
Separating Long-form Speech with Group-wise
Permutation Invariant Training

Wangyou Zhang1,2,∗, Zhuo Chen2, Naoyuki Kanda2, Shujie Liu2, Jinyu Li2, Sefik Emre Eskimez2,
Takuya Yoshioka2, Xiong Xiao2, Zhong Meng2, Yanmin Qian1, Furu Wei2

1 MoE Key Lab of AI, X-LANCE Lab, CSE Dept, Shanghai Jiao Tong University, Shanghai, China
2 Microsoft Corporation

{wyz-97, yanminqian}@sjtu.edu.cn, {zhuc, Naoyuki.Kanda, shujliu, jinyli, Sefik.Eskimez,
tayoshio, Xiong.Xiao, Zhong.Meng, fuwei}@microsoft.com

Abstract
Multi-talker conversational speech processing has drawn many
interests for various applications such as meeting transcription.
Speech separation is often required to handle overlapped speech
that is commonly observed in conversation. Although the orig-
inal utterance-level permutation invariant training-based con-
tinuous speech separation approach has proven to be effective
in various conditions, it