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ABSTRACT

Punctuation prediction is essential for automatic speech recogni-
tion (ASR). Although many works have been proposed for punctua-
tion prediction, the on-device scenarios are rarely discussed with an
end-to-end ASR. The punctuation prediction task is often treated as
a post-processing of ASR outputs, but the mismatch between natural
language in training input and ASR hypotheses in testing is ignored.
Besides, language models built with deep neural networks are too
large for edge devices. In this paper, we discuss one-pass models
for both ASR and punctuation prediction to replace the conventional
two-pass post-processing pipeline. Then the joint ASR-punctuation
model is proposed to utilize multi-task learning to decouple the
recognition and punctuation on the ASR decoder. Experimental
results show that the proposed joint model not only outperforms the
traditional post-processing method with limited extra parameters,
but also achieves better accuracy in comparison to the direct ASR
modeling on transcripts with punctuation.

Index Terms— Streaming speech recognition, edge devices,
punctuation prediction, multi-task learning

1. INTRODUCTION

Automatic speech recognition (ASR) systems rarely output any
punctuation marks as they are not spoken out, making transcribed
text unreadable and resulting in terrible user experiences. Therefore,
punctuation prediction is essential for the ASR task. In recent years,
on-device speech recognition [1, 2, 3, 4] has become an active re-
search direction due to the needs of privacy protection, low latency
and reliability. However, the on-device punctuation prediction was
rarely studied.

Punctuation prediction, also known as punctuation restoration,
is defined as a sequence tagging task. Many works for punctuation
prediction have been proposed previously, which can be categorized
based on modality: speech modal [5], text modal [6, 7, 8] and multi-
modal containing both [9, 10]. For the text modal, the punctuation
prediction task is usually associated with capitalization [11, 12]. Due
to the imbalance of data, contrastive learning [13] and focal loss [14]
have been adopted for punctuation prediction. Meanwhile, punctu-
ation prediction was treated as a downstream task of unsupervised
language models [15] or as an additional task [16] with a pretraining
task like the replaced token detection [17]. Also, data augmentation
using text-to-speech model [10] has been adopted since the ASR
transcripts with punctuation are scarce. Additionally, the real-time

†Yanmin Qian is the corresponding author.

punctuation prediction, together with disfluency detection has been
studied [18] for streaming scenarios. For multi-modality inputs, fun-
damental frequency (F0) and energy are the key features extracted
from speech data [19].

On the other hand, most works treated punctuation prediction
as a post-processing task of ASR outputs. However, the mismatch
is usually ignored between the vanilla inputs in the training stage
and the ASR hypotheses with errors in the testing stage. The on-
device scenario has also been ignored since few works considered
the number of model parameters. Hereafter, reducing the number
of parameters becomes important for better on-device punctuation
prediction.

In this paper, the punctuation prediction is well studied for
streaming on-device speech recognition. The joint punctuation-ASR
model is proposed to minimize the number of additional parameters
for the accurate on-device punctuation prediction. Moreover, the
joint model basically resolves the mismatch problem of input in
training and inferring.

The main contents of this paper are as follows.

• The joint punctuation-ASR model is proposed for streaming
on-device speech recognition, needing only a few additional
parameters. As a one-pass model for both ASR and punctua-
tion prediction, the impact of ASR errors is obviously weak-
ened.

• The teacher-forcing decoding method is proposed for the
evaluation of the joint punctuation-ASR model on the punc-
tuation prediction task.

• The proposed joint punctuation-ASR model outperforms the
post-processing language model in a large margin for punctu-
ation prediction.

• Compared with the direct ASR modeling of transcripts with
punctuation marks, the proposed method has few errors on
both ASR and punctuation prediction.

