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Abstract
The detection of the difficult airway is an important process in
patients undergoing surgery with general anesthesia. The inap-
propriate management of the difficult airway is associated with
morbidity and mortality. However, rational clinical evaluation
of the difficult airway have several limitations. In this paper,
we explore how to use speech technology to recognize the dif-
ficult airway, and we further apply the deep speaker recogni-
tion model to the prediction of the difficult airway. Experiments
are carried out on a well-designed dataset recorded from 1189
speakers in the hospital. Then, the speaker embedding is taken
as the input of the final support vector machine (SVM) to make
the decision. Moreover, the performance of the proposed mod-
els outperforms traditional clinical examination methods by a
large margin.
Index Terms: difficult airway, speaker recognition, support
vector machine

1. Introduction
A difficult airway is defined as the clinical situation in which a
conventionally trained anesthesiologist experiences difficulty in
facemask ventilation, tracheal intubation, or both [1]. Failure to
detect the difficult airway is the most important factor contribut-
ing to major complications associated with long-term morbidity
and accounts for 25% of anesthesia-related deaths [2]. Accu-
rately detecting the potential difficult airway is the key point
to decrease the morbidity and mortality caused by failed air-
way management. However, the existing clinical assessment of
the difficult airway is neither convenient nor accurate enough.
Then, the extraction of several physical features and the results
of the bedside screening tests used in the clinical practice to de-
tect the difficult airway rely on manual measurement and sub-
jective judgement [3]. Recently, advanced imaging techniques
such as computer tomography, magnetic resonance imaging and
ultrasound treatment have been used to assist airway manage-
ment. Unfortunately, these procedures are generally expensive,
time-consuming, and invasive for patients due to radiation ex-
posure [4].

Nowadays, automatic analysis and assessment of speech
and voice have become an important developing direction for
diagnosing many diseases. Some attractive results have been
contributed in many works. For example, the speech articula-
tory movements have a considerable impact on the diagnosis
of Parkison diseases [5]. Cough sounds can be used to diag-
nose COVID-19 [6] accurately. Further, obstructive sleep apnea
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has long been investigated for the severity estimation based on
speech signals [7, 8].

Abnormal or particular speech features from speakers with
the difficult airway can be expected to result from an altered
vocal tract structure or craniofacial abnormalities. Hereafter,
the patients’ speech or voice should benefit the detection of the
difficult airway. Indeed, many works have used the i-vector sys-
tem [9] coming from the speaker recognition [10] to map an ut-
terance to a single embedding for diagnosing diseases [7]. Also,
the deep speaker recognition systems have achieved great suc-
cess for speaker verification [11, 12].

In this paper, based on our previous work [13], inspired
by other works involving disease diagnoses such as obstruc-
tive sleep apnea and COVID-19 based on speech features, we
apply speech technologies to detect the difficult airway includ-
ing extracting speaker-related features by the use of the ResNet
and the ECAPA-TDNN. The experimental results show a sig-
nificant promotion in comparison to traditional clinical exam-
ination methods for accurately detecting a difficult airway. To
the best knowledge, this work is the first to use speech technolo-
gies systematically for detecting the difficult airway. The main
contents are as follows,

1. The state-of-the-art speaker embeddings are applied to
recognize the difficult airway, which outperforms tradi-
tional methods in a large margin.

2. Different speech features are explored for detecting the
difficult airway.

3. The system using speech technology achieves better ac-
curacy under much more convenient usages.

Also, we introduce the problem formulation and the frame-
work of our proposed difficult airway detection system in
Section 2, together with the details of experiments including
dataset, implementation in Section 3. The results, analysis, and
discussions are presented in Section 4.

