One possible explanation is that the test
data are real recordings while the training data are simulated
recordings, and the model is over-fitted if the pre-trained model
is not frozen.

4) Results: The speaker diarization results on CALLHOME
dataset are shown in Table III. In our experiment, we try to
reproduce the system in [64] but get slightly worse results.
When we replace the handcrafted feature with pre-trained rep-
resentations, all the systems exceed the performance of our
implemented EEND-vector clustering. Compared with the Hu-
BERT, the representations extracted from our proposed WavLM
are more useful in speaker diarization. Our proposed WavLM
Base+ even outperforms the HuBERT large model. This is

because the WavLM models have seen the multi-talker and
speaker-overlapped speeches during the training process, and
the corresponding training strategy is designed to help WavLM
better process this kind of input. Finally, we also list the
CALLHOME results from some recently published works.
Compared with these results, it is worth noting that our best
system has surpassed all the systems evaluated on the CALL-
HOME dataset and achieved a new SOTA performance.

E. Speech Separation

1) Problem Formulation: The goal of speech separation is
to estimate individual speaker signals from their mixture, where
the source signals may be overlapped with each other entirely or
partially. Given S source signals {xs = (x1, . . ., xT )}Ss=1, the
mixed signal is formulated as y =

∑S
s=1 xs. Xs and Y denote

the Short-Time Fourier Transform (STFT) of the source signal
and mixed signal, respectively. Following [69] and [70], instead
of directly predicting the source STFTs, we firstly estimate a
group of masks {Ms}Ss=1 with a deep learning model, and then
obtain each source STFT with Xs = Ms �Y, where � is an
elementwise product.

2) Datasets: Our training dataset for the separation task
consists of 219 hours of artificially reverberated and mixed
utterances that are sampled randomly from WSJ1 [71]. Four
different mixture types described in [72] are included in the
training set. To generate each training mixture, we randomly pick
one or two speakers from WSJ1 and convolve each with a room
impulse response (RIR) simulated with the image method [73].
The reverberated signals are then rescaled and mixed with a
source energy ratio between −5 and 5 dB. In addition, we add
simulated isotropic noise [74] with a 0–10 dB signal to noise
ratio. The average overlap ratio of the training set is around
50%.

LibriCSS is used for evaluation [20]. The dataset has 10
hours of seven-channel recordings of mixed and concatenated
LibriSpeech test utterances. The recordings were made by play-
ing back the mixed audio in a meeting room. We apply the
single-channel utterance-wise evaluation schemes of LibriCSS,
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where the long-form recordings are segmented into individual
utterances by using ground-truth time marks to evaluate the pure
separation performance.

3) Implementation Details: For the separation task, we use
the previous SOTA work [21] as our baseline model, which uses
the Conformer-based model for separation, and consists of 16
Conformer encoder layers with 4 attention heads, 256 attention
dimensions, and 1024 FFN dimensions. A linear projection layer
and sigmoid activation function are attached to the final encoder
for the mask prediction. Given the STFT of mixed signal Y as
the input, the separation model estimates masks {Ms}Ss=1, then
each source signal can be obtained as {Xs = Ms �Y}Ss=1 for
each speaker.

To fine-tune our pre-trained models on the separation, we use
WavLM models as feature extractors and the Conformer-base
architecture as the task-specific downstream model. We begin
by extracting the pre-trained representation H as introduced
in Section V-C3. Secondly, we concatenate the pre-trained
representation and STFT representation in the feature dimen-
sion. Since the window size and hop length of STFT are typ-
ically set to 400 and 160, respectively, the STFT representa-
tion Y = {Yt}T

′
t=1 has the half stride size compared to the

pre-trained representation H = {Ht}T
′/2

t=1 . To match the size of
the time dimension, we duplicate the pre-trained representation
with Ĥ = {Ĥt = H� t2 �}T

′
t=1, then we can concatenate the two

representations [Yt, Ĥt] in the feature dimension for each time
step. Finally, we feed the concatenated representations to the
downstream model for the mask estimation.

The separation models are trained with the AdamW opti-
mizer [75], where the weight decay is set to 1e-2. We set the
learning rate to 1e-4 and use a warm-up learning schedule with
a linear decay, in which the number of the warm-up steps is
10,000 and the total number of the training step is 260,000.

We follow the previous work [21], [49], [76], [77] to evaluate
our model with an end-to-end Transformer based ASR mod-
els [68], which achieves 2.08% and 4.95% word error rates
(WERs) for LibriSpeech test-clean and test-other, respectively.

