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Abstract—Continuous speech separation (CSS) aims at separat-
ing overlap-free targets from a long, partially-overlapped record-
ing. Though it has shown promising results, the origin CSS frame-
work does not consider cross-window information and long-span
dependency. To alleviate these limitations, this work introduces
two novel methods to implicitly and explicitly capture the long-
span knowledge, respectively. We firstly apply the dual-path (DP)
modeling architecture for the CSS framework, where the within
and across window information are jointly modeled by alternat-
ing stacked local-global processing modules. Secondly, to further
capture the long-span dependency, we introduce a memory-based
model for CSS. An additional memory pool is designed to ex-
tract embedding from each small window, and the inter-window
commutation is established above the memory embedding pool
through an attention mechanism. This memory-based model can
precisely control what information needs to be transferred across
the windows, thus leading to both improved modeling capacity and
interpretability. The experimental results on the LibriCSS dataset
show that both strategies can well capture the long-span infor-
mation of the continuous speech and significantly improve system
performance. Moreover, further improvements are observed with
the integration of these two methods.

Index Terms—Continuous speech separation, dual-path
modeling, memory pool, overlap ratio predictor.

I. INTRODUCTION

THE “cocktail party problem” [1] depicts a special chal-
lenge in acoustic signal processing, where the signal to be

processed consists of audio mixtures from various sound sources
and multiple active speakers, as if it is recorded from a dinner
party, and the target of the problem is to separate or recognize the
content from each individual speaker. Due to its multi-speaker
nature, the “cocktail party problem” often causes severe perfor-
mance degradation to conventional speech processing systems
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such as automatic speech recognition (ASR), which usually hold
the assumption that only a single active speaker exists in the input
signal.

Neural network based speech separation is often considered
as a remedy for this challenge. Starting from the deep clustering
(DPCL) [2] and permutation invariant training (PIT) [3], [4],
tremendous progresses have been made in recent years for both
the speech separation [2]–[18] and multi-talker ASR [19]–[24].
With the latest methods, on benchmark dataset such as WSJ0-
2mix [2], the separated speech gets more than 20 dB signal-to-
distortion ratio (SDR) improvement [17], [18].

Researchers also explore speech separation in more realis-
tic scenarios [25]–[28]. Compared with artificially generated
speech mixtures (e.g., WSJ0-2mix), the recordings differ in
three major aspects and poses additional challenges in realistic
meeting scenarios.
� The real-world meeting recordings usually have a longer

duration, in which may include multiple utterances without
labeled-out boundaries.

� The overall overlap ratio is lower in nature meeting con-
versations, which is usually below 20% [29].

� The number of active speakers in meeting recordings varies
in a wide range. Thus, assuming a fixed number of speakers
is inappropriate for realistic scenarios.

In [30]–[36], different approaches for separating a large or
uncertain number of speakers have been investigated on high-
overlap utterance-level separation. However, directly applying
these methods to long and low-overlap recordings may introduce
a lot of overhead. Because assigning one output channel for each
speaker may lead to a lot of sparse output channels, especially
when the number of speakers is large in a long session. Serialized
Output Training (SOT) [24], [37] tries to model the partially
overlapped speech with serialized output token in an end-to-end
ASR system, in which the separation progress is implicitly done
in the ASR encoder. SOT is designed for ASR tasks and it is
difficult to be applied in speech separation training. In general,
an effective speech separation model for all three aspects above
is still being actively studied.

Continuous speech separation (CSS) framework has been
found promising to handle real world multi-speaker record-
ings [25], [26]. In CSS, the long recordings are segmented
into length-fixed windows, each processed individually. When
the window size is small (e.g. <3 seconds), it is reasonable to
assume that there is a maximal number of active speakers in
a single window [26], [29]. Thus, in the CSS framework, the
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separation model only needs to handle small segments with lim-
ited active speakers. And the separated speech of each window
are reorganized into continuous overlap-free speech through an
additional stitching algorithm and processed by downstream
tasks such as diarization and ASR, without changing their single
active speaker assumption. However, though CSS has shown
effectiveness in the practical dataset [26], it processes each small
window independently, which may be sub-optimal especially
for long recording, where cross utterance clue is usually found
beneficial for the separation in overlapped region [38]. Finding
a proper way to model the cross-window information might be
a step for better performance.

In this paper, we employ the dual-path (DP) modeling method
for CSS, which is an extension of our previous works [39], [40].
The original dual-path recurrent neural network (DPRNN) [41]
is proposed to solve the long sequential features of the time-
domain models. It has been shown effective for utterance-level
separation. Inspired by DPRNN, we explore the DP modeling
methods for the CSS task in time-frequency (T-F) domain. Sim-
ilar to DPRNN, we alternately stack the intra- and inter-window
processing layers for local and global modeling, respectively.
Both dual-path bidirectional long-short memory (BLSTM) [42]
and dual-path Transformer [43] models are investigated. We
adopt an improved sampling method to reduce the computation
cost and improve the separation performance for DP models. We
also optimize the design of the basic single-input-multi-output
(SIMO) and single-input-single-output (SISO) modules based
on the findings of a recent work [44].

For better control and analysis, we propose an attention-based
method for cross-window information exchange to enhance the
DP model, referred as memory-based model. In this design, an
additional neural net extracts memory embeddings from each
individual window is introduced, and the extracted embeddings
form a memory pool. Cross-window communication is then
established on the memory pool. An attention mechanism ac-
cesses the memory pool and chooses the most valuable in-
formation from it for local-window processing. The memory
embedding net can be jointly trained with the separation task or
use a pre-trained network on other tasks to introduce external
knowledge.

