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Optimizing Data Usage for Low-Resource
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Abstract—Automatic speech recognition has made huge progress
recently. However, the current modeling strategy still suffers a
large performance degradation when facing the low-resource lan-
guages with limited training data. In this paper, we propose a
series of methods to optimize the data usage for low-resource
speech recognition. Multilingual speech recognition helps a lot
in low-resource scenarios. The correlation and similarity between
languages are further exploited for multilingual pretraining in our
work. We utilize the posterior of the target language extracted
from a language classifier to perform data weighing on training
samples, which assists the model in being more biased towards
the target language during pretraining. Furthermore, dynamic
curriculum learning for data allocation and length perturbation
for data augmentation are also designed. All these three methods
form the new strategy on optimized data usage for low-resource
languages. We evaluate the proposed method using rich resource
languages for pretraining (PT) and finetuning (FT) the model on
the target language with limited data. Experimental results show
that the proposed data usage method obtains a 15 to 25% relative
word error rate reduction for different target languages compared
with the commonly adopted multilingual PT+FT method on Com-
monVoice dataset. The same improvement and conclusion are also
observed on Babel dataset with conversational telephone speech,
and ∼40% relative character error rate reduction can be obtained
for the target low-resource language.

Index Terms—Low-resource speech recognition, curriculum
learning, data augmentation, length perturbation.

I. INTRODUCTION

AUTOMATIC speech recognition (ASR) is an entrance
to human-machine interaction and attracts much atten-

tion in both research and industry communities. ASR benefits
from a large quantity of parallel training data, i.e. speech with
corresponding text labels, achieving human parity under ideal
conditions. However, for low-resource languages, labeled data
is much harder to be collected [1], [2]. While there are nearly
7,000 languages in the world, the vast majority of them suffer
from the insufficiency of annotated data.
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In order to solve the data scarcity problem in low-resource
scenarios, many works are devoted to developing low-resource
ASR approaches. One common method is to transfer knowl-
edge from models trained on rich resource languages and adapt
models to low-resource scenarios. Meanwhile, multilingual end-
to-end ASR models avoid the pronunciation modeling, which
is required in the traditional hybrid systems [3]–[5]. Inspired
from the multilingual bottleneck feature [6]–[10] in hybrid
ASR systems, the multi-headed output with shared encoder [11]
established the basic architecture for the multilingual ASR
model. LRSpeech [12] adopts text-to-speech (TTS) based data
augmentation and dual transformation for both low-resource au-
tomatic speech recognition and speech synthesis. Meta-learning
approaches want to solve the problem of fast adaptation on
unseen data hoping to get a model that can be quickly adapted
to low-resource languages [13]. Articulatory attributes are ex-
plored for modeling units because they are general for all human
languages [14], [15]. Transliterations of different languages are
adopted as data augmentation for multilingual models [16].

The exploitation of unlabeled data is also considered. Semi-
supervised and self-supervised methods are proposed. Iterative
pseudo-labeling and noisy student training distill the knowledge
from the language model and data augmentation on additional
unlabeled data [17]–[19]. They iteratively decode the model to
predict hypotheses on unlabelled data with an external language
model and train the model on augmented data with pseudo
labels, which utilizes both unparalleled speech and text samples.
Inspired from masked language models [20], masked acoustic
models [21]–[23] are trained to predict the masked part of
speech for self-learning. Then these models can be finetuned on
a small amount of annotated data for low-resource speech recog-
nition. Recently, wav2vec 2.0 [24] utilizes contrastive learning
and masked acoustic models for self-learning. It takes only 10
minutes of annotated data to train an ASR model with decent
performance. The integration of self-training and pretraining is
investigated to push the limits of semi-supervised learning for
ASR [25], [26], which achieves the state-of-the-art performance
on the Librispeech [27] benchmark.

Although these methods achieve encouraging results for low-
resource ASR, existing methods mainly focus on different train-
ing paradigms and the utilization of unlabeled data. On the other
hand, weighing, scheduling, and training strategies for existing
data are also essential perspectives but still haven’t been well
explored. This paper explores the advanced data usage strategies
in detail for low-resource ASR.
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First, for multilingual ASR or multilingual pretraining, prior
works simply combine the data from different languages [3], [5],
or sampling utterances according to a multinomial distribution
to mitigate data imbalance [28], [29]. Some works do consider
the relationship and correlation among languages [30], [31]. But
they treat each language as a whole, and the main achievement
is to reduce the training cost finally. Accordingly, we exploit
similarities among languages in utterance level for better adap-
tation of low-resource ASR. Different strategies for computing
similarities of training samples are explored.

Then, curriculum learning [32] is a kind of method for data
allocation. Deep Speech 2 [33] proposes a static curriculum
learning strategy named SortaGrad, which treats shorter utter-
ances as simpler samples. However, it doesn’t work well in
our experiments due to the loss of randomness during training.
Therefore, dynamic curriculum learning, which utilizes sample
loss and its variation as the criterion for sample difficulty, is
proposed in this paper. Such dynamic metrics are adopted as
sample difficulties in our method. Model competence is also
taken into consideration to be incorporated with sample diffi-
culties for better optimization.

Furthermore, considering the monotonicity of speech recog-
nition and the property that sequence-based models only have
explicit modeling for the whole sentence, we propose length
perturbation, which generates new samples based on utterance
fragments for data augmentation. Hybrid ASR systems are used
to segment the fragments from utterances. New created copies
of training samples are generated for data augmentation.

More specifically, given the success of multilingual pretrain-
ing and finetuning for low-resource speech recognition, this
paper further extends this framework by focusing on data usage
and training strategy. The main contributions of this work are
summarized as follows:

1) Compared with simply combining multilingual data for
multilingual pretraining, the data weighing method based
on utterance level language similarity is explored and pro-
posed. Such similarities are exploited for better adaptation
of low-resource ASR.