4) Results: Table IV shows the single-channel utterance-
wise separation results on LibriCSS dataset. Our WavLM Base+
and Large models with the frozen pre-trained parameters achieve
SOTA results on all the overlap ratio settings, outperforming the
baseline results by a large margin.

We rerun the previous SOTA work [21] with a modi-
fied Conformer-base architecture [78] and a modified training
loss [49], which achieve much better baseline results. With
the pre-trained representation provided by the HuBERT Base
model, the performance is comparable with the baseline results
for all the overlap ratios. It is because the HuBERT model
is rarely optimized with speaker-overlapped speech and lacks
multi-speaker modeling during pre-training.

In contrast, our WavLM Base+ with a similar model size
can successfully reduce the WER scores, especially for the
large overlap ratio audios. We find fine-tuning the parameters of
the pre-trained model yields better training accuracy but worse
evaluation results than freezing the pre-trained parameters for
the separation task. An explanation is that the separation model

Fig. 3. Weight analysis on the Speaker Verification (SV), Speech Diarization
(SD) and Speech Separation (SS) tasks. Layer 0 corresponds to the input of the
first Transformer layer. The y-axis represents different tasks, while the x-axis
represents different layers.

with pre-trained parameters adaptation would be over-fitted with
the artificially mixed training data, and it is evaluated with a real
meeting recording dataset. With the pre-trained representation
provided by our WavLM Large model, the performance on all
the overlap ratio settings can be further improved. It can achieve
32.5% relative WER score reduction for the 40% overlap ratio
cases and 27.7% relative WER score reduction on average.

5) Weight Analysis: For the speaker verification (Section V-
C), speech diarization (Section V-D) and speech separation
(Section V-E) tasks, we weighted-sum the representations from
different layers of the pre-trained models as the input to the
task-specific downstream models. Fig. 3 shows the weights of
different layers of WavLM Base+ and WavLM Large models
on these tasks. As with the weight analysis on the SUPERB
benchmark in Section V-B3, we can observe that the contribu-
tion mostly comes from the bottom layers for all these tasks.
It indicates that the shallow layers of WavLM models learn
the speaker-related information during the SSL procedure. It
is essential to leverage hidden states of intermediate layers
for speaker-related tasks to make full use of the pre-trained
knowledge of WavLM models.

F. Speech Recognition

1) Problem Formulation: Given the input speech signal x =
(x1, . . ., xT ), the goal of speech recognition is to generate the
corresponding transcription y = (y1, . . ., yL), where T and L
are the lengths of the speech and transcription, respectively.

2) Datasets: We use LibriSpeech for our ASR experiments.
For the fine-tuning, we consider four different partitions: 960
hours of transcribed LibriSpeech [50], the train-clean-100 subset
(100 hours labeled data), as well as the Libri-Light [9] limited
resource training subsets originally extracted from LibriSpeech,
including train-10 h (10 hours labeled data) and train-1 h (1 h
labeled data). We follow the evaluation protocol of Libri-Light
for these splits and evaluate on the standard LibriSpeech test-
clean/other sets.
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TABLE V
WER ON LIBRISPEECH TEST SETS WHEN TRAINED ON THE LIBRI-LIGHT

LOW-RESOURCE LABELED DATA SETUPS OF 1 HOUR, 10 HOURS AND THE

CLEAN 100 H SUBSET OF LIBRISPEECH

TABLE VI
WER ON LIBRISPEECH WHEN USING ALL 960 HOURS OF LABELED DATA

TABLE VII
HYPERPARAMTERS FOR PRE-TRAINING WAVLM MODELS. THE UNIT IN BATCH

SIZE COMPUTING IS SECOND. WE USE 32 V100 GPUS FOR BASE MODEL

TRAINING, AND 64 V100 GPUS FOR LARGE MODEL

TABLE VIII
DIFFERENT SETTINGS OF THE DOWNSTREAM TASKS. IN THE SPEAKER

DIARIZATION TASK, IT SHOULD BE NOTED THAT THE CALLHOME DATASET

IS USED FOR DOMAIN ADAPTATION

3) Implementation Details: The pre-trained models are fine-
tuned for speech recognition by adding a randomly initial-
ized linear projection layer on top of the Transformer encoder.
Models are optimized based on a CTC loss [83] where we have
29 tokens for character targets plus a word boundary token.
We apply a modified version of SpecAugment [84] by masking
time-steps and channels: we randomly select the starting posi-
tions with a predetermined probability and replace a span of ten
subsequent time-steps with a mask embedding; different spans
may overlap and we use the same masked time step embedding as
the one used for pre-training. We also mask channels by choosing
a number of channels as starting indices and then expanding to
the subsequent 64 channels. Spans may overlap and the selected
spans are set to zeros.