The contribution of this paper can be summarized as follows:
� We developed the dual-path (DP) modeling for the CSS

task. Both BLSTM- and Transformer-based are explored,
and the SIMO-SISO srtucture is equipped. This DP model
shows stronger modeling capacity in the CSS task.

� A refined convolution-based downsampling method is fur-
ther utilized on the deep DP model, which can hugely
reduce the computational cost as well as improve the sepa-
ration performance, and the online processing DP models
are also investigated for online CSS application.

� Another memory-based model is designed for the CSS
framework. It can discover, encode and utilize valuable
information from the long recordings to help the local
window processing. This memory-based model is easier
to introduce external knowledge with a pre-trained mem-
ory embedding net. Or, it can be jointly trained with the
separation task.

� The proposed DP model architecture and memory-based
model can be further integrated to capture the long-
span knowledge of the continuous speech, and signifi-
cant improvement can be obtained for continuous speech
separation.

The rest of the paper is organized as follows: Section II
reviews the basic CSS framework. The proposed dual-path
methods and the optimized dual-path model for CSS are in-
troduced in Section III. Then another proposed memory-based
method and three different memory models will be described
in Section IV. Section V presents the experimental results and
detailed analysis, and finally Section VI gives the conclusion.

II. CONTINUOUS SPEECH SEPARATION

The CSS method is firstly proposed in [45], and compared to
the conventional utterance-wise speech separation, it is closer to
the real-world scenario. As figure 1 shows, the CSS pipeline typ-
ically consists of three steps, including segmentation, separation
and stitching.

Firstly the segmentation stage splits the continuous mixture
into small windows with fixed window size and hop size. The hop
size is usually smaller than the window size, and thus an over-
lapped region can be reserved between the adjacent windows.
More formally, we denote the input mixture by w ∈ RT×M ,
where M is the number of channels1 and T is the number
of sampling points. The input magnitude spectrogram derived
from w is denoted by W ∈ RL×F , where F is the number of
frequency bins andL is the sequence length. In the segmentation
stage, W is split into B windows Db ∈ RK×F , b = 1, . . . , B,
with window size K and hop size P .

Then the separation stage performs separation on each seg-
mented window, and generatesC streams of overlap-free speech,
where C is the number of output channels. For the partially
overlapped meeting-style recordings [29], when the window size
is short enough (< 3 seconds), it is reasonable to assume that
at most two speakers are talking simultaneously in each small
window [26], [28], [29], [46]. Thus, in the separation stage
of this work, we can simply let C = 2 for the meeting-style
dataset [26]. When the input audio only involves one speaker,
one channel tends to output the original input or the enhanced
speech, while the other channel tends to output silence or small
noise. The separator follows the advance design recently pro-
posed in [44]. It contains a single-input-multi-output (SIMO)
module and a shared-weight singe-input-single-output (SISO)
module. The SIMO module is a one-to-many mapping to gen-
erate 2 streams of intermediate features, which is similar to
most of the current bind source separation (BSS) models [3],
[11]. The SISO module takes the output of the SIMO module
as input, and the 2 streams of SIMO output are processed in
a weight-shared style. The mixed SIMO-SISO design can be
considered as a pre-separation and post-enhancement pipeline.
Both of the SIMO and SISO modules are made up with basic
sequence modeling layers, e.g. bidirectional long-short memory
(BLSTM) [42] and Transformer [43] layers.

1In this paper, we mainly discuss the single-channel condition where M is 1.
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Fig. 1. The continuous speech separation (CSS) framework with three stages: segmentation, separation and stitching. The segmentation step splits the long
recording into short windows. The separation step performs separation on each window. The stitching step concatenates the window-level separation outputs to
long streams which only contains overlap-free targets.

To describe the SIMO-SISO separator more formally, we
denote fSIMO(·) and fSISO(·) as the mapping function of the
SIMO and SISO module, respectively. The SIMO operation can
be presented as:

{Ec
b} = fSIMO(Db), (1)

Êc
b = fSISO(Ec

b), (2)

M̂c
b = ReLU(FC(Êc

b)), (3)

ŝcb = iSTFT(M̂c
b �Db,Φb), (4)

where c ∈ {1, 2} denotes the 2 separated streams, Φb is the
original phase spectrum of the b-th window. The output of the
SISO module is then passed to a fully connected (FC) layer
and ReLU activation function to estimate the time-frequency
(T-F) masks M̂c

b for the magnitude spectrum Db of each win-
dow. Then Db is element-wisely multiply by M̂c

b, and inverse
STFT (iSTFT) is applied to obtain the predicted window-level
time-domain signals ŝcb. The objective function Lseparator is the
window-level signal-to-noise ratio (SNR), and the permutation
invariant training (PIT) is applied on each window:

Lseparator = − SNR(scb, ŝ
c
b) = −20log10

‖ŝcb‖
‖ŝcb − scb‖

. (5)

Finally, in the stitching stage, the adjacent separated windows
are concatenated together to generate the continuous output
streams for each speaker. Since the separation stage is single-
input-multi-output (SIMO) and usually trained with PIT, the
stitching stage has to keep the permutation consistency for adja-
cent windows. This can be solved by computing the similarity on
the overlap region of adjacent windows as Algorithm.1 shows. In
our implementation, the similarity is the inverse of the Euclidean
distance on the T-F-masks.