2) The novel dynamic curriculum learning method is de-
signed to exploit the data scheduling scheme, which can
make the model better optimized. We revise the order
and training strategy of training samples, and both sample
difficulties and model competence are taken into consid-
eration.

3) A new data augmentation approach named length pertur-
bation is developed for end-to-end ASR. It generates new
samples based on utterance fragments, and can also be
combined with existing data augmentation methods, i.e.
speed perturbation [34] and SpecAugment [35].

4) Finally, an entire optimized data usage strategy based on
all the above proposed methods is given. It is evaluated
and justified to be effective on both CommonVoice [2] and
Babel [1] datasets, and large improvement can be obtained
for low-resource ASR.

The rest of the paper is organized as follows. Section II
revisits the end-to-end ASR and the multilingual pretraining
and finetuning framework for low-resource speech recognition

at first. In Section III the proposed new data usage methods are
described in detail, including data weighing, data allocation, and
data augmentation. The experimental results and discussion are
presented in Section IV, and finally, the conclusion is given in
Section V.

II. MULTILINGUAL PRETRAINING AND FINETUNING FOR

LOW-RESOURCE ASR

A. End-to-End ASR

The attention-based encoder-decoder (AED) transformer is
adopted as the backbone in our ASR system. Transformer is a
sequence-to-sequence (S2S) network [36].

The transformer model is trained under the joint connectionist
temporal classification (CTC)/attention framework to improve
robustness and achieve fast convergence [37], [38]. Note that
CTC loss follows the output of the encoder. The CTC and S2S
objectives are denoted by Lctc and Ls2s, and the loss function
of the joint CTC-attention network is defined as:

Ljca = λLctc + (1− λ)Ls2s (1)

A tunable coefficient λ ∈ [0, 1] is applied to control the con-
tribution of each loss.

1) Connectionist Temporal Classification (CTC): CTC
merges the same consecutive tokens, and a special token blank
is introduced in CTC to fill intermediate frames. Let x be the
input feature sequence and w be the output word sequence.
The probability P (w|x) is the summation of all possible CTC
alignments.

P (w|x) =
∑
π

P (π|x) =
∑
π

T∏
t=1

P (πt|x) (2)

where π represents possible alignments which can be mapped
to w and T = length(π) = length(x).

2) Attention-Based Encoder Decoder (AED): AED, also
known as attention based sequence-to-sequence (S2S) model,
forms the sequence labeling problem as a conditional language
model problem. Note w and x be the output sequence and input
feature. The criterion for AED, i.e. the probability P (w|x) is
the product of the conditional probability of each single word
by chain rule

P (w|x) =
N∏
i=1

P (wi|x,w1:i−1) (3)

where N = length(w). Joint CTC/attention decoding [39] is
adopted to predict the output sequence, where S2S scores with
CTC prefix scores are combined to make the final decision.
We combine subword units [40] from all languages as the final
units, and SpecAugment [35] is applied for all data in all our
experiments.

B. Multilingual Pretraining and Finetuning

Multilingual pretraining is widely adopted for low-resource
speech recognition [11]–[13]. Considering that many paired data
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TABLE I
EXAMPLES OF WORD “PRONUNCIATION” FROM DIFFERENT LANGUAGES

IPA: International Phonetic Alphabet.

from rich-resource languages are already available, the E2E
ASR model is first pretrained on several languages.

The main goal of multilingual pretraining is to share the
data among multiple languages to learn the common knowl-
edge across languages. Many current languages evolved from a
common ancestor [41]. Therefore, it is natural that they share
some common pronunciation and grammar among different
languages. The pretrained model can learn common speech and
language knowledge well based on such properties. Since larger
models generally have more robust capabilities, a sufficient
amount of data, even coming from different languages, allows
us to avoid overfitting while using large models.

After the model is pretrained on rich resource languages, we
finetune the ASR model on a low-resource language. Subword
units from both rich and low-resource languages are adopted as
modeling units. In this way, some common knowledge among
different languages can be transferred to low-resource speech
recognition by the pretrained parameters. After the finetuning,
the optimized model can be applied for speech recognition on
the target low-resource language.

III. OPTIMIZED DATA USAGE FOR LOW-RESOURCE SPEECH

RECOGNITION

Models cannot be trained without data. However, the data
usages of most works merely shuffle the order of data and train
the model epoch by epoch. In the low-resource scenario, it is
worth exploring how to make better use of data due to the data
limitation for the target language. Therefore, in this paper, data
weighing based on language similarity, data allocation based on
dynamic curriculum learning, and data augmentation based on
length perturbation are proposed to improve the performance of
low-resource speech recognition.

A. Data Weighing Via Language Similarity

Multilingual pretraining simply combines data from different
languages [42]–[44], and the work in [28], [45] samples utter-
ances according to a multinomial distribution for multilingual
training to avoid data imbalance. These approaches, however,
fail to take advantage of the correlation and similarity among
languages.

Previous work tried to use language level similarity for data
selection to train the bottleneck feature in hybrid systems [30],
[31]. In this paper, we further extend this idea to explore the
utterance level language similarities and their benefits to low-
resource language modeling with end-to-end ASR architecture.

Take a word as an example. As shown in Table I, for the
word “pronunciation,” Catalan has the very similar spelling and
pronunciation with French, and the first four languages (Catalan,
French, Italian, Portuguese) share the same prefix for the word
“pronunciation”. In contrast, Basque is totally different from
others. Note that not all the words in the vocabulary have such
properties, and the syntax in different languages also varies.

1) Data Weighing: In order to utilize the importance of
samples in training, a common approach is used to divide the
training data into subsets [31], which can be understood as
straightforward data selection. However, this approach is not
flexible enough in terms of implementation. Assuming that the
training set is correctly labeled, any sampling may be useful for
model learning but with different levels on the importance.

