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ABSTRACT

Incorporating visual information is a promising approach to improve
the performance of speech separation. Many related works have
been conducted and provide inspiring results. However, low quality
videos appear commonly in real scenarios, which may significantly
degrade the performance of normal audio-visual speech separation
system. In this paper, we propose a new structure to fuse the audio
and visual features, which uses the audio feature to select relevant vi-
sual features by utilizing the attention mechanism. A Conv-TasNet
based model is combined with the proposed attention-based multi-
modal fusion, trained with proper data augmentation and evaluated
with 3 categories of low quality videos. The experimental results
show that our system outperforms the baseline which simply con-
catenates the audio and visual features when training with normal or
low quality data, and is robust to low quality video inputs at infer-
ence time.

Index Terms— Audio-visual, Speech Separation, Low Quality
Video, Attention

1. INTRODUCTION

Speech separation plays an important role in addressing the “cock-
tail party problem” [1]. It aims to separate the clean speech for dif-
ferent speakers in a speech mixture of multiple speakers. The neu-
ral network based single-channel speech separation has been devel-
oped rapidly in recent years [2—-10]. Most of these works focus on
the audio-only blind source separation (BSS) without any additional
knowledge. The label permutation problem [2] in BSS can be solved
by deep clustering [2] or permutation invariant training [4, 5].

Another promising approach for single-channel speech separa-
tion is to add external information as clues to guide the separation.
There are various forms of external information that can be leveraged
for speech separation in real application, including the pre-enrolled
speaker identity [11, 12], text or contextual [13, 14], visual clues,
and brain-informed speech separation [15]. As one of the most con-
venient clues to collect in both training and real application, visual
information of speakers has been introduced into the speech separa-
tion system in many prior works [14, 16-22], which shows the vast
potential of the visual clues.

Despite the excellent ability of the visual information to aid the
separation process, there are also many cases where the videos of
the talkers are absent or of low quality. Such visual inputs are harm-
ful to a well-trained audio-visual separation system, sometimes even
degrades its performance below an audio-only one. Although some
works [23-25] have tried to address this problem, it still remains as
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an unsolved problem that how we could squeeze more value from
the low quality videos.

A previous work [24,25] on speech enhancement uses a strategy
that automatically switches between audio-only variational auto-
encoder (VAE) and audio-visual VAE for noisy and clean video
frames which is learned in an unsupervised way. It turns out to be
efficient, but the information in the low quality frames is almost
discarded. Another work [23] proposed a method to enhance a
speech by conditioning on the talker’s lip movements and option-
ally a speaker embedding, where the enhanced speech needs to be
obtained in a second-pass manner. It gives impressive results on
both enhancement and recognition, but to obtain a satisfying output,
either a robust speaker model or some high quality videos should be
provided.

In this paper, we extend the attention-based feature fusion
method proposed in our prior work [26] to the speech separation
task. The attention-based fusion method is incorporated into the
Conv-TasNet [8] architecture to build a time-domain audio-visual
speech separation system that is robust to low quality video inputs.
The proposed system utilizes the audio feature to select the most rel-
evant visual features within a time window to extract the necessary
information for the separation process. We also present 3 com-
mon categories of low quality videos and verify the performance of
our proposed model with corresponding data augmentations. For
comparison, we replace the attention-based feature fusion part with
a concatenation-based fusion block as the baseline. Experiments
demonstrate that our method outperforms the usual concatenation
method on both normal videos and low quality videos. Besides, with
suitable data augmentation introduced into training, the performance
of our proposed model is robust to unseen low quality videos.

2. TASK DEFINITION

In this section, we firstly provide our definition of the audio-visual
speech separation task and then introduce three common categories
of low quality videos in the real life.

2.1. Audio-visual speech separation

The audio-visual speech separation task is to extract the speech sig-
nal of each talker from a speech mixture of multiple talkers. For
simplicity, we always assume that there are 2 talkers talking simul-
taneously. Let x, denote the speech mixture of the 2 talkers of
length 15, and X, 1, X2 denote the videos containing every talker’s
face, each of length 77,1, 7,2. Our aim is to build a model f which
takes (Xa, Xo1, Xo2) as input, and outputs the clean speech signals
(y1,y2) of each talker.
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Fig. 1. Common categories of low quality videos.

2.2. Types of low quality videos

Real applications often have to process low quality videos, which
may notably degrade the system performance. From the aspect of
audio-visual speech separation, there are mainly 3 common cate-
gories of low quality videos: low resolution, lip concealment and
out-of-sync. The examples are illustrated in Fig.1:

1. Low resolution may be caused by a low-level camera or a
talker’s face in a far distance. In this scenario, it is difficult for a
system trained with good-resolution to extract useful visual features.