2. RELATED WORK

2.1. Triggered Attention for Streaming Speech Recognition

The triggered attention (TA) system [20] is extended from the Trans-
former, which is composed of an encoder and a decoder. Each mod-
ule consists of a multi-head self-attention block (MHSA) and several
fully-connected layers [21]. The Transformer is trained based on the
joint connectionist temporal classification (CTC)/attention frame-
work to achieve fast convergence [22, 23]. The loss function of the
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(a) Two-pass pipeline of ASR
post processing

(b) Direct ASR modeling of  
transcripts with punctuation

(c) Joint modeling of both ASR
transcription and punctuation

Fig. 1: Three types of punctuation modeling for automatic speech recognition

joint CTC-attention network is defined as:

Ljca = λLctc + (1− λ)Ls2s (1)

where Lctc and Ls2s are the CTC and sequence-to-sequence (S2S)
objectives, respectively. The tunable coefficient λ ∈ [0, 1] is applied
to control the contribution of each loss.

For streaming scenarios, the encoder’s attention is limited to see
only several steps before and after. The input sequence is processed
chunk by chunk for testing.

Generally, the trigger mechanism computes spikes of the CTC
outputs from the encoder. Then the decoder is triggered when-
ever the encoder meets a spike, achieving the implicit alignment
between the encoder (frame synchronous) and the decoder (label
synchronous).

2.2. Punctuation Prediction

With motivation from the superior performance of the pre-trained
BERT model on many tasks, the RoBERTa model [24] is adopted
and transferred to the punctuation prediction model. For the reasons
above, the transformer encoder is used as our architecture.

The inputs of the model here are raw text sequences, while the
outputs are punctuation predictions. The punctuation mark of each
position in the sequence is defined based on whether the punctuation
mark is following the input token. The output labels are punctuation
marks and a blank mark.

Subsequently, the model is trained based on the following focal
loss LFL owing to the class imbalance problem:

LFL = −
N∑
k=1

(1− pk)γ ŷklogpk (2)

where N is the total number of categories, pk is the predicted prob-
ability of label k, ŷk = 1 if k is the index of corresponding ground
truth class, otherwise ŷk = 0 , and γ is the focusing parameter to
control the rate at which easy examples are down-weighted.

Meanwhile, to adapt to the streaming scenario, the attention
is restricted to observe the previous information for uni-directional
modeling. From the view of the whole sequence modeling, the out-
put probability is as follows:

P (y|x) =
∏
t

P (yt|x<t) (3)

where yt is the prediction according to time step t, x<t means the
whole input sequence before time step t.

3. METHODS FOR PUNCTUATION PREDICTION

3.1. Two-Pass Modeling

Most ASR works consider punctuation prediction as a post-processing
task for automatic speech recognition, taking raw text sequence as
input and predicting punctuation for each token.

Fig.1 illustrates three types of punctuation modeling for auto-
matic speech recognition. Especially, Fig.1 (a) shows the two-pass
pipeline of ASR post-processing for punctuation prediction. The
speech is first recognized by an ASR model. Then the punctuation
language model (shown in Section 2.2) takes transcripts as input and
predicts the punctuation marks for each position. In the end, the
transcripts and the punctuation are combined to get the final result.

3.2. One-Pass Modeling

In order to solve the mismatch problem of the punctuation predic-
tion in two-pass modeling and to minimize the number of additional
parameters, one-pass modeling methods are proposed.

3.2.1. Direct ASR Modeling

A straightforward method is to utilize transcripts with punctuation
marks to train the ASR model directly. The punctuation is treated
as a normal token in the model dict for end-to-end ASR. The ASR
model directly outputs the final results with punctuation marks,
which is shown in Fig.1 (b).

3.2.2. Joint Punctuation-ASR Modeling

The proposed joint model is shown in Fig.1 (c) with two series of
output for ASR tokens and punctuation marks, respectively. Also,
the model is trained using the multi-task learning framework. The
parameters of the proposed model can be directly transferred from
an existed ASR model. Since only the decoder is utilized for actual
token prediction in the trigger attention mechanism, the joint model
is trained using the following multi-task loss Lmtl without the CTC
loss:

Lmtl = Ls2s + αLFL (4)

where the LFL is from Equation 2 for punctuation prediction, Ls2s
is the S2S loss from Equation 1 for the ASR decoder, and the tunable
α controls the weight for punctuation prediction.