III. DUAL-PATH MODELING FOR CONTINUOUS SPEECH

SEPARATION

A. Dual-Path Modeling for Long Recording

The dual-path recurrent neural network (DPRNN) is pro-
posed in [41], which achieved state-of-the-art performance on
utterance-level speech separation. The authors use a small stride
in the time-domain feature encoder. That leads to a very long
feature sequence for a single utterance and DPRNN is designed

Algorithm 1: Stitching Algorithm.

Input: The separated audio signals of each window: ŝcb and
their corresponding T-F masks, M̂c

b ∈ RK×F . Where
c = 1, 2 denotes c-th output channel; b = 1, . . . , B
denotes the b-th window.

1: Initialization: let C1 = [ŝ11], C2 = [ŝ21], π = [1, 2]
2: forb in 1, . . . , B − 1do
3: p1 = M̂1

b [K/2 : K]; p2 = M̂2
b [K/2 : K]

4: n1 = M̂1
b+1[0 : K/2]; n2 = M̂2

b+1[0 : K/2]

5: sim.1 = similarity(p1, n1) + similarity(p2, n2)
6: sim.2 = similarity(p1, n2) + similarity(p2, n1)
7: if sim.1 ≤ sim.2then
8: Swap π (i.e. [1, 2] → [2, 1] or [2, 1] → [1, 2])
9: end if

10: Append ŝ1b+1 to Cπ(1), append ŝ2b+1 to Cπ(2)

11: end for
12: Perform overlap-add on C1 and C2 to obtain

continuous output stream ŝ1 and ŝ2.
Output: The continuous output stream ŝ1 and ŝ2.

to effectively model the very long sequence. We do not adopt
the time-domain feature because we find that the magnitude T-F
masking approaches are more robust to the downstream ASR
task than the time-domain approaches [11], [41]. There are also
many better T-F-domain features for speech enhancement and
separation [14], [47], [48], which is beyond the scope of this
article. Though the frame rate of T-F methods is usually much
smaller than that in time-domain methods, in the CSS task, the
length of the input feature is still very large due to the long
audio duration. To the best of our knowledge, we are the first to
apply the dual-path (DP) modeling methods for long sequence
modeling in the CSS task [39].

Fig. 2(a) illustrates the backbone and the details of the DP
separator. Similar to the baseline separator, it also follows the
SIMO-SISO design. In the DP separator, both the SIMO and the
SISO consist of DP modeling blocks. A DP modeling block is
made up of two sequence modeling layers, which are named lo-
cal modeling layer and global modeling layer. The local model-
ing layer focuses on the short-term modeling in a small window,
while the global modeling layer captures the long-span informa-
tion across all the windows in the long sequence. The magnitude
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Fig. 2. (a) An illustration of the proposed dual-path modeling for long recording speech separation. Two sequential modeling are applied to the input feature.
The sequential modeling can be performed with RNNs or transformers. The first model processes the input feature along the intra-window (K ×N ) for the local
processing, and the second model processes the received feature along the inter-window (B ×N ) to capture the long-term dependency. The repeating of the DP
block builds up the separation network. (b) The more refined dual-path modeling. The 1-D convolution layer downsamples the feature on the dimension K, and
the size-reduced feature is then processed by the following DP blocks. Before the last DP block, a transposed 1-D convolution layer upsamples the feature to the
original length.

spectrum of each window Db ∈ RF×K is firstly processed by a
fully connected (FC) bottleneck layer to obtain the bottleneck
feature D̂b ∈ RK×N . Denote the bottleneck input feature of
the whole sequence as T̂ = [D̂1, . . . , D̂B ] ∈ RB×K×N , the DP
block models the 3-D tensor T̂ in dual-path style, while the
baseline model that we discussed in section II processes each
window D̂b independently. By alternating the local and global
modeling layer in a deep DP network, the long span information
can be passed across the different windows. Thus, the DP model
is able to be optimized for the entire long sequence, while the
baseline model is only optimized in each local window.

More formally, the local modeling layer for each window
D̂b ∈ RK×N be presented as:

Eb = flocal

(
D̂b

)
, (6)

where flocal(·) is the mapping function of the local modeling
layer, Eb ∈ RK×H is the processed feature and H is the hidden
dimension. Eb is then processed by a bottleneck fully connect
(FC) layer and a layer-norm (LN) [49] to build the residual
connection [50]:

Lb = D̂b + LN(FC(Eb)), (7)

where Lb ∈ RK×N is the output of the local modeling. Let
L = [L1, . . . ,LB ] ∈ RB×K×N be the 3-D tensor formed by all
the windows’ local modeling output. The 3-D tensor is then
reshaped and indexed asLk = L[:, k, :] ∈ RB×N , k = 1, . . . ,K
before the global modeling. The global modeling is performed
on each Lk along the dimension B:

Qk = fglobal (Lk) , (8)

where fglobal(·) is the mapping function of global modeling,
and Qk ∈ RB×H is the processed feature by global modeling
layer. The bottleneck FC, layer-norm and residual connection

are applied similar to that in the local modeling:

Gk = Lk + LN(FC(Qk)), (9)

where Gk ∈ RB×N is the output of the global modeling pro-
cedure. The output Gk is rearranged as G = [G1, . . . ,GK ] ∈
RB×K×N , which is also the input of the next DP block.

In theory, the local and global modeling layer can be any
sequential modeling neural network layers. In this work, we
have explored the BLSTM [42] and the Transformer encoder
layer [43] as the sequential modeling layers. Respectively, the
two kinds of CSS separators can be referred to as DP-BLSTM and
DP-Transformer. The T-F mask estimation, separated waveform
prediction, the training criterion, and the stitching procedure are
the same as those in the basic CSS framework.