2. Lip concealment stands for occasions in which the lips of
the talker are partially or totally concealed. Since lips provide most
of the information of the speech in a video [16], a video clip without
lips exposed could provide little help for the system.

3. Out-of-sync, namely asynchronization of audio and video
in time, commonly exists in live broadcasts. This makes the system
trained on synchronized data hard to extract corresponding audio and
visual features, thus affects the system performance.

3. METHOD

In this section, we propose a new model based on Conv-Tasnet to
address the audio-visual speech separation task. We also introduce 3
data augmentation to address the 3 categories of low quality videos.

3.1. Model architecture

The architecture of our proposed model is shown in Fig.2, which
mainly follows the Conv-TasNet [8] architecture while adding vi-
sual features as additional inputs. It consists of 7 parts: visual fea-
ture extractor, audio encoder, visual convolution, audio convolution,
attention-based feature fusion, mixture convolution and audio de-
coder. The visual feature extractor will be described in Sec.4.1

The audio encoder and decoder perform the transformation be-
tween the time-domain audio signal and the embedded audio fea-
ture sequence through 1D convolution and deconvolution operations.
Formally, we have

Encoder, (x,) = ReLU(ConvlD(x,), K, S)

1

Decoder, (O) = DeConviD(O, K, S) M

where O is the feature sequence input to the audio decoder. K is the
kernel size and S is the stride size in convolutions.

The audio convolution part and mixture convolution part each

includes several 1D convolutional blocks. They are organized as
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(b) Lip Concealment;  (c) Lip Concealment,

R, and R,, repeats where each repeat contains X, or X, stacked
blocks with the convolutional dilation factors exponentially increas-
ing from 1. The detailed structure of the block is similar to the one
presented in Conv-TasNet. The visual convolution part is a stack of
1D convolutional layers accepting visual feature vector sequences.
There are a ReLU activation and a batch normalization operation
between every two layers.

The attention-based feature fusion part is mainly adopted from
the Query Vision structure proposed in our previous work [26]. It
exploits the attention mechanism proposed in [27] which transform
the inputs into queries, keys and values to collect related features by
calculating a weighted sum.

Query(M)Key(Ma2)
7 )Value(l\/I(;))

where d is the feature dimension. This structure allows our model to
focus on visual features which are more valuable and relevant to the
current audio feature frame, thus helps the model to extract useful
features from the low quality inputs. Denoting the output of audio
convolution part by F, and the outputs of visual convolution part by
F .1, F,2, the feature fusion procedure can be represented as:

Attention(M1, M) = softmax(

F,, = LayerNorm(F,)
F,; = LayerNorm(F,z),k = 1,2
x = Attention(F,,, F;), k = 1,2 3)
m = Projection(Concat(Ffl7 Fvl, sz))

=55
e

>

m = FeedForward(Dropout(LayerNorm(F,,)))

Despite the fact that Query Vision works well in the audio-
visual multi-talker ASR task, it turns out that the model converges
very slowly due to the much longer sequence length on the time-
domain setup. Thus, we adapt the local attention mechanism [28]
to our model. Assume that L, L, are the lengths of audio and
visual feature sequences, respectively. For the i-th query, only
the scores produced by visual features with indices ranging in
[iLv/La — D,iLy,/La + D] will be considered for the weighted
sum. Here D is artificially designed. Compared to the long-term
dependency, the neighbor frames could empirically provide most of
the necessary information in speech separation.

3.2. Data augmentation

To address the issues caused by low quality videos described in Sec-
tion 2.2, we present 3 data augmentation methods to improve the
model’s robustness. Note that in practice we always assume that
each talker’s face could be located in every frame of the video even
with the augmentation since frames without a face could be mainly
categorized as lip concealment in our experiments.

A. Low resolution: Since the visual feature extractor requires
inputs with a fixed resolution, videos are firstly down-sampled to
a low-resolution and then up-sampled to the input resolution, both
with the nearest neighbor interpolating algorithm. Results obtained
by this could hopefully be a guideline for other extractors with flex-
ible input resolution. An augmented example is shown in Fig.1(a).