The data weighing method is proposed to utilize the sim-
ilarity between the target language and non-target languages
for ASR training. The purpose of using language similarity is
to find data that is more similar to the target language in the
multilingual dataset for better adaptation. In our approach, a
language classifier is firstly constructed to obtain the similarity
among languages in the utterance level. The posterior of the
target language from the classifier can be considered as language
similarity from the perspective of the model, which is then used
as the weight of each utterance in multilingual pretraining.

Fig. 1 shows the whole procedure of the proposed method.
The posteriors or similarities of the target language from the
classifier are extracted as weights of samples. Then losses are
multiplied with weights to make the model pay more attention
to utterances with higher similarities.

2) Weights Computation: Equation 4 adopts the posterior
from the TDNN based language classifier as sample weights
wi.

wi = P (y = l|xi) (4)

where xi is the input feature of sample i, l refers to the target
language, and P (y = l|xi) is the posterior for the language l
from the softmax layer, which also means the weight wi of
sample i.

The posteriors from the softmax layer are sometimes too
close to one-hot vectors such that the weights of the non-target
languages are too small. Inspired from speaker verification
task [46], we also try to extract the embeddings from hidden
layers. We average embeddings from each language as the
language identifier embedding center, and compute the cosine
similarity as weights wi between language embedding center
and utterance embeddings as follows.

cos_sim(a,b) =
a · b

||a|| ||b|| (5)

wi =
1 + cos_sim(si,

∑|L|
k=1 sk
|L| )

2
(6)

where cos_sim(a,b) is the cosine similarity between vector a
and b, si is the embedding of sample i. sk ∈ L where L is the
set of target language. Since the value range of cosine similarity
is [-1.0, 1.0], we normalize it to [0.0, 1.0].
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Fig. 1. The proposed data weighing procedure.

3) Stabilizing Weights: However, the vanilla weighing
scheme leads to unstable training gradients, resulting in worse
performance in our preliminary experiments. For example, due
to the presence of weights, one batch has all weights of 0.1 and
the other one has all 1.0, and the gradient norms of two batches
can differ so much. So for weights in each batch, we transform
them by the softmax function.

Furthermore, since similarities are scaled by the softmax
function, we put together samples with larger differences in
language similarity when constructing batches, which makes
differences be more clearly represented in training in case the
batch being full of utterances coming from the target language.
The weight is multiplied with the original ASR loss to form
the new loss function Lw for per batch on the E2E-ASR model
training.

Lw =

n∑
i=1

Softmax(wi)L(i)
jca (7)

wheren is the batch size andL(i)
jca means the joint CTC/attention

ASR loss of the ith utterance. Based on softmax, we can keep the
gradient norm close to the original but prefer different samples
based on the language weight.

B. Dynamic Curriculum Learning

The second proposed approach to optimize data usage is dy-
namic data allocation during training. Curriculum learning (CL)
was first introduced in [32]. The motivation of CL is that the neu-
ral network can explore harder samples effectively by utilizing
the prior knowledge learned from easier samples. So the samples
are reordered from easy to hard in the training phase.

Inspired by [47], we propose a dynamic curriculum learning
method for low-resource ASR. The order of training samples
is determined dynamically rather than a static ordering. Fur-
thermore, the model’s competence is taken into consideration:
models need to be trained progressively instead of being fed with
all samples at once, regardless of their difficulties.

1) Problem Definition: Let D be the training dataset and
|D| be the corpus size. Denote x as the training sample in D.
The training objective for ASR systems is to seek the optimal
parameter θ minimizing the loss function L on the training set
D.

θ = argmin
θ

∑
x∈D

L(x; θ) (8)

In order to learn better model parameters by dynamic cur-
riculum learning, we decompose the whole training process
into multiple phases T = (t0, t1, t2, . . ., tk). For each phase, the

sub-optimal process can be viewed as

θt+1 = argmin
θt

∑
x∈Dt

L(x; θt) (9)

where θt means model parameters at phase t. Dt is the subset of
the training set at phase t. Here a phase t can be a fixed number
of epochs.

Previous works such as SortaGrad [33] enforces the static
scoring strategy, which pre-determines data at each phase before
training. However, the static order brings loss of randomness. We
will further discuss such problem in Section IV-D.

2) Difficulty of Samples: For a training sample, a lower loss
or a higher accuracy means the ASR model recognizes it better.
Therefore, a simple way is to use the loss of each sampleL(x; θt)
as the measurement of difficulty. To this end, we compute the
score of all training samples with a frozen model after each
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training phase.

s(x; θt) = L(x; θt) (10)

where s(x; θt) is the score of the sample x at phase t, and
θt denotes the model parameters at phase t. Here, one phase
can be a fixed number of epochs. Meanwhile, the loss value of
longer utterances are usually bigger than shorter ones, so the
length normalized loss can also be a candidate for measuring
the difficulty of the sample.

s(x; θt) =
L(x; θt)

T
(11)

where T is the length of the output sequence. For the sequence-
to-sequence model, the accuracy a(x; θt) of the attention output
can also be adopted for measuring the difficulty of the sample.
A higher accuracy means the sample is simpler.

s(x; θt) = −a(x; θt) (12)

Since the model is updated in the training phase, a sample’s
loss may decrease rapidly after some epochs, and samples with
smaller losses may be harder for improvement in training. So
we can also define the CL score as the loss difference on sample
between adjacent phases. The decline-based sample difficulty d
is measured as

d(x; θt) = −s(x; θt−1)− s(x; θt)

s(x; θt−1)
(13)

Also, the increment of accuracy can be the difficulty metric of
the dynamic CL. With these metrics, samples with lower scores
indicate the model learns them more effectively. So they are
more likely to be learned better in the next phase.

3) Progressive Learning: The model is assumed to only learn
well from the easiest training samples due to its weak capability
at the early training stage and then gradually learn to handle the
entire training set. Therefore, during the training process, we
progressively increase the number of training samples until they
cover the whole training set. The ratio a of training data in each
phase is computed as follows:

a(t) = min

(
1, a0 +

βt

T
(1− a0)

)
(14)

where t means the tth phase, a0 means the initial ratio of data for
training, β is the factor of data increment, and T means the total
number of phases for dynamic curriculum learning. Then for
phase t, the a(t) ∗ |Dtrain| easiest samples are selected to train
the model, where |Dtrain| denotes the total size of the training
set. Benefited from the progressive training, the newly-updated
model can learn samples with appropriate difficulties.