B. The More Refined Dual-Path Modeling

A refined strategy is designed to further improve the dual-path
modeling. The method is illustrated in Fig. 2(b). Before feeding
the 3-D intermediate feature T̂ ∈ RB×K×N into the DP blocks,
a 1-D convolution is performed on the dimensionK. The convo-
lution downsamples the intermediate feature T̂ into smaller size
T̃ ∈ RB×K ′×N , where K = λK ′ and λ is the sampling factor.
The processed intermediate feature by DP stack is then passed
by a transposed 1-D convolution and upsampled back to the
tensor Ĝ ∈ RB×K×N which has the same shape as the input. The
similar structure can be found in some previous works [51], [52].
There are two motivations for this convolution-based resampling
in the DP model. First, it can effectively reduce the computation
cost, especially when the number of DP blocks becomes large
and a proper λ is chosen. Second, the convolution kernel makes
the local information better presented in a single frame of
one local window, which may benefit the global information
interaction.
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Fig. 3. The proposed memory-based continuous speech separation architecture. The memory embeddings are extracted from the windows with low overlap ratio,
to form the memory pool for the long speech session. The SIMO module performs post-separation for the input feature. In the shared-weight SISO module, the
hidden embeddings attend to the memory pool and get the global information from the whole speech session.

IV. MEMORY-BASED MODEL FOR LONG RECORDING

SEPARATION

The above DP method allows the model to capture the
long-span information as well as the local information. De-
spite the strong power for the long sequence modeling and
its delicate design for easy implementation, it still has some
disadvantages. On one hand, there is no explicit control method
for the global information in the DP models. How to uti-
lize the high-value knowledge and ignore the ineffective in-
formation from the long span for the local window process-
ing is implicitly learned by the neural network. On the other
hand, the DP model is fundamentally an advanced sequen-
tial model, how to extend the model to better utilize external
knowledge may not be considered when the model was being
designed.

The proposed memory-based methods model the long-span
information explicitly. Fig. 3 shows the entire architecture of
the system. It mainly consists of four components: the SIMO-
SISO-mixed separator, the window-level overlap ratio predictor,
the memory embedding net to form the memory pool, and the
attention-based memory reader to get access to the memory
pool. The whole model is jointly trained with the objective
function L:

L = Lseparator + Loverlap + Lmemory, (10)

where Lseparator is the same as (5) that introduced in the basic
CSS framework, Loverlap is the loss for overlap ratio predictor,
which will be introduced in Section IV-B, and Lmemory is the
loss for memory pool construction, which is optional based on
whether the memory neural net is pre-trained. Lmemory will be
introduced in Section IV-C.

A. SIMO-SISO-Mixed Separator

The backbone of the SIMO-SISO-mixed separator is similar
to the systems that we introduced in previous sections. Both
the regular BLSTM separator and DP-BLSTM separator will be
compared as the baselines in this paper. The interaction of the
separator and the memory pool happens in the SISO module.
We believe that in the SISO module, the hidden embeddings of
input mixture has been pre-separated by the SIMO module, and
the disentangled feature is better than the mixed feature when
we use it as the query in the attention mechanism.

B. Overlap Ratio Predictor

The overlap ratio predictor takes the input bottleneck feature
T̂ ∈ RB×K×N as input, and predicts the overlap ratio for each
window b ∈ {1, . . . , B}. We borrow temporal convolutional
network (TCN) [53], [54] block from the Conv-Tasnet [11] as
the basic block to build the overlap ratio predictor. The network
contains 4 TCN blocks and the dilation factors are 1, 2, 4, 8.
After the last TCN block, a mean pooling layer is used to output
the predicted overlap ratios ô ∈ RB . The overlap ratio predictor
is jointly trained with the separation task. The loss function of
the overlap ratio prediction is the mean square error (MSE):

Loverlap = MSE(ô,o), (11)

where o is the oracle overlap ratio label of the training data.

C. Memory Embedding Net

The real conversations usually consists mostly of single talker
speech, with a small part of multiple people talking simulta-
neously. For example, in [29], the authors show that in the
meeting scenario, the overlap ratio is usually lower than 20%.
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To make sure that the memory embedding net generates bet-
ter and more representative memory embeddings, we perform
filtering to the input bottleneck features T̂ = [D̂1, . . . , D̂B ] ∈
RB×K×N according to the predicted overlap ratios ôwith a fixed
threshold ε:

T̃ = {D̂b|ôb < ε}, (12)

where T̃ ∈ RB′×K×N is the filtered input features and B′ is the
number of “clean” windows. ε is set to 0.3 in our experiments.
Then the memory embedding net takes T̃ as input, and output
the encoded memory pool Z = [z1, . . . , zB′ ] ∈ RB′×N for the
current speech session.

The memory embedding net for CSS task can be constructed
with different strategies, and three methods are proposed in this
work. The first one is using pre-trained models, and the other
two are learning from the data automatically and training jointly
with the other modules.

1) Strategy#1. Pre-Trained Models: The memory embed-
ding network can be pre-trained networks to encode specific
knowledge. For example, when using a pre-trained speaker iden-
tify net, it encodes the speakers embeddings, and when using the
encoder from end-to-end ASR, it may encodes some contextual-
related embeddings. Furthermore, in the multi-channel appli-
cation, it can also be used to encode spatial information. No
matter which kind of the pre-trained model is utilized, the
memory embedding net is initialized from these pre-trained
models and the parameters are then fixed during the following
model training. For example, some researches have shown that
the separation can be guided and get better performance with
speaker identification information [13], [38], [55]–[57]. In the
meeting scenario, plenty of the small segmented windows are
non-overlapped, and the speaker in those windows may overlap
with others in another window. Thus, when the memory is a
pre-trained speaker identification neural net, the speaker em-
beddings extracted from the non-overlapped region can ideally
help the separation of the overlapped windows.