For the joint punctuation-ASR model, Fig. 2 shows different
methods for the joint modeling for punctuation and ASR tasks,
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Fig. 2: Different methods for joint punctuation-ASR model

which are marked as x1, x2, x3, x4, and y. For x1, x2, x3, and
x4, the decoder takes previous tokens and hidden representations
as inputs, then the features from different decoder layers are ex-
ploited using a linear projection layer for punctuation prediction.
For example, method x1 uses the output of the first layer. Also,
features from decoder layers can be summed together and exploited
for punctuation prediction. Importantly, the method y not only takes
the previous token as input but previous punctuation marks are also
taken. Moreover, the embeddings of both tokens and punctuation
marks are summed as the input of the ASR decoder. In decoding
phases, we conduct beam search on pure ASR results and take
argmax results on punctuation.

3.3. Teacher-forcing Decoding Scheme

An important problem for evaluating one-pass pipeline punctuation
prediction is that the errors from ASR and punctuation prediction are
combined. Whether the ASR or the punctuation prediction is wrong
cannot be determined from any punctuation-related error due to the
presence of insertion and deletion errors. Therefore, for the results
of the one-pass models, we cannot directly calculate the F1-score.

However, for the auto-regressive decoder, the idea of teacher-
forcing training is referred to evaluate the punctuation prediction.
For the one-pass models, we can compute the posterior of punctua-
tion marks at time step st as follows:

P (st|x) = P (st|h, ŷ<t, ŝ<t) (5)

P (h|x) = Encoder(x) (6)

while x is the speech feature sequence, h is the encoded hidden rep-
resentation, and ŷ<t and ŝ<t denotes previous ground truth tran-
scripts and symbols, respectively. The teacher-forcing scheme uti-
lizes the ground truth labels as the decoder input, which circumvents
errors of the ASR.

4. EXPERIMENTS

4.1. Dataset

We evaluate the ASR and punctuation prediction performance on an
in-house Chinese dataset. The 3000 hours of Chinese spoken ut-
terances with both transcripts and punctuation are adopted. They
are randomly partitioned into the train and development sets into
90%-10% split. We have three test sets: Indoor, Meeting, and Mo-
bile. Indoor is from daily dialogues under the noisy indoor sce-
narios; Meeting comes from the conversation and discussion from
the conference; Mobile is the test set of recordings from social and
game mobile apps. The size of Indoor, Meeting, and Mobile test
sets are 10 hours, 5 hours, and 16 hours, respectively. The punctu-
ation annotations consist of five kinds of symbols: comma, period,
question mark, enumeration comma, and blank. In order to eval-
uate the performance of both ASR and punctuation prediction, we

report the whole sequence token error rate (TER), character-only er-
ror rate (CER), andF1-score (F1) using the proposed teacher-forcing
decoding scheme. We don’t compute the F1-score of blank symbols.

4.2. Streaming On-Device Speech Recognition

4.2.1. Streaming ASR Setup

We follow the basic setup of the transformer model and the input
in the literature [25], including a transformer with 12 encoder and
6 decoder layers, and the multi-head self-attention with the dimen-
sion of 64 with 8 heads. The SpecAugment [26] is conducted on
speech features. The 6979 Chinese characters are adopted as the
modeling units while they exist more than ten times in the training
transcripts. For streaming scenarios, the features are chunked by
20 encoder steps, actually being 80 frames due to the four times of
sub-sampling. For each chunk, the hidden representation is stored
in a cache with no more than 4 seconds of information to save the
computing cost. Meanwhile, the CTC output is computed based on
the current chunk to count the number of the spikes. The decoder
takes the hidden representation in the cache and the previous token
sequence as inputs to predict the next token.

4.2.2. Deploying on Edge Devices

In order to reduce memory consumption and accelerate the infer-
ence to meet real-time requirements, the parameters of the model
are quantized from 32-bit floating-point into 8-bit fixed-point. The
dynamic quantization is adopted in our implementation. The quanti-
zation procedure is expressed as follows:

θQ =
θ − z
s

(7)

where θ is the model parameter, z is the zero input and s is the scale.
For dynamic quantization, the parameters are quantized ahead,
while the activations are dynamically quantized during inference.
We leverage the ONNX [27] format and runtime for deployment.
On ARM architectures, the quantization achieves three times of
speedup in comparison to the floating-point execution.