Algorithm 1 describes the entire strategy for the proposed
dynamic curriculum learning. More specifically, we sort the
training set by the scores computed in the last phases and use a
subset of the first a(t) ∗ |Dtrain| samples. After that, the model
is further trained with the random order over the whole set.

C. Length Perturbation

Speed perturbation [34] is an effective and commonly used
method for data augmentation. The audios are resampled by

Fig. 2. Example of sub-sequence (Boxed part).

different factors, and several additional copies of the data are
created. Here we propose a new data augmentation strategy
named length perturbation. The basic idea of length perturba-
tion is similar to the recently proposed sub-sequence sampling
in [48], [49], while derived from a different perspective.

Current end-to-end AED models view the entire speech se-
quence as a whole. They are different from traditional hybrid
acoustic models that classify a local context of speech fea-
tures (usually one frame or several spliced frames). Furthermore,
the ASR task is monotonic since there is a valid text sequence
corresponding to a piece of semantically segmented speech.
Depending on such property, we can exploit knowledge from
the sub-sequence of speech to further improve the performance,
especially when we do not have much data.

Fig. 2 shows an example of sub-sequence. The relationship
between speech and text for “a more detailed study” in Catalan
can be explicitly learned by models when we clip the sample to
the boxed part for data augmentation. For sequence-to-sequence
models, the model only learns the correspondence of whole
sentences. But for the ASR task, the mapping between some
sub-sequences is also available. Such a relationship can be
learned when there is a lot of data, but it is not available in
low-resource scenarios.

Algorithm 2 describes the whole procedure. First, we get word
boundaries according to alignments from the hybrid ASR sys-
tem. Then we augment data based on a given factor k (0 < k <
1), where k is the factor to control the length of the new sequence
compared to the origin sequence. Like speed perturbation, we
augment the whole training set with a given factor k and generate
a new copy of the training set with length factor k of the original
utterance. We can augment data with different factors to generate
more data with different lengths.

IV. EXPERIMENTS

A. Experimental Setup

The CommonVoice Dataset1 [2] is a massively multilingual
corpus of transcribed speech. The contents of the corpus are
mainly from Wikipedia articles. We utilize five languages in our
experiments, including French (fr), Italian (it), Basque (eu), Por-
tuguese (pt), and Catalan (ca). For the traditional approach, these
five languages are pooled together for multilingual pretraining,
and then the target language is used in finetuning. Table II shows
details of languages in CommonVoice. The total speech duration
of datasets ranges from 48 hours to 554 hours. We use the June
2020 (v5.1) release of CommonVoice. Note that only part of
the dataset is officially validated. We adopt the full validated
training set of 1104 hours in total for all five languages. For

1https://commonvoice.mozilla.org/en/datasets
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TABLE II
DETAILS OF FIVE LANGUAGES USED IN THE EXPERIMENTS FROM THE

COMMONVOICE

each language, we rotate the role of the target ‘low-resource
language’. We use a 10-hour subset from the target language and
the full training set of the other four languages for pretraining,
and the same 10-hour subset for finetuning. We evaluate our
model on the official evaluation split of development and test
sets for each language.

B. Baseline System

The input of the model is an 80-dimensional log Mel-
filterbank with a 25 ms window length computed every 10 ms
and 3 dimensional pitch features. The baseline implementation
is from the ESPnet [50]. We adopt a transformer with 12 layers
of encoder and 6 layers of decoder. Each layer is a transformer
block with 4 heads of 64-dimensional self-attention layer and a

TABLE III
WER (%) RESULTS ON THE SETUP WITH THE CATALAN AS THE TARGET

LANGUAGE AND OTHERS ARE NON-TARGET LANGUAGES, AND ONE
NON-TARGET LANGUAGE IS ABSENCE IN ROTATION FOR EACH SYSTEM WE

HAVE 40 HOURS FOR EACH NON-TARGET LANGUAGE AND 10 HOURS FOR THE

TARGET LANGUAGE CATALAN

TABLE IV
WER (%) RESULTS OF THE PROPOSED DATA WEIGHING

2048-dimensional feed-forward layer. Dropout is set to 0.1 after
the feed-forward layer for each block. For the multi-task learn-
ing (MTL) in the joint CTC-attention optimization, the weights
for CTC and attention loss are set to 0.3 and 0.7, respectively.
The modeling units are 500 byte pair encoding (BPE) units
trained from the whole multilingual training set consisting all
five languages. SpecAugment [35] has been commonly used in
ASR now, and it was also applied on log Mel-filterbank features
in default in our experiments.

As mentioned in Section II, we first pretrain the model on
the combination of five languages until convergence. Then we
directly transfer all parameters for the target language ASR
model, and only data from the target language is used for
finetuning. The performance of this baseline system is shown
as the first line in Table IV for all five languages.

C. Evaluation on the Proposed Data Weighing

In order to get the utterance level language similarity between
the target language and other languages, a language classifier
is trained to get the posterior from each utterance. We adopt
the Time Delayed Neural Netowork (TDNN) structure from
the literature [46]. We keep the same structure, except that the
categories have been changed from speakers to languages and
the hidden size has been adjusted to 256 to avoid overfitting.
The input of the model follows the setup of the ASR model in
Section IV-B. The classifier is trained to identify in which lan-
guage the utterance is speaking. Because we need the language
classifier to predict the language posterior on the ASR training
set. Only 10 hours from each language is adopted to train the
TDNN classifier regardless of the target language.