2) Strategy#2. Supervised Joint-Learning: In this strategy,
the model parameters are learned with the other model mod-
ules. We assume that for each segmented window, the active
speakers are labeled, i.e. for the filtered low-overlap window,
the dominant speaker can be known. In this condition, we
can design the speaker supervised objective functions for the
memory embedding net:

Lintra_spk =

S∑
s

P(s)∑
i

i∑
j

γ(zsi , z
s
j), (13)

Linter_spk =

S∑
s1

S∑
s2 �=s1

ω(z̄s1 , z̄s1), (14)

Lmemory = Lintra_speaker + λLinter_speaker, (15)

where s = 1, . . . , S denotes the s-th speaker in the session,
which includes totally S active speakers. P(s) is the number of
windows, in which speaker s is the dominant speaker. zsi is the
i-th memory vector extracted from the s-th speaker’s windows.
z̄s is the mean vector of the s-th speaker’s memory vectors.

Lmemory consists of two components with weight λ. Lintra_spk

constraints the memory vectors from the same speakers as close
as possible in the embedding space.γ(·, ·) is the paired constraint
that combines the MSE and cosine similarity:

γ(z1, z2) = αγ MSE(z1, z2)− βγ Cos_sim(z1, z2), (16)

whereαγ andβγ are manually set weights.Linter_spk pushes the
memory centers from different speakers apart in the embedding
space. The paired constraint ω(·, ·) is defined as:

ω(z1, z2) = αω
1

1 +MSE(z1, z2)
+ βω Cos_sim(z1, z2),

(17)
where αω and βω are manually set weights.

This memory embedding network is then trained jointly with
all the other modules according to the (10).

3) Strategy#3. Unsupervised Joint-Learning: In contrast to
the above supervised joint-learning, another unsupervised joint-
leanring strategy is designed. In this condition, we assume that
there is no speaker label in the dataset. In the training stage,
the extracted memory embeddings are firstly clustered by K-
means algorithm. Then, the objective functions are applied for
the memory net training:

Lintra_class =

K∑
k

P(k)∑
i

i∑
j

γ(zki , z
k
j ), (18)

Linter_class =

K∑
k1

K∑
k2 �=k1

ω(z̄k1 , z̄k1), (19)

Lmemory = Lintra_class + λLinter_class, (20)

where Lintra_class and Linter_class are the constraints to pull
the embeddings from the same clustering class closer and push
the K clustering centers apart, respectively. The pair constraint
γ(·, ·) and ω(·, ·) are same as that described in (16) and (17).
This memory embedding network is then trained jointly with all
the other modules according to the (10).

D. Attention Based Memory Reader

We adopt the attention mechanism to design the memory
reader, and access to the memory vectors for the CSS task.
The attention mechanism can be formulated as a mapping func-
tion [43], which maps query, key, value to the weighted sum
of value. In this task, the hidden embeddings Êb ∈ RK×N in
the separator perform as the attention query, and the memory
embeddings Z = [z1, . . . , zB′ ] ∈ RB′×N are the key and value:

A = softmax

(
fkey(Êb) · fquery(Z)T√

N

)
, (21)

Ib = A · fvalue(Z), (22)

where fkey, fquery , fvalue are the mapping functions of linear
projection layer, and the operation {·} is the matrix multiplica-
tion.A ∈ RK×B′

is the attention weight matrix, and Ib ∈ RK×N

is the weighted sum of the mapped memory vectors. Ib is then
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concatenated with the origin hidden embeddings Êb:

Ẽb = FC([Êb; LN(Ib)]), (23)

where FC is the bottleneck layer which maps the hidden di-
mension to N , and LN is the layer-norm operation. Ẽb is
the outputted hidden embedding. Ẽb is then processed by the
down-stream SISO layers of the separator, and so the interaction
of the separator and the memory pool is completed.

V. EXPERIMENTS

A. Dataset

1) Evalutaion: In order to better evaluate the performance
of the proposed CSS systems in real environment, we adopt
the LibriCSS [26] as the testing set. It is a meeting-room-replay
dataset derived from Librispeech [58]. The dataset was recorded
in a real meeting room, with loud-speakers placed around a
microphone array. LibriCSS is made up of mini-sessions, and
there are 8 active speakers in each mini-session. The overlap
ratio of mini-sessions ranges from 0 to 40%. In our evaluation,
we firstly apply the separation to the recordings with our CSS
systems, and then evaluate the word error rate (WER) for the
processed recordings with an ASR system. The ASR model and
the evaluation pipeline is provided by the toolkit2 that released
with LibriCSS. We also evaluate the DNSMOS score [59] on
the separated speech. After applying CSS, we use the oracle
utterance boundary to clip the utterances out from the continuous
overlap-free output, and then perform the DNSMOS evaluation
on these separated utterances.