2. Methods
2.1. Problem Formulation

A dataset containing recordings from patients with labels indi-
cating whether suffering from the difficult airway. The dataset
is expressed as follows:

S = {xn, yn}Nn=1 (1)

where xn ∈ Rp denotes the audio information and yn ∈ {0, 1}
denotes whether the sample has difficult airway.
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Figure 1: The framework of the proposed difficult airway detection system

The goal is to learn a binary classifier f(θ) for a given un-
seen recording xtest for minimizing the difference between the
ground truth label ytest and the prediction ŷ = f(θ, xtest).

2.2. Difficult Airway Detection Using Classification Model

Our pipeline has two branches: raw speech feature based and
speaker embedding based. With the inspiration of the work
that diagnoses obstructive sleep apnea based on speech fea-
tures [14], the raw pipeline can utilize speech features directly.
Meantime, the speaker embedding based pipeline extracts the
speaker embedding for the classifier.

Figure 1 shows the framework of the proposed difficult
airway detection system. The acoustic features are extracted
from the raw waveform and the signal is transformed from the
raw waveform to framed features with shape (T,D). Then
a voice activity detection system is used to select voiced
frames (T ′, D). After that, the embedding extraction is divided
into two cases: with mean pooling and with the speaker model.
Finally, the embedding is fed into the classification model.

In detail, in the case of mean pooling for embedding ex-
traction, the voice features are averaged on the time axis to get
the embedding. Such a traditional signal processing-based ap-
proach is computationally efficient and easy to verify. Also, in
the case of the speaker model, the basic acoustic features and
voice frames are extracted at first, followed by a speaker model
trained on a large speaker recognition dataset. The input of the
classification model is the speaker embedding from the speaker
model. Here, we adopt classical i-vector speaker embedding
and deep learning based speaker embedding.

Subsequently, we use the support vector machine (SVM) to
make the final classification. For each utterance, the input of the
classification model is a kind of embedding. The model is then
trained to predict whether the embedding is positive or negative
for the difficult airway decisively. The input variable is firstly
mapped to a high dimensional feature space by using a non-
linear mapping according to the kernel function in the SVM.
After that, the kernel generates features through the similarity
measure between points in the original feature space. Finally, a
hyperplane is estimated to separate feature space by the label.

2.3. I-vector Speaker Embedding System

The detection of the difficult airway can also be interpreted as
identifying the patients from people. So the speaker recognition
technologies are used for this task. Actually, i-vector [9] has
been used to represent a sequence of acoustic features as a fixed-
length vector and adopted in some works for disease diagno-
sis [5, 7] as well. In order to extract the i-vector, a K-component
Gaussian Mixture Model (GMM), denoted as Universal Back-
ground Model (UBM), is initially estimated to model common
knowledge of the whole data space. Hereafter, a super-vector
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Figure 2: The basic blocks of deep speaker models: Residual
block for ResNet and SE-Res2Block for ECAPA-TDNN

is constructed by aggregating means of new GMM components
adapted from the GMM-UBM. Due to the presence of the unsu-
pervised modeling of GMM-UBM, the existing large-scale data
are applied to build the model. The super-vectors are assumed
to obey the factor analysis model of the following form:

s = m+ Tw (2)

where s comes from the super-vector of the utterance, m comes
from the super-vector of the GMM-UBM, T is the transforma-
tion matrix estimated from the training data, and w is the i-
vector which represents the speaker information.

2.4. Deep Speaker Embedding System

Deep learning techniques are vastly more effective for many
tasks. With enough data, the features can be better modeled us-
ing deep neural networks. With the development of the speaker
verification task and the inspiration from the framework of x-
vector [15], ECAPA-TDNN [12] achieves the state-of-the-art
performance on Voxceleb [16] benchmark. Also, ResNet [17]
is an important work for speaker verification.