B. Lip concealment: We mainly adopt the augmentation
method proposed by [23], where the lip region in some consecu-
tive frames of the video is concealed by a uniform noise square. See
Fig.1(b) for example. While in testing, the concealment is made
with emoji pictures of the same size as the noise square as Fig.1(c)
to simulate a real situation.
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Fig. 2. Our proposed Audio-Visual Speech Separation model. The extracted visual features of the 2 talkers share the same parameters of the
projection layer and the visual convolution part. "LN” stands for layer normalization and ~’Src-Att” stands for source attention. The 2 source
attention modules share the same parameters. ¢ represents concatenation operation. ® represents element-wise multiplication operation.

C. Random audio-video offset: The extracted input visual fea-
tures are advanced or delayed by several frames, thus the audio and
video are out of synchronization. The advanced or delayed space is
filled with the last or the first frame.

3.3. Loss function

The loss function is defined as the scale-invariant signal-to-noise ra-
tio between each predicted signal and the corresponding reference
signal. The permutation is assigned according to the visual input
order. Formally,

P 1 N N
£(y17y27y15y2) = §(SI_SNR(y17y1) + SI_SNR(y27y2)) (4)

4. EXPERIMENTS

4.1. Data preparation

Experiments were done on LRS2 [29] dataset consisting of videos
collected from BBC television programs. All the videos and the cor-
responding audios are synchronized. The dataset is already divided
into pretrain, train, val and test sets. There are about 183k two-talker
mixtures generated by randomly selecting and summing 2 utterances
from train set for training, about 1k from val set for validation and
about 1k from test set for evaluation. All the mixtures are mixed
with SNR in [—10, 10] dB randomly. The videos are of 25fps and
160x160 resolution, and the audios are recorded at 16kHz sample
rate. All videos and audios are clipped or zero-padded to 2.4s.

A lip-reading model was pre-trained on LRW dataset following
the recipe' in [30, 31], and its ResNet frontend acts as the visual
feature extractor to extract 512-dimensional features from the mouth
region of the video.

4.2. Training with Data Augmentation

Videos in the train set are augmented to different levels for each
data augmentation type. For low resolution, videos are augmented
to 80x80, 40x40 and 20x20 in resolution. For lip concealment, a
noise square with side length 60px is patched on a 25%, 50% or 75%
consecutive duration of the videos, starting from a random time. For
random audio-video offset, a maximum 5 frames random offset is
given to each video online when training.

To validate the improvement brought by the proposed data aug-
mentations, we firstly conduct experiments with one of the three data
augmentation methods respectively. Then, all the proposed augmen-
tation methods are combined together in the training.

Vofficial impl.: https://github.com/mpc001/end-to-end-lipreading
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Table 1. Hyper-parameters of our model. The definition of each
symbol is the same as in Conv-TasNet [8]. The subscript “a” stands
for the audio convolution part, and “m” stands for the mixture con-
volution part.

N L
256 20

B
256

H P X, Xn
512 3 8 8

R
2

Another comparison is performed on the number of augmented
visual streams Q. @ € {0, 1,2} denotes no augmentation, augmen-
tation for one of the visual streams, and augmentation for both of the
visual streams, respectively.

4.3. Evaluation

The signal-to-distortion ratio (SDR) is adopted as the evaluation
metric by our experiments.

To evaluate the model’s performance under bad conditions, we
prepare 3 low quality test sets by modifying the normal test set.

LR10: Videos are replaced by the 10x10 low-resolution version.

LE7S: Each video is patched with an emoji picture of 60px side
length on a 75% consecutive duration of the video, starting from a
random time offset.

RO10: Videos are randomly shifted for A frames to be out of
sync with the audio. Where X is uniformly chosen in [—10, 10].

Two strategies are adopted in the bad condition evaluation. The
first is to choose one visual stream and replace it with its low quality
version, while the second is to replace both of the visual streams.

4.4. Experimental configurations

We built and evaluated our model on ESPNet-SE [32] framework.
The main hyper-parameters of our model are presented in Table 1,
which are defined the same as in [8]. The visual convolution part
contains 5 layers with strides 1, 0.5, 1, 0.5, 1, respectively, where
a stride smaller than 1 stands for a deconvolution layer. The query,
key and value vectors are of 256 dims and the local attention range
D is 5. We also prepared a baseline model which replaces the fea-
ture fusion part of our proposed model with a 1D convolutional layer
with B x (1+ C') input channels and B output channels. The kernel
size of the convolutional layer is P and the padding length is | P/2].
The models are trained until convergence with 16 as batch size using
Adam optimizer. The learning rate is 10~3 and 1 epoch of warm-
ing up is used for our proposed model. For the baseline model, the
learning rate is halved when there is no improvement on validation
result. All the models are trained on 8 GPUs. Besides, the order of
the reference signals is determined by their energy to help training.
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Table 2. Performance comparison between the baseline model and the proposed model trained with different configurations and evaluated
with normal and 3 types of unseen low quality videos. Both the SDRs evaluated with one/two low quality visual streams are provided. An

audio-only setup is also presented for reference.