2) Training Data: We simulated a 750-hour noisy and rever-
berant long-duration dataset based on Librispeech 16 kHz for
CSS model training. The simulation aims to be as close to the
LibriCSS as possible. The image method [60] is used to created
the room impulse response (RIR), which is the same as our
previous works [39], [40]. To simulated the meeting scene, we
create 3000 and 300 virtual rooms for training and validation
respectively. The length and width of the rooms are randomly
sampled between 5 and 12 meters, and the height is between 2.5
to 4.5 meters. The simulated microphone is randomly placed
in the 2× 2 m2 center area of the room, and the height of the
microphone is between 1 and 2 meters. We randomly set 10 can-
didate locations in the simulated room, and one speaker from the
Librispeech is assigned for each location. The locations of these
speakers are at least 0.5 meters away from the wall, and the height
is between 1 to 2 meters. The reverberation time is uniformly
sampled in 0.1 to 0.5 seconds. After the RIR simulation for each
room, we randomly simulate 10 mini-sessions in each room.
The duration of each mini-session is 90 seconds or a little bit
longer than it. We randomly choose 3 to 5 speakers from the 10
as the active speakers, and their corresponding utterances in the
Librispeech train-clean-100 and train-clean-360 are convolved
with the RIR and are used to assemble the mini-session. The
overall overlap ratio of each mini-session is between 50 to 80%.
It is noted that, the overlap ratio in the training set is higher

2[Online]. Available: https://github.com/chenzhuo1011/libri_css

than that in the LibriCSS testing set. That is because we found
that a higher overlap rate is more conducive to separation model
training, while a lower overlap rate may lead to local optimum
in the training stage.

The overlap region in mini-session contains up to 2 speakers.
During training, a Gaussian noise with SNR randomly from 0
to 30 dB is added to the pre-generated mini-sessions on the fly.

B. Model Configurations

1) General Configurations: We adopt the T-F masking
method for speech separation. The size of short-time Fourier
transformation (STFT) is 512-point, and the hop length is 256. In
our previous works [39], [40], we have compared different win-
dow size K in the segmentation stage. Considering the balance
of performance and window-online latency, we chose K = 150
(2.4 seconds) as the default window size of segmentation, and the
overlap of the adjacent window is 1.2 seconds. The bottleneck
fully connected (FC) layers mapping the magnitude spectrum
into N = 256 dimension. In our experiments, all BLSTM lay-
ers contain 512 forward and 512 backward hidden units, and
following each BLSTM layer, another linear projection layer
maps the output into the bottleneck dimension N = 256. The
experiments are carried out with ESPNet-SE toolkit [61].

2) Dual-Path Models: We firstly compare DP models on the
SIMO structure. We adopt BLSTM-SIMO and Transformer-
SIMO as baselines, and compare DP-BLSTM-SIMO and DP-
Transformer-SIMO with their baselines, respectively. The first
baseline is a 4-layer BLSTM, while the DP-BLSTM contains 2
DP blocks and each DP block consists of 2 BLSTM layers for
local and global processing. The Transformer baseline contains
10 encoder layers, the attention dimension is 256 and 4 heads
are used for multi-head attention [43]. The feed-forward layers
has 1024 units. To keep the number of parameters comparable,
the DP-Transformer is made up of 5 DP blocks.

We also compare DP models on the SIMO-SISO structure. In
this setup, we have no constraint on the number of parameters.
The number of DP blocks in the DP models is same as the
number of layers in their corresponding baselines. Each DP
block consists of 2 basic layers, the one for local modeling and
the other one for global modeling. Thus, the DP models have
twice the number of parameters as their baseline models. The
BLSTM-SIMO-SISO baseline contains 4 BLSTM layers, 1 in
which for SIMO and 3 for SISO processing; The Transformer-
SIMO-SISO baseline consists of 12 transformer encoder layers,
3 in which for SIMO and 9 for SISO processing.

3) Memory-Based Models: We use three SIMO-SISO base-
line to evaluated the memory based models. The first one is
BLSTM-SIMO-SISO, in which each window are processed
independently. The second stronger baseline is the DP-BLSTM-
SIMO-SISO. This DP baseline can capture the long span infor-
mation by itself. The last one is the refined DP-Transformer-
SIMO-SISO, which is the strongest baseline in this paper.

The overlap ratio predictor is a 4-layer TCN with dilation
[1, 2, 4, 8]. The number of 1-D convolution kernels in the TCN
is 256, and the kernel length is 5. For the memory model, the
pre-trained speaker embedding model is a ResNet-based [50],
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TABLE I
WER (%) EVALUATION ON LIBRICSS FOR CONTINUOUS SPEECH SEPARATION WITH THE PROPOSED DP MODELS AND THE BASELINES. 0S&0 L: 0% OVERLAP

RATIO WITH SHORT&LONG SILENCE

[62] 34-layer r-vector net [63], [64]. The r-vector net is pre-
trained on Voxceleb [65] and LibriSpeech [58] dataset, and the
parameters of the r-vector net is frozen during the training. In
the end-to-end training, the memory embedding net is a 6 layer
TCN with 256 convolution kernels in each layer, and the kernel
length is 5. The dilations of the TCN is [1, 2, 4, 1, 2, 4]. Mean
pooling is used after the last TCN layer, thus for each window,
one memory vector will be generated.

C. Results on Dual-Path Models

We first compare the DP models with the baseline CSS
framework, and the results are listed in Table I. The partially
overlapped mini-sessions are firstly processed with the CSS
systems, and then perform continuous evaluation [26] for word
error rate (WER). As the table shows, our baselines are stronger
than that reported in [26]. In the four different setups, all the
DP models show better overall performance than their baseline,
even if we limit the same number of parameters (DP∗). Besides,
replacing the BLSTM with the Transformer structure can bring
another improvement on the higher overlap ratio segments. All
these observations demonstrate that the DP models have stronger
modeling capacity for the CSS tasks.