Firstly, we conduct preliminary experiments to show the
importance of similarity among languages. We use Catalan as
the target language, and remove different non-target languages
in rotation in order to explore the impact of the absence of non-
target languages on the performance of the model. To mitigate
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Fig. 3. T-SNE Visualization of language embeddings from the language
classifier.

the impact of data volume, we reduce the amount of training data
to 40 hours for each non-target language in these experiments,
the same as Portuguese, which has the least amount of data.

Table III shows WER results comparison on the target Catalan
of ASR systems trained from different non-target languages.
The system without Basque achieves the best performance. It is
even better than the system with all languages which has more
data for training. Compared with the system without Italian, the
system without Basque has a relative 6.4% WER improvement.
This also indicates that Basque is not important to Catalan as a
non-target language and even plays a counterproductive role. In
contrast, Italian is probably the language that is the most similar
and important to Catalan.

We also display the T-SNE visualization of embeddings from
the language classifier for all five languages in Fig. 3. Points
representing Catalan (black) are indeed most close to points of
Italian (green). Part of them are also close to Portuguese (red) and
French (blue). But most Basque (orange) points have an obvious
distance from black points. Both the results in Table III and
Fig. 3 show that the language similarity and acoustic distribution
are important for the appropriate data usage in the multilingual
modeling.

Finally we evaluate and compare the different strategies for
data weighing. The system is firstly pretrained with the proposed
data weighing, and then is finetuned on the target language. For
comparison, we also attempt to scale all utterance with the same
value for each language based on average LID scores, which
can be named as language-level data weighing. The results for
all five languages are illustrated in Table IV. In Table IV “Sim”
means the similarity of embeddings from the language classifier
between each utterance and the averaged language embedding
center of the target language, and “Post” means the posterior
of the target language from the language classifier for each
utterance. “L” and “U” represent language-level data weighing
and utterance-level data weighing, respectively. For example
“L.Post” means language-level data weighing with posterior
strategy and “U.Sim” indicates the utterance-level data weighing
with similarity strategy.

From Table IV, we can observe that all data weighing methods
consistently outperform the baseline for all languages. The

TABLE V
WER (%) COMPARISON OF DIFFERENT CURRICULUM LEARNING

METHODS. CL: CONVENTIONAL STATIC CURRICULUM LEARNING USING

UTTERANCE LENGTH. DCL_A: DYNAMIC CURRICULUM LEARNING USING

TRAINING ACCURACY. DCL_L: DYNAMIC CURRICULUM LEARNING USING

TRAINING LOSS. DCL_L*: DYNAMIC CURRICULUM LEARNING USING

LENGTH NORMALIZED TRAINING LOSS

utterance-level approaches obtain further improvement com-
pared with language-level ones. This is reasonable that the
differences between sentences for adaptation cannot be ignored.
Due to historical usage and the presence of foreign words,
some sentences from non-target languages have a better gain
for the target language adaptation. The utterance-level using
similarity strategy achieves the best performance position, and
it is obviously better than the others.

D. Evaluation on the Proposed Dynamic Curriculum Learning

The proposed dynamic curriculum learning is evaluated here.
In all experiments, we set a0 = 0.2, β = 1.5 in Eq. 14, and
a phase t corresponds to five epochs. For the first phase, we
use the random scores for initialization. After each phase, we
first forward the whole training set to get the loss or accuracy
and reorganize the training set according to Eq. 13 and Eq. 14.
Because we need to forward throughout the whole training set,
we adopt data-parallel for distributed inference. Each task only
computes the scores and reorder the training samples on their
own part.

As shown in Table V, “DCL_L” means the loss declination is
considered as the metric on difficulty for training samples, and
“DCL_A” means the the increased accuracy of attention head
is used for difficulty metric. When using the loss value, longer
utterances are larger than shorter ones. So another length normal-
ized version is also introduced when we adopt loss value as the
difficulty metric, which is denoted as “DCL_L*”. For sequence-
to-sequence tasks, one commonly used conventional curriculum
learning is to treat shorter utterances as easier samples, and
model is optimized according to the utterance length [33]. This
is a static curriculum learning strategy, also named as SortaGrad
in [33]. For better comparison, this static curriculum learning is
also conducted, and to be compared to our proposed dynamic
curriculum learning.

It is observed that the conventional curriculum learning does
not work well for this low-resource scenario because its static
and randomness is lost during training. Both proposed dynamic
curriculum learning methods, either loss-based or accuracy-
based, achieve obviously better performance compared to the
baseline and conventional curriculum learning. In addition, fur-
ther improvements can be obtained when the normalized loss is
adopted as the proposed dynamic curriculum learning.
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TABLE VI
WER (%) RESULTS OF THE PROPOSED LENGTH PERTURBATION

E. Evaluation on the Proposed Length Perturbation

Length perturbation requires the conversation time
marked (CTM) output of training samples to segment them
by accurate word boundaries. We follow the CommonVoice
recipe in Kaldi [51] to build a hybrid ASR model and align
the training set of each language. The chain model is an
8-layer TDNN with 768 hidden dimensions. The input of
the model is composed of the 40-dimensional mel-frequency
cepstrum (MFCC) with a 25 ms window length computed every
10 ms and a 100-dimensional i-vector for speaker adaptation.
The subword units BPE are adopted instead of phones because
a pronunciation lexicon of a low-resource language is usually
hard to be obtained.

Similar to the speed perturbation implementation in Kaldi, we
perturb the training data with proposed length perturbation using
several different augmentation factors. The newly created copies
of training data have different factors of original text lengths.
Different factors are chosen according to how many folds do
we need for data augmentation. If we need k folds of data,
we will perturb data by factor t

k , t ∈ {1, 2, 3, . . ., k}. Shown
as Table VI, for example, “LP_2fold” means we perturb data
by factor t

2 , t ∈ {1, 2}. Factor 1.0 means the original training
data. The newly created copies of training data have the factor
of 0.5,1.0 for utterance length. We first select the starting point
with a random word for each utterance and cut out a part of the
text and corresponding speech segment. After that, SoX [52] is
adopted to clip the audio into new samples according to the CTM
output. We do the perturbation at both multilingual pretraining
and finetuning stages.