Figure 2 shows the basic blocks of the ResNet and ECAPA-
TDNN. ResNet uses 2-dimensional features as input and
processes them using 2-dimensional convolution neural net-
work (CNN) layers. The mean and the standard deviation are
used to gather frame-level information. Then they are concate-
nated together and propagated through the embedding layer.
Meanwhile, the ECAPA-TDNN utilizes 1-dimensional Res2Net
modules with impactful skip connections. Then the “squeeze-
and-excitation block” (SE-block) explicitly models channel in-
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terdependencies. Finally, the “channel-dependent frame atten-
tive pooling” and the hierarchical features are adopted to lever-
age the global properties of the recordings.

The deep speaker models are trained to identify the speaker
in the training set. In the end, the embedding before the softmax
layer is used as the speaker embedding.

3. Experimental Setup
3.1. Dataset

3.1.1. Recording

From December 28 in 2020 to September 16 in 2021, 1189
Mandarin native speakers hospitalized in Shanghai 9th People’s
Hospital who needed anesthesia were included in this study.
Exclusion criteria included subjects with recent upper respira-
tory tract infection, sinusitis, vocal cord disease, craniofacial
surgery, a history of speech disorder, and a history of mental
illness. They were asked to read ten sentences under quiet sur-
roundings. The 16-bit hand-held recorders with a sampling fre-
quency of 44.1kHz were used to record speech from partici-
pants. The selection of ten sentences is based on the coverage
of atonal pinyin. To evaluate the performance of our methods,
201 speakers, including 107 positive samples and 94 negative
samples, are left out for the test set. Then we conduct ten-fold
cross-validation on the training set. The Cormack-Lehane (CL)
grading scale describes how visible the vocal cords are during
laryngoscopy, ranging from 1 (full view of vocal cords) to 4
(unseen the epiglottis) [18]. Meanwhile, we use direct laryn-
goscopy to obtain CL scores for all participants. Based on the
CL score, we label patients as ones with difficult airway (CL 3-4
) and without non-difficult airway (CL 1-2).

3.1.2. Alignment & Segmentation

The Kaldi [19] chain model trained from AISHELL-2 [20]
is adopted to align our data collected from participants. The
long recordings are segmented by an energy-based voice activ-
ity detection system. Then hypotheses and conversational time
marked outputs are generated by the chain model, and the re-
sulting hypotheses are compared with the reference texts. In
addition, we adopt the reference text with the lowest edit dis-
tance as the final transcript of the segment.

3.1.3. Speaker Verification Dataset

For our speaker system, we use audio data from VoxCeleb 2
dataset [16], which is collected from interview videos uploaded
to YouTube. For training, we use the DEV part of the Vox-
Celeb 2 dataset containing 5,994 speakers and 1,092,009 utter-
ances. All of the audio recordings and speaker identities are
from celebrities. Most of the recording scenarios are in a rela-
tively quiet space.

3.2. Support Vector Machine

Using labels based on the CL score, a support vector ma-
chine (SVM) is trained to classify the speech features. To evalu-
ate the generalization performance of our algorithm, we employ
ten-fold cross-validation for hyper-parameter selection. Then
we re-train the model on the whole training set of 988 speakers
with the best hyper-parameters according to the ten-fold cross-
validation.

For hyper-parameter tuning, the candidate kernels are
sigmoid, rational basis function (RBF), linear, and poly-

nomial. And we grid-search the regularization parame-
ter C ∈ {1, 10, 100, 1000} and kernel coefficient γ ∈
{0.01, 0.001, 0.0001}.

3.3. Raw Speech Features

The audios are down-sampled from 44.1kHz to 16.0kHz. They
are framed, lasting 25ms for every 10ms with a 15ms overlap
between frames. Then a hamming window is conducted on
each frame, and the Kaldi energy-based VAD is leveraged to
select voicing frames. After that, we adopt various audio fea-
tures for each frame, including Mel frequency cepstrum coef-
ficients (MFCC), filter banks (Fbank), linear prediction coeffi-
cients (LPC), and formants. All the dimensions of the features
except the formants above are set to 40. The formants 1 to 4 are
extracted using the praat [21] software. The speech features are
then averaged over frames and used as the final feature vector.