D. Results on SIMO-SISO Design

From the results in Table I, it can be further observed that
the SIMO-SISO design brings another improvement compared
to the original SIMO model. In the BLSTM-based models,
SIMO-SISO outperforms the SIMO model with the same model
size. In the Transformer-based models, although we use a little
bit more parameters in the SIMO-SISO structure, the perfor-
mance improvement of SIMO-SISO is large enough to show its
effectiveness.

E. Results on Refined DP Models

Moreover, the refined structure on the dual-path models can
obtain further WER and computational cost reduction according
to the results in Table I. The computational cost is evaluated with
multiplier–accumulator (MACs) on a 60 seconds input audio.
On DP-BLSTM-SIMO, we did not apply the refined method

because it only contains 2 DP blocks. From the last row in Ta-
ble.I, we find that the computational cost of the DP-transformer
with the refined method has been hugely reduced, though it has
more parameters than the baseline. This refined convolutional
downsampling method is beneficial for the implementation due
to the substantial computational cost reduction and better per-
formance.

F. Window-Online Processing for DP Models

The baseline CSS systems process each window indepen-
dently. They can be applied as window-online systems, with
the ideal latency of window length. However, in experiments of
Section V-C, bidirectional modeling is used in the inter-window
processing, and thus the DP systems are offline. Accordingly
we carry out the window-online processing experiments on DP
BLSTM-SIMO here. To enable the window-online processing
capacity, the BLSTM in the inter-window processing layer is
replaced with the unidirectional LSTM. Four window sizes
of 50, 100, 150, 200, which corresponding to 0.8, 1.6, 2.4, 3.2
seconds, are compared in the window-online processing experi-
ments. The inference latency of the window-online models is
evaluated on an Intel Core i7 CPU. The latency in Table II
includes the systems’ inherent latency, which is the window size
of the CSS system.

The WER and DNSMOS scores are listed in Table II. There
are four observations from the Table I) Firstly, for all the
window sizes, the DP models shows better performance than
the BLSTM-SIMO baseline. The results verify the power of
DP method. 2) Secondly, with the reduced window-length, the
BLSTM-SIMO baselines become worse on WER and DNSMOS
evaluation while the proposed DP models keep the performance
at the same level. The reason should be that, the baseline BLSTM
can not get enough context information for the separation with
a small window, while the proposed DP models can still cap-
ture the long span information with the inter-window block.
3) Thirdly, the window-online processing on DP model also
shows comparable performance with the window-offline DP
models, although the online model has only half of the pa-
rameters in the inter-window processing layer compared to the
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TABLE II
WER (%) AND DNSMOS EVALUATION ON LIBRICSS FOR CONTINUOUS SPEECH SEPARATION WITH DIFFERENT LOCAL PROCESSING WINDOW SIZE. THE

COMPARISON IS CONDUCTED ON DP-BLSTM-SIMO AND BASELINE BLSTM-SIMO

TABLE III
WER (%) AND DNSMOS EVALUATION ON LIBRICSS FOR CONTINUOUS SPEECH SEPARATION WITH THE PROPOSED MEMORY-BASED MODEL ON

BLSTM-SIMO-SISO BASELINES

Fig. 4. The attention scores illustration of the proposed speaker-pretrained memory embedding net (SPK-PTRD-Mem). (a) The oracle active speakers in the
segmented windows, 1.0 is active and 0.0 is inactive; (b), (c) The attention weights in two SISO branches, and the attention scores computed from the same speaker’s
active windows has been merged for clarity. The input sample is from the validation set.

offline model. 4) The last interesting observation is that, when
the window size (3.2 s) leads to worse WER performance for
DP models. One possible explanation is that, bigger window size
leads to smaller time stepsB in the inter-window processing and
the resolution for the global modeling also becomes worse. On
the contrary, smaller window size leads to more windows, and
it has finer resolution for the global modeling.

G. Results on Memory-Based Models

The experiments of memory-based models are firstly per-
formed on the BLSTM-SIMO-SISO mixed backbone. The re-
sults are listed in Table III.

1) SPK-PTRD Mem: We firstly compare the pre-trained
model strategy, named “SPK-PTRD Mem” in this work, with
the BLSTM-SIMO-SISO baseline. “SPK-PTRD Mem” is a
memory-based CSS system, in which the memory embedding
net is a pre-trained r-vector net [64] for speaker classification.
The results in Table III show that “SPK-PTRD Mem” can obtain
better performance in most cases, and the proposed memory
embedding module is useful for CSS task. The large increment
of the model size and MACs of “SPK-PTRD Mem” mainly
comes from the pre-trained r-vector net.

Fig. 4 illustrates the attention scores in the “SPK-PTRD Mem”
model. Fig. 4(a) is the oracle active speaker trace in a simulated
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mini-session. Fig. 4(b) and 4(c) are the attention weight scores
computed on the two SISO branches. Since the memory em-
bedding net encodes speakers identity information (the key and
value in attention), and the embeddings from the same speaker
should be very close, we simply merge the components from
the same speakers in the attention weight matrix for a clearer
analysis.

Three interesting points can be observed from the figure. First,
when processing the overlapped region, the model can attend
to the correct memory embeddings that belong to the involved
speaker (around index 20, 40, 50, 65). Second, in both SISO
branches, the model can track the same speaker at most of the
time (e.g. index 5∼45 in Fig. 4(c), but the high-score speaker
sometimes swaps between two SISO branches (e.g. around index
20, 40) when there is an overlap. This should be caused by the
window-level PIT objective, and the permutation will rearrange
to the correct position in the stitching stage. Third, in the non-
overlapped region where only exist one active speaker (e.g. index
5∼15, 25∼35), one SISO branch can choose the correct memory
embedding while the other SISO branch which should output
silence, usually chooses random memory embeddings. A better
modeling method for silence output may need to be explored in
the future.