During fine-tuning, the convolutional encoder is always fixed
and we freeze the Transformer encoder for the first 10 k steps.
We optimize with Adam and a tri-stage rate schedule where
the learning rate is warmed up for the first 10% of the updates,
held constant for the next 40%, and then linearly decayed for
the remainder. The Base and Base+ models are fine-tuned on 8
GPUs with a batch size equivalent to 200 seconds of audio for
each GPU. The Large model is fine-tuned on 24 GPUs with a
batch size equivalent to 80 seconds of audio for each GPU. We
also use LayerDrop [85], [86] at a rate of 0.05 for Base/Base+ and
0.1 for LARGE. The summary of the fine-tuning hyperparameter
settings used for different labeled data setups can be found in
Appendix A.

For evaluation, we use wav2letter++ [87] beam search de-
coder with language model (LM) fused decoding as:

logpCTC(y|x) + w1logpLM (y) + w2|y| (9)

where w1 is the language model weight and w2 is the word
insertion weight. We consider a 4-gram model and a Transformer
model, which are identical to [5]. The evaluation hyperparame-
ters are also based on [5].

4) Results: Table V presents the results for the low-resource
setup, where the pre-trained models are fine-tuned on the 1 h,
10 hours or 100 hours of labeled data. We compare our method
with several competitive self-supervised approaches in the liter-
ature, including DeCoAR 2.0 [36], DiscreteBERT [40], wav2vec
2.0 [5] and HuBERT [6]. Without LM fusion, the WavLM
Base model outperforms wav2vec 2.0 by a large margin for
all fine-tuning splits, indicating the superiority of our model
architecture. Its performance matches or outperforms wav2vec
2.0 and HuBERT with LM. WavLM Base+ improves WavLM
Base, especially on the test-other set, indicating increasing the
out-of-domain unlabeled data also works for ASR. For the Large
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TABLE IX
HYPERPARAMENTERS OF FINE-TUNING WAVLM MODELS IN SUPERB

DOWNSTREAM TASKS. THE BATCH SIZE OF SPEECH TRANSLATION TASK

DENOTES THE NUMBER OF TOKENS IN EACH TRAINING BATCH

TABLE X
HYPERPARAMENTERS OF FINE-TUNING WAVLM MODELS IN SPEECH

RECOGNITION TASK

model, the observation is consistent that our method achieves
comparable or better performance than the baselines. Table VI
reports results on the full 960 hours of LibriSpeech data. Overall,
the pre-training methods can outperform all supervised models
and our model is on par with the two best pre-training results in
this setting.

VI. CONCLUSION

We present WavLM, a large-scale pre-trained model with 94 k
hour audio as inputs, to solve full stack speech processing tasks.
WavLM extends the HuBERT framework to masked speech pre-
diction and denoising modeling, enabling the pre-trained models
to perform well on both ASR and non-ASR tasks. WavLM
updates state-of-the-art results on the SUPERB, as well as the
representative testsets of speaker verification, speech separation,
and speaker diarization. In contrast to previous SSL models,
WavLM is not only effective for the ASR task but also has the
potential to become the next-generation backbone network for
speaker-related tasks.

In the future, we would like to scale up the model size to
increase the model capability, as previous work has shown
the benefits of more parameters [46]. Meanwhile, the model
compression technique is also worth trying due to the time
constraint and limited test time resources in real scenarios. It
is also a promising direction to jointly learn text and speech
representation in a self-supervised pre-training framework [88],
as the huge amount of text data might increase the capability of
speech content modeling.

APPENDIX A
HYPERPARAMTERS FOR PRE-TRAINING

Table VII shows the hyperparameters used for pre-training
our WavLM Base, Base+, and Large model, which are adapted
from the previous work [6].

SETTINGS OF DOWNSTREAM TASKS

For the universal representation evaluation, we use the same
settings for all the SUPERB tasks in accordance with the SU-
PERB policies [8].

As for the four additional downstream tasks, including
speaker verification, speaker diarization, speech separation,
and speech recognition, the implementations are shown in Ta-
ble VIII, following the previous works [6], [18], [21], [64].

HYPERPARAMTERS FOR FINE-TUNING

As for the universal representation evaluation, Table IX shows
the hyperparameters of the learning rate and batch size for fine-
tuning our WavLM models in the SUPERB downstream tasks.
For the QbE task, which is evaluated by dynamic time warping
without fine-tuning, we find that the best results for all the three
WavLM models are always from the representations of the last
layer. All the other hyperparameters of each downstream task are
exactly the same as the official implementation of SUPERB6.

As for the speech recognition task fine-tuning, Table X sum-
marizes the hyperparameters used for different labeled data
setups.
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