. SDR(dB)

Q Data Augmentation Model Normal LRI10 LET5 RO10
Audio-only 12.47 - - -

0 None Baseline 1345  12.54/9.67 12.89/11.59  10.54/6.10

Proposed  14.66  14.09/11.55 14.06/12.57  11.89/6.94

Low Resolution Baseline  13.64  12.97/11.02 13.28/12.50  11.28/7.27

‘ Proposed  14.86  14.53/13.29 14.47/13.65 12.69/8.23

Lit Concealment Baseline 1375  13.53/12.35 13.56/12.95  11.40/7.52

p Proposed 1477  14.48/13.30 14.48/13.92  12.63/8.36

! Max. 5 Frames Asype, | Baseline  13.08 12851180  12.77/12.04  12.76/10.26

: YNC Proposed 1417  1391/13.11 13.87/13.35 12.89/10.10

All Baseline  12.87  12.74/12.28 12.73/12.36  12.14/9.92

Proposed  14.34  14.16/13.64 14.20/13.90 13.03/10.53

Low Resolut Baseline 1327  13.24/12.73 13.12/12.72  10.88/7.40

ow Resotution Proposed  14.81  14.56/13.72 14.48/13.93  12.74/8.87

Lio Concealment Baseline  13.59  13.44/12.85 13.42/13.07 11.57/8.71

P Proposed  14.67  14.45/13.75 14.48/14.11  12.80/9.47

2 Max. 5 F A Baseline  13.10  12.88/12.41 12.67/12.33  12.31/11.60

ax. o Frames ASyne. proposed  13.53  13.33/13.06  13.26/13.01  12.81/11.86

Al Baseline  12.51  12.36/11.98 12.35/12.13  10.33/7.61

Proposed  14.00  13.86/13.42 13.85/13.55 12.80/10.33

4.5. Results

The baseline model and the proposed model are trained with @ = 0
(without data augmentation), 1 and 2, evaluated on the normal test
set and the 3 low quality test sets respectively. The results are listed
in Table 2. An audio-only model is also trained as reference by re-
moving the video-related modules from the baseline model (so it is
literally Conv-TasNet). It shows that our proposed model outper-
forms the baseline model with any type of data augmentation and
any number of augmented visual streams in training on almost all 4
test sets. Also, it demonstrates that low quality videos may degrade
the audio-visual system’s performance below the audio-only one.

It could be observed that with each augmentation method, the
baseline and the proposed model both give better performance on al-
most all the test sets, which demonstrates the effectiveness of those
methods. The exception is that random offset augmentation degrades
both models’ performance on the normal set, the LR10 set and the
LE7S5 set with 1 low quality visual stream in inference. One possible
explanation is that this augmentation encourages the model to focus
more on the audio modality, while the useful information in the high
quality visual modality is ignored to some degree. The RO10 set also
contributes the lowest SDRs among all the test sets for every config-
uration even with random offset augmentation, indicating that it is
the hardest among the three low quality categories to be addressed.

While both the system benefits from data augmentation when
@ = 1 and only one method is used, it also does harm to the base-
line model evaluated on the normal test set when trained with Q =
2. It suggests that this setup could reflect the model’s robustness to
low quality training data. Experiments done with each augmentation
show that in this condition, our proposed model still provides fair or
even better results than the ordinary situation. The last two lines of
the table show the results of both models trained with all the aug-
mentation methods, where in most cases both visual streams are of
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low quality. We observe that with not much reduction on the normal
test set, our proposed model achieves fair results on LR10 and LE75
set, which are close to the one on the normal set. Besides, the pro-
posed model also gives acceptable performance on the RO10 test set,
showing its ability in utilizing the out-of-sync low quality videos.

5. CONCLUSIONS

In this paper, we explore the attention-based multi-modal fusion
method to build a robust time-domain audio-visual speech separa-
tion system. To further improve the performance of our proposed
system on low quality video inputs, we introduce 3 types of data
augmentation, including low resolution, lip concealment and ran-
dom offset. The evaluation results on the simulated dataset derived
from LRS2 demonstrate that our proposed model outperforms the
concatenation-based baseline on all the 3 types of low quality video
inputs, and is robust to low quality training dataset.
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