3.4. I-vector

The i-vector speaker system is trained following the Kaldi
VoxCeleb recipe. The MFCC feature is extracted from the
VoxCeleb 2 dataset. Then the universal background model
is trained using 2,048 gaussian components. Afterward, the
longest 1,000,000 utterances are selected to train the i-vector
extractor because short utterances are harmful to the extractor.

3.5. Deep Speaker Models

We train the ResNet34 and the ECAPA-TDNN Large on the
VoxCeleb 2 dataset. The 40-dimensional Fbank with a 25ms
window size and 10ms shift is used as input, being the same as
the setup in the raw speech pipeline. During the training pro-
cess, audios are randomly chunked to 300 frames. More details
about training can be found in literature [17, 12]. For evalu-
ation, the outputs of the last layer of ResNet34 and ECAPA-
TDNN are used as the speaker embeddings.

4. Experimental Results
The Aera Under Receiver Operating Characteristic (ROC)
curve (AUC) is used for evaluation of the different features and
the embeddings. The highest point of the Youden index [22]
was designated as the threshold to get the accuracy, specificity,
and recall (a.k.a sensitivity). The specificity means the true neg-
ative rate in all negative samples, while recall means the true
positive rate in all positive samples. The posteriors of samples
are averaged through speakers for testing. Then the experiments
were repeated ten times, and we reported the average results of
AUC, accuracy, specificity, and recall.

4.1. Raw Speech Feature Based Systems

Table 1: Results of different speech features for difficult airway
detection

Feature AUC Accuracy Specificity Recall
LPC 0.542 39.0 26.3 83.3
MFCC 0.600 62.6 66.2 50.0
Fbank 0.605 75.9 88.7 31.0
Formant 0.709 71.4 63.0 86.7

Table 1 shows the results of the raw speech feature based
pipeline. The speech features are extracted from the raw wave-
form, and they are averaged through the time axis to a single
embedding for each utterance. It is observed that for traditional
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Figure 3: ROC Curves of the proposed systems

spectrum-based features, LPC, MFCC and Fbank perform un-
satisfactorily from the perspective of AUC. In fact, much infor-
mation is lost by averaging through features on time directly.
These speech features are based on a mathematical transforma-
tion of the original audio signals, so the process of extracting
features does not exploit the knowledge from data well. How-
ever, formant frequencies achieve much better performance
than those spectrum-based features. Formant frequencies de-
scribe the resonance of the vocal tract and are associated with
the internal structures of the upper airway, including its compli-
ance, shape, and dimensions [23]. Although the performance of
formant frequencies is not good enough, it still guides us to find
ways to characterize the relevant features of the speakers.

4.2. Speaker Embedding Based Systems

Table 2 and Figure 3 show the results of different speaker em-
bedding systems for the difficult airway detection. We adopt
two different deep speaker models: ResNet34 and ECAPA-
TDNN Large. It is easy to find that the performance of deep
speaker embeddings is significantly better than that of the i-
vector. This is probably because the i-vector can not model the
differences of non-speaker backgrounds (e.g., noise and record-
ing channels) very well in the presence of a large amount of
data.

Subsequently, the performance of the deep speaker systems
outperforms that of formant frequencies. This states that the
ability of deep speaker embeddings is better than that of for-
mant frequencies in characterizing vocal features such as the
speaker’s structure of the upper airway. The knowledge learned
from the large-scale data in deep speaker systems plays an im-
portant role in improving performance. Moreover, the results of
ECAPA-TDNN are better than that of ResNet-34 in AUC, accu-
racy and recall except specificity, suggesting that the threshold
designated by the Youden Index of ResNet-34 is over-biased
towards specificity.