2) SPK-CL Mem: The second memory model we evalu-
ate is trained with a supervised joint-learning strategy, named
“SPK-CL Mem”. In “SPK-CL Mem”, the speaker label of the
simulated training data is utilized for memory embedding net
training. As (13) to (15) shows, the loss function is design
to be close to the clustering criterion. During the inference
stage, a 5-centroid K-means clustering method is performed
and the set of clustering centroids are used as the memory
pool. The experiments in Table III show that the “SPK-CL
Mem” method not only outperforms the baseline model, but
also shows obviously better performance than the pre-trained
model strategy “SPK-PTRD Mem”. Compared to “SPK-PTRD
Mem”, the benefits of “SPK-CL Mem” may come from the
joint-training with the other modules on the CSS task.

3) UN-CL Mem: The third strategy is unsupervised joint-
learning, named “UN-CL Mem”. In this setup, the objective
function is that described in 18 to 20, which is an unsupervised
objective for the memory embedding net. In the inference stage,
the memory pool is made up of 5 clustering centroids of the K-
means algorithm. The experimental results in Table III show that
the unsupervised memory embedding method significantly out-
performs the baseline on WER evaluation, and is even better than
the other two memory embedding construction strategies. Com-
pared to the speaker-supervised joint-learning “SPK-CL Mem”,
this fully unsupervised joint-learning “UN-CL Mem” can learn
more knowledge not only the speaker information, so the other
useful knowledge can guide the clustering more accurate and
appropriate for continuous speech separation. Moreover, this
unsupervised joint-learning strategy is more flexible for the data
usage for the model training, and those corpora without labels
can also be used. In contrast, the speaker labels are necessary
for the supervised joint-learning in “SPK-CL Mem”, therefore
the unsupervised joint-learning strategy “UN-CL Mem” is more
practical for real applications.

Fig. 5. Comparison between the dual-path model and the memory model.
BLSTM+Mem is the best UN-CL Mem in Tabel III. The score is word error rate
(WER), lower is better.

TABLE IV
WER (%) AND DNSMOS EVALUATION ON LIBRICSS FOR CONTINUOUS

SPEECH SEPARATION WITH THE PROPOSED DUAL-PATH ARCHITECTURE WITH

MEMORY-BASED MODEL

H. Results on Integrated Dual-Path Architecture With Memory
Models

We first make a comparison between the DP model ver-
sus the best memory model. The comparison is based on the
BLSTM-SIMO-SISO model. From Fig. 5, we can find that the
best memory-based model consistently outperform the dual-path
model in WER evaluation.

We further combine the proposed dual-path architecture with
the new memory-based model to form an integrated framework
for the CSS task, and the results are illustrated in Table IV. It is
observed that the new memory-based model can also work well
on the proposed DP-BLSTM-SIMO-SISO and DP-Transformer-
SIMO-SISO systems with the DP architecture, and the memory-
based model can obtain additional improvement upon the pro-
posed DP architecture for CSS. We find that the improvement of
memory-based method on DP model is relatively smaller than
that of BLSTM baseline, it is due to that both the proposed DP
architecture and the memory pool model can capture the long
span information. To some extent, the effect of one method may
have been well expressed by the other one. The system applied
with both proposed dual-path architecture and memory-based
model achieves the best system performance on the continuous
WER evaluation.
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TABLE V
WER (%) AND DNSMOS EVALUATION ON LIBRICSS FOR CONTINUOUS

SPEECH SEPARATION WITH THE ABLATION STUDY ON MEMORY-BASED

MODELS

I. Ablation Study on Memory-Based Models

The analysis of Fig. 4 in Section V-G1 shows that the attention
mechanism could properly control the reading procedure of the
memory pool, i.e, choose the most valuable memory embeddings
for the local-window processing.

Moreover, we also replace the memory embedding pool with
random vectors in both training and evaluation, and keep other
modules the same as the memory model. The corresponding
result is named as Pseudo Mem in Table V. It is observed that
without the correct and meaningful memory embedding pool,
the memory-based model shows even worse performance. In
another ablation study, we simply stack one more SISO DP
transformer block in the baseline DP model, which has more
parameters and computation cost than the proposed memory-
based models. From the last row in Table V, we find that
simply stacking more DP blocks is not as effective as the
proposed memory-based model. This ablation study shows that
the proposed memory-based model with a suitable optimization
strategy is useful for continuous speech separation.

VI. CONCLUSION AND DISCUSSION

In this paper, we introduced the dual-path (DP) architecture
and the memory-based model for continuous speech separation
(CSS). These two kinds of methods can model the long se-
quences in CSS in two different ways. The DP models utilize the
long-span information for local processing in an implicit way,
and the memory-based models selectively encode and make use
of the memory embeddings from the long recording for local
processing. Both of the methods show strong power in the CSS
task, and the integration of these two approaches also brings
further improvement.

The memory-based framework is a flexible extension to CSS.
The memory embedding net can be jointly trained with the CSS
task, or various pre-trained networks can also be easily used to
introduce external information. In this work, we basically ex-
plored the pre-trained speaker identify net on the single-channel
data. In a real application, more external knowledge can be used,
e.g., spatial information in multi-channel data, visual modality
of speakers, or context of the conversation. These kinds of
knowledge can be extracted with the corresponding pre-trained
networks and selectively accessed in the memory pool, and these
will be explored in our future work.
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