We tried different factors K for the proposed length perturba-
tion, and the results are shown in Table VI. “LP” and “SP” mean
length perturbation and speed perturbation respectively. “#fold”
means we perturb the training set with a different number of
copies, where “3fold” means two copies of augmented data are
created plus the original training set. For speed perturbation,
we use the broadly adopted configuration for speed factors 0.9,
1.0, and 1.1. It is observed that compared with the baseline, all
perturbation approaches obtain obvious WER reduction. When
implementing the proposed length perturbation with different
factors K, better performance is obtained when K is increased
and the system achieves the best position when k = 4. Doing the
comparison between the proposed length perturbation and the
normal speech perturbation, the best length perturbation config-
uration sightly outperforms in most testing set. In fact, shown

TABLE VII
WER (%) RESULTS OF INTEGRATED DATA USAGE STRATEGIES FOR ALL

FIVE LANGUAGES. M0: BASELINE. M1: M0 + SPEED PERTURBATION. M2: M1
+ LENGTH PERTURBATION. M3: M2 + DATA WEIGHING. M4 (FINAL
INTEGRATED STRATEGY): M3 + DYNAMIC CURRICULUM LEARNING

as the last line of Table VI, these two perturbation methods can
be combined to get a further improved performance.

F. Evaluation on the Integrated Data Usage Strategy

Finally we evaluate and explore the integration of the above
proposed methods, including data weighing, dynamic curricu-
lum learning and length perturbation, and the results are shown
in Table VII. According to the results above, utterance-level
similarity based data weighing, dynamic curriculum learning
using length normalized loss, and length perturbation with factor
k = 4 are chosen for our integrated evaluation.

The last three lines shows the results of our data usage methods
integration. It is observed that the proposed approaches are
complementary with each other, and all three data usages can
be combined into an entire optimized data usage strategy to
obtain the best system performance. Compared to the baseline
multilingual PT+FT, our final integrated strategy incorporated
with speed perturbation has a relative 15% to 25% WER reduc-
tion, and there is still a consistently relative 10% to 15% WER
reduction compared to the system with speed perturbation.

G. Evaluation on Non Indo-European Languages

For the basic setup in our experiments, we adopt five lan-
guages written in Latin characters and all of them are Indo-
European languages except Basque. Therefore, we attempt to
further extend and evaluate our proposed approach to other
non Indo-European languages, and Tatar (tt), Kabyle (kab) and
Kinyarwanda (rw) are adopted as target languages. Following
the previous setup, we use a 10-hour subset of the training set
from each language, respectively. Then we evaluate the model
on the official evaluation splits.

The model is first pretrained on 1104 hours of the full validated
training set from five languages (fr, it, eu, pt, ca). Then we
finetune the model on the target language (one of tt, kab, and
rw). We replace the output layer with a new randomly initialized
layer for each target language due to different character sets.

The results comparison of the proposed method is shown in
Table VIII. Since languages are not Indo-European, the absolute
ASR performance in Kabyle and Kinyarwanda is not as good
as others. It shows that the observation and conclusion are con-
sistent as those in Table VII, and all the proposed methods still
work well on non Indo-European languages. The proposed entire
integrated data usage strategy can obtain a large improvement
compared to the baseline multilingual PT+FT.
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TABLE VIII
WER (%) RESULTS OF INTEGRATED DATA USAGE STRATEGIES FOR NON
INDO-EUROPEAN LANGAUGES. THE METHODS M0, M1, M2, M3, M4 ARE

THE SAME AS THOSE ILLUSTRATED IN TABLE VII

TABLE IX
CER (%) RESULTS OF SYSTEMS ON BABEL CONVERSATIONAL TELEPHONE
SPEECH. B0: BASELINE. B1: B0 + SPEED PERTURBATION. B2: B1 + PROPOSED

FINAL INTEGRATED DATA USAGE STRATEGY

H. Evaluation on Babel Conversational Telephone Speech

We also evaluate the proposed method on Babel corpus,
which is conversational telephone speech data. Our multilin-
gual model is firstly trained with nine languages - Amharic,
Cantonese, Guarani, Javanese, Kurmanji-Kurdish, Mongolian,
Pashto, Tamil, Vietnamese from the IARPA Babel program [1]
and Somali from the IARPA MATERIAL program. Cantonese,
Javanese, and Mongolian are selected as the target languages
in our experiments. For each language, we have 10 hours for
training, and 5 hours for development and test set, respectively.

The evaluation results are illustrated in Table IX, and the base-
line is the normal multilingual pretraining + finetuning system.
The proposed final integrated data usage strategy, including data
weighing, dynamic curriculum learning and length perturbation,
is applied. It is observed that the usual speed perturbation only
can obtain very limited improvement on Babel, maybe due to
the longer utterance and the uneven silence with pauses through
segments in Babel conversational telephone speech corpus. In
contrast, the proposed newly optimized data usage strategy
achieves very large and consistent improvement for all the target
low-resource languages, and relative 36% to 48% character error
rate reduction is observed for all three target languages.

V. CONCLUSION

In this paper, we developed a series of methods and strategies
to optimize the data usage for low-resource speech recognition.
Three types of data usage methods are designed, including data
weighing based on language similarities, data allocation based
on dynamic curriculum learning, and data augmentation based
on length perturbation. All these three methods can effectively
make better use of limited training data and significantly improve
the system performance for low-resource speech recognition.
Furthermore, all these three methods can be integrated into one

entire date usage strategy to achieve better system performance.
The proposed optimized data usage methods are evaluated on
both the CommonVoice dataset and Babel conversational tele-
phone speech dataset, and the experimental results show that all
the proposed data usage methods can obtain a large improvement
upon the commonly used multilingual PT+FT framework. In
future work, the proposed methods can be further incorporated
with other approaches such as semi-supervised learning [19],
[29] and self-learning [28] for low-resource speech recognition.