Table 2: Results of different speaker embeddings for difficult
airway detection

Feature AUC Accuracy Specificity Recall
Formant 0.709 71.4 63.0 86.7
i-vector 0.589 59.6 58.7 62.7
ResNet34 0.737 75.1 94.4 38.7
ECAPA 0.786 75.6 81.7 64.3

4.3. Comparison with Traditional Clinical Examination
Methods

Table 3: Comparison for results from the proposed methods and
the traditional clinical methods on difficult airway detection

Feature AUC Accuracy Specificity Recall
MMT [24] 0.634 64,7 69.3 51.7
ULBT [25] 0.691 68.3 69.1 66.1
TMD [26] 0.741 69.3 66.9 76.3
Formant 0.709 71.4 63.0 86.7
ECAPA 0.786 75.6 81.7 64.3
ECAPA + ResNet34 0.789 75.1 79.4 67.1
ECAPA + Formant 0.807 76.6 74.0 74.3

The modified Mallampati test (MMT), the upper lip bite
test (ULBT), and the thyromental distance (TMD) are three tra-
ditional clinical examination methods for difficult airway de-
tection. MMT assesses the visibility of the oropharyngeal struc-
tures. For ULBT, the range of mandibular movement is assessed
by asking patients to bite their upper lip with their lower in-
cisors. TMD refers to a distance between the uppermost border
of the thyroid cartilage and the mentum, and is measured with
the neck extended and the mouth closed. The MMT, ULBT, and
TMD require the patient to be at present and a doctor to perform
the test with specialized instruments.

Table 3 shows the comparison results of all traditional clin-
ical methods and the proposed methods. The last two lines
are fusion results. The posterior probabilities are averaged
over different models for fusion. The fusion of similar sys-
tems (ECAPA and ResNet34) has limited improvements over
ECAPA. In contrast, the formant frequency system and deep
speaker system are complementary to each other. Furthermore,
the final speech technology based system outperforms all tra-
ditional methods in a large margin in all cases except recall,
clearly exhibiting the performance advantages of speech tech-
nologies over traditional methods.

5. Conclusions
In this paper, we describe a novel strategy for detecting the
difficult airway in human vocal cords based on speech tech-
nology. The proposed methods solve problems of being cum-
bersome, professionally desirable, and insufficiently accurate
in traditional methods. Also, the proposed speaker embedding
based method shows the ability to identify the difficult airway.
Speaker embeddings well characterize the physical structure of
the airway. More importantly, due to the ease of speech signal
transmission, patients can perform the test simply by using edge
devices, being greatly convenient for users. Furthermore, not
only does this shed a lot of light on the medical community, but
we should also recognize that the application of speaker recog-
nition models goes far beyond speech-related tasks such as veri-
fication and diarization. Soon, it is believable that our work will
be used in practical clinical applications.
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frequencies and bandwidths in relation to clinical variables in an
obstructive sleep apnea population,” Journal of Voice, vol. 30,
no. 1, pp. 21–29, 2016.

[24] S. R. Mallampati, S. P. Gatt, L. D. Gugino, S. P. Desai,
B. Waraksa, D. Freiberger, and P. L. Liu, “A clinical sign to pre-
dict difficult tracheal intubation; a prospective study,” Canadian
Anaesthetists’ Society Journal, vol. 32, no. 4, pp. 429–434, 1985.

[25] Z. H. Khan, A. Kashfi, and E. Ebrahimkhani, “A comparison of
the upper lip bite test (a simple new technique) with modified
mallampati classification in predicting difficulty in endotracheal
intubation: a prospective blinded study,” Anesthesia & Analgesia,
vol. 96, no. 2, pp. 595–599, 2003.

[26] P. Butler and S. Dhara, “Prediction of difficult laryngoscopy: an
assessment of the thyromental distance and mallampati predictive
tests,” Anaesthesia and intensive care, vol. 20, no. 2, pp. 139–142,
1992.

2022 13th International Symposium on Chinese Spoken Language Processing (ISCSLP) 353
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 06,2024 at 09:09:44 UTC from IEEE Xplore.  Restrictions apply. 