4.3. Two-Pass Pipeline with Punctuation Model

For the transformer language model, we follow the setup in liter-
ature [24] while using different numbers of layers. The vocabulary
uses the same 6979 Chinese characters as in Section 4.2.1. The mod-
els take RoBERTa as initialization and are trained on a large-scale
conversation text corpus with 10 million long sentences. Then they
are finetuned on the transcripts of 3000 hours ASR dataset.

For evaluation metrics, the whole sequence token error rate (TER)
reflects the overall performance of the final system containing both
the ASR model and the punctuation model. In addition, the F1-score
is an important metric for punctuation prediction in communities.

Model #params Indoor Mobile Meeting
TER/F1 TER/F1 TER/F1

Trans-2L 9.88M 15.93/86.80 27.94/70.69 28.89/72.64
Trans-4L 16.19M 15.88/87.28 27.84/71.48 28.76/74.09
Trans-6L 22.49M 15.72/87.59 27.73/71.79 28.64/74.15
ASR 72.6M 13.49 (CER) 24.89 (CER) 25.91 (CER)

Table 1: Performance Comparison of the Two-Pass Strategy with
Punctuation Models
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Model α #Ext par. Indoor Mobile Meeting Average
TER/CER/F1 TER/CER/F1 TER/CER/F1 TER/CER/F1

ASR + Trans-6L - 22.49M 15.72/13.49/87.59 27.73/24.89/71.79 28.64/25.91/74.15 24.03/21.43/77.84
ASR with Punc - 11.3K 15.49/14.45/92.02 31.73/28.87/71.66 31.88/29.95/78.06 26.37/24.42/80.58
Joint Model -x3 1.0 2.0K 14.62/13.19/91.01 24.27/21.39/72.38 27.76/25.33/78.82 22.22/19.97/80.74
Joint Model -x3 2.0 2.0K 14.51/13.20/91.45 23.66/20.60/71.70 28.46/26.15/78.29 22.21/19.98/80.48
Joint Model -x3 5.0 2.0K 14.53/13.36/92.00 24.48/21.59/72.17 28.77/26.53/79.11 22.59/20.49/81.09
Joint Model -x1 2.0 2.0K 39.51/17.54/50.51 57.92/35.58/35.21 46.35/37.74/53.51 47.93/30.29/46.41
Joint Model -x2 2.0 2.0K 20.10/13.68/79.84 35.44/25.99/58.57 34.68/27.77/69.74 30.07/22.48/69.38
Joint Model -x3 2.0 2.0K 14.51/13.20/91.45 23.66/20.60/71.70 28.46/26.15/78.29 22.21/19.98/80.48
Joint Model -x4 2.0 2.0K 14.61/13.23/91.17 25.31/22.40/70.91 28.29/25.83/77.72 22.74/20.49/79.93
Joint Model -y 2.0 4.0K 14.56/13.24/91.20 24.82/21.95/72.30 29.23/27.01/78.46 22.87/20.73/80.65

Table 2: Performance comparison of different strategies for both ASR and punctuation prediction. ASR+Trans-6L: The two-pass pipeline
using punctuation language models. ASR with punc: The one-pass direct ASR modeling on transcripts with punctuation. Joint Model utilizes
feature from which output of the decoder layer: x1: 1st, x2: 3rd, x3: Last, x4: Sum of all, y: Last, but feed punctuation result to the input.