ACKNOWLEDGMENT

The authors would like to thank Wei Wang, Yizhou Lu,
and Wangyou Zhang for discussion, English proofreading, and
editing.

REFERENCES

[1] M. Harper, “IARPA babel program,” 2012. [Online]. Available: http://
www.iarpa.gov/index.php/research-programs/babel

[2] R. Ardila et al., “Common voice: A massively-multilingual speech cor-
pus,” in Proc. 12th Lang. Resour. Eval. Conf., 2020, pp. 4218–4222.

[3] S. Toshniwal et al., “Multilingual speech recognition with a single end-
to-end model,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2018, pp. 4904–4908.

[4] B. Li, Y. Zhang, T. Sainath, Y. Wu, and W. Chan, “Bytes are all you
need: End-to-end multilingual speech recognition and synthesis with
bytes,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2019,
pp. 5621–5625.

[5] J. Cho et al., “Multilingual sequence-to-sequence speech recognition:
Architecture, transfer learning, and language modeling,” in Proc. IEEE
Spoken Lang. Technol. Workshop, 2018, pp. 521–527.

[6] S. Thomas, S. Ganapathy, and H. Hermansky, “Multilingual MLP features
for low-resource LVCSR systems,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2012, pp. 4269–4272.

[7] Y. Qian and J. Liu, “Cross-lingual and ensemble MLPs strategies for
low-resource speech recognition,” in Proc. 13th Annu. Conf. Int. Speech
Commun. Assoc., 2012, pp. 2582–2585.

[8] Y. Qian, D. Povey, and J. Liu, “State-level data borrowing for low-resource
speech recognition based on subspace GMMs,” in Proc. 12th Annu. Conf.
Int. Speech Commun. Assoc., 2011, pp. 553–556.

[9] Y. Qian, K. Yu, and J. Liu, “Combination of data borrowing strategies for
low-resource LVCSR,” in Proc. IEEE Workshop Autom. Speech Recognit.
Understanding, 2013, pp. 404–409.

[10] Y. Qian, J. Xu, D. Povey, and J. Liu, “Strategies for using MLP based fea-
tures with limited target-language training data,” in Proc. IEEE Workshop
Autom. Speech Recognit. Understanding, 2011, pp. 354–358.

[11] S. Tong, P. N. Garner, and H. Bourlard, “Cross-lingual adaptation of
a CTC-based multilingual acoustic model,” Speech Commun., vol. 104,
pp. 39–46, 2018.

[12] J. Xu et al., “LRSpeech: Extremely low-resource speech synthesis and
recognition,” in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2020, pp. 2802–2812.

[13] J.-Y. Hsu, Y.-J. Chen, and H.-Y. Lee, “Meta learning for end-to-end low-
resource speech recognition,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., 2020, pp. 7844–7848.

[14] Y. Qian and J. Liu, “Articulatory feature based multilingual MLPs for
low-resource speech recognition,” in Proc. 13th Annu. Conf. Int. Speech
Commun. Assoc., 2012, pp. 2602–2605.

[15] S. Li, C. Ding, X. Lu, P. Shen, T. Kawahara, and H. Kawai, “End-to-
end articulatory attribute modeling for low-resource multilingual speech
recognition,” in Proc. Interspeech, 2019, pp. 2145–2149.

[16] S. Thomas, K. Audhkhasi, and B. Kingsbury, “Transliteration based data
augmentation for training multilingual ASR acoustic models in low re-
source settings,” in Proc. Interspeech, 2020, pp. 4736–4740.

[17] Y. Qian and J. Liu, “MLP-HMM two-stage unsupervised training for low-
resource languages on conversational telephone speech recognition,” in
Proc. Interspeech, 2013, pp. 1816–1820.

[18] Q. Xu, T. Likhomanenko, J. Kahn, A. Hannun, G. Synnaeve, and R.
Collobert, “Iterative pseudo-labeling for speech recognition,” in Proc.
Interspeech, 2020, pp. 1006–1010.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 06,2024 at 09:11:19 UTC from IEEE Xplore.  Restrictions apply. 

http://www.iarpa.gov/index.php/research-programs/babel
http://www.iarpa.gov/index.php/research-programs/babel


QIAN AND ZHOU: OPTIMIZING DATA USAGE FOR LOW-RESOURCE SPEECH RECOGNITION 403

[19] D. S. Park et al., “Improved noisy student training for automatic speech
recognition,” in Proc. Interspeech, 2020, pp. 2817–2821.

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang.
Technol., Volume 1, 2019, pp. 4171–4186.

[21] A. T. Liu, S.-W. Yang, P.-H. Chi, P.-C. Hsu, and H.-Y. Lee, “Mocking-
jay: Unsupervised speech representation learning with deep bidirectional
transformer encoders,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2020, pp. 6419–6423.

[22] X. Song, G. Wang, Y. Huang, Z. Wu, D. Su, and H. Meng, “Speech-XLNet:
Unsupervised acoustic model pretraining for self-attention networks,” in
Proc. Interspeech, 2020, pp. 3765–3769.

[23] A. T. Liu, S.-W. Li, and H.-Y. Lee, “TERA: Self-supervised learning of
transformer encoder representation for speech,” IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 29, pp. 2351–2366, 2021.

[24] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A
framework for self-supervised learning of speech representations,” Adv.
Neural Inf. Process. Syst., vol. 33, pp. 12449–12460, 2020.

[25] Q. Xu et al., “Self-training and pre-training are complementary for speech
recognition,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2021, pp. 3030–3034.

[26] Y. Zhang et al., “Pushing the limits of semi-supervised learning for
automatic speech recognition,” 2020, arXiv:2010.10504.

[27] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: An
ASR corpus based on public domain audio books,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., 2015, pp. 5206–5210.