In Table.1, the whole sequence TER and the F1 score on three
test sets for punctuation of the two-pass models are displayed.
“#params” means the number of parameters of the model. The raw
text sequence character error rate (CER) of the streaming vanilla
ASR model is shown in the last row. The CER is computed using
the ASR hypotheses and the transcripts without punctuation marks.
The uni-directional language models for punctuation prediction
are evaluated, using both ASR hypotheses from the model in the
last row and ground truth text sequences. “Trans-xL” means we
adopt the transformer encoder with x layers (x ∈ {2, 4, 6}). The
“TER” in this table means the whole sequence (both characters and
punctuation) token error rate, computed from the reference texts
with punctuation and the outputs of the language model using ASR
hypotheses. Meanwhile, the “F1” is computed from the reference
texts with punctuation and the outputs of the language model using
ground truth raw texts. In addition, the “F1” is averaged through
four kinds of punctuation marks described in Section 4.1. The re-
sults show that with the decrease of parameters, the performance
does not get worse apparently.

4.4. One-Pass ASR-Punctuation Models

For one-pass ASR-punctuation models, the metrics contain the TER
and F1 mentioned above together with the raw CER to evaluate the
ASR performance. To get the F1 score, the teacher-forcing decoding
scheme is utilized to obtain a correct result.

The direct ASR modeling of transcripts with punctuation fol-
lows the same setup in Section 4.2.1 while using different model-
ing units containing 6979 Chinese characters and punctuation marks.
For the joint punctuation-ASR model, we have five styles or meth-
ods for joint modeling. For methods x1 to x3, we utilize the output
of the first layer, the third layer, and the last layer from the decoder,
respectively. Then a linear layer is used to project the embedding
dimension 512 to the punctuation output dimension 5. For method
x4, the outputs of all layers are firstly summed together, and then the
linear layer of the same setup mentioned before is used. Besides,
An extra embedding layer is introduced for method y in comparison
to the setup of method x3. These embeddings of punctuation and
characters are summed together.

Table 2 exhibits the performance of all strategies on three test
sets for both ASR and punctuation prediction. “#Ext par.” indicates
the number of extra parameters for punctuation prediction. For the
two-pass model, this means the parameters of the language model.
In contrast, for one-pass models, this means the parameters of the

extra module, such as the linear projection layer for punctuation.
Comparing the first two rows with each other in Table.2, we find
that the performance for the raw ASR in the first row is degraded for
direct ASR modeling because we force the ASR to model the unspo-
ken tokens, leading to more errors. Conversely, the punctuation task
performs better due to the utilization of both speech and previous
contexts.

We tune the coefficient α in Equation 4 to control the training
balance between the ASR task and the punctuation prediction based
on method x3 for the joint Punc-ASR modeling. For the third to the
fifth row in Table.2, the best performance for both TER and CER is
achieved in case of α = 2.0. All three methods have better perfor-
mance than the two-pass model in the first row and the direct ASR
model in the second row, while requiring much fewer extra param-
eters. It is observed that the introduction of the focal loss for punc-
tuation prediction exerts the regularization effect on the ASR task,
which makes the decoder learn better in comparison to the raw ASR
in the first row. For the direct ASR modeling results in the second
row, the proposed methods achieve better accuracy on both ASR and
punctuation prediction.

Then, we adopted α = 2.0 for all the subsequent experiments,
and tried all the methods mentioned in Section 3.2.2. It is shown in
Table.2 that the projection of shallow layers in methods x1 and x2
performs worse than that from other methods. But methods x3,x4,
and y perform much better than the two-pass and direct ASR mod-
els. Moreover, x3 achieves the best performance both in TER and
CER, with a similar F1 score to the best model. Compared with
the two-pass model and the direct ASR model, the joint model x3
achieves 7.6% and 15.7% relative TER reduction, 6.8% and 18.2%
relative CER reduction, respectively, leading to much fewer errors
for punctuation prediction with very limited extra parameters.

5. CONCLUSIONS
In this paper, we decouple the ASR and punctuation prediction task
while using the same ASR decoder. The joint punctuation-ASR
model is proposed for streaming on-device speech recognition, in-
troducing only a few additional parameters. The teacher-forcing de-
coding scheme is proposed for the evaluation of one-pass models.
The proposed joint model achieves much better performance on both
ASR and punctuation tasks over the two-pass pipeline and the direct
ASR model while leveraging limited extra parameters.
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