[28] A. Conneau, A. Baevski, R. Collobert, A. Mohamed, and M. Auli, “Un-
supervised cross-lingual representation learning for speech recognition,”
2020, arXiv:2006.13979.

[29] Z.-Q. Zhang, Y. Song, M.-H. Wu, X. Fang, and L.-R. Dai, “XLST: Cross-
lingual self-training to learn multilingual representation for low resource
speech recognition,” 2020, arXiv:2103.08207.

[30] A. Cutler, Y. Zhang, E. Chuangsuwanich, and J. R. Glass, “Language
id-based training of multilingual stacked bottleneck features,” in Proc.
15th Annu. Conf. Int. Speech Commun. Assoc., 2014, pp. 1–5.

[31] S. Thomas, K. Audhkhasi, J. Cui, B. Kingsbury, and B. Ramabhadran,
“Multilingual data selection for low resource speech recognition,” in Proc.
Interspeech, 2016, pp. 3853–3857.

[32] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learn-
ing,” in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 41–48.

[33] D. Amodei et al., “Deep speech 2: End-to-end speech recognition in En-
glish and Mandarin,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 173–182.

[34] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmentation
for speech recognition,” in Proc. 16th Annu. Conf. Int. Speech Commun.
Assoc., 2015, pp. 3586–3589.

[35] D. S. Park et al., “SpecAugment: A simple data augmentation method for
automatic speech recognition,” in Proc. Interspeech, 2019, pp. 2613–2617.

[36] A. Vaswani et al., “Attention is all you need,” Proc. Adv. Neural Inf.
Process. Syst., vol. 30, pp. 5998–6008, 2017.

[37] S. Kim, T. Hori, and S. Watanabe, “Joint CTC-attention based end-to-end
speech recognition using multi-task learning,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2017, pp. 4835–4839.

[38] T. Hori, S. Watanabe, Y. Zhang, and W. Chan, “Advances in joint CTC-
attention based end-to-end speech recognition with a deep CNN encoder
and RNN-LM,” in Proc. Interspeech, 2017, pp. 949–953.

[39] T. Hori, S. Watanabe, and J. Hershey, “Joint CTC/attention decoding
for end-to-end speech recognition,” in Proc. 55th Annu. Meeting Assoc.
Comput. Linguistics, Jul. 2017, pp. 518–529.

[40] T. Kudo, “Subword regularization: Improving neural network translation
models with multiple subword candidates,” in Proc. 56th Annu. Meeting
Assoc. Comput. Linguistics, 2018, pp. 66–75.

[41] S. Tong, P. N. Garner, and H. Bourlard, “Multilingual training
and cross-lingual adaptation on CTC-based acoustic model,” 2017,
arXiv:1711.10025.

[42] P. Shivakumar and P. Georgiou, “Transfer learning from adult to children
for speech recognition: Evaluation, analysis and recommendations,” Com-
put. Speech Lang., vol. 63, 2020, Art. no. 101077.

[43] S. Zhou, S. Xu, and B. Xu, “Multilingual end-to-end speech recog-
nition with a single transformer on low-resource languages,” 2018,
arXiv:1806.05059.

[44] A. Kannan et al., “Large-scale multilingual speech recognition with a
streaming end-to-end model,” in Proc. Interspeech, 2019, pp. 2130–2134.

[45] G. Lample and A. Conneau, “Cross-lingual language model pretraining,”
Adv. Neural Inf. Process. Syst., vol. 32, pp. 7059–7069, 2019.

[46] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-
vectors: Robust DNN embeddings for speaker recognition,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2018, pp. 5329–5333.

[47] C. Xu et al., “Dynamic curriculum learning for low-resource neural
machine translation,” in Proc. 28th Int. Conf. Comput. Linguistics, 2020,
pp. 3977–3989.

[48] T.-S. Nguyen, S. Stueker, J. Niehues, and A. Waibel, “Improving sequence-
to-sequence speech recognition training with on-the-fly data augmenta-
tion,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2020,
pp. 7689–7693.

[49] T. K. Lam, M. Ohta, S. Schamoni, and S. Riezler, “On-the-fly aligned
data augmentation for sequence-to-sequence ASR,” in Proc. Interspeech,
2021, pp. 1299–1303.

[50] S. Watanabe et al., “ESPnet: End-to-end speech processing toolkit,” in
Proc. Interspeech, 2018, pp. 2207–2211.

[51] D. Povey et al., “The kaldi speech recognition toolkit,” in Proc. IEEE
Workshop Autom. Speech Recognit. Understanding, 2011.

[52] SoX, “Audio manipulation tool,” 2015. [Online]. Available: http://sox.
sourceforge.net/

Yanmin Qian (Senior Member, IEEE) received the
B.S. degree from the Department of Electronic and
Information Engineering, Huazhong University of
Science and Technology, Wuhan, China, in 2007, and
the Ph.D. degree from the Department of Electronic
Engineering, Tsinghua University, Beijing, China, in
2012. Since 2013, he has been with the Department
of Computer Science and Engineering, Shanghai Jiao
Tong University, Shanghai, China, where he is cur-
rently an Associate Professor. From 2015 to 2016, he
was also an Associate Research with Speech Group,

Cambridge University Engineering Department, Cambridge, U.K. His current
research interests include acoustic and language modeling in speech recognition,
speaker and language recognition, speech enhancement and separation, key word
spotting, and multimedia signal processing.

Zhikai Zhou (Student Member, IEEE) received the
B.Eng. degree from the Department of Software En-
gineering, Southeast University, Nanjing, China, in
2019. He is currently working toward the M.E. degree
with the X-LANCE Lab., Department of Computer
Science and Technology, Shanghai Jiao Tong Uni-
versity, Shanghai, China, under the supervision of
Yanmin Qian. His current research focuses on speech
recognition.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 06,2024 at 09:11:19 UTC from IEEE Xplore.  Restrictions apply. 

http://sox.sourceforge.net/
http://sox.sourceforge.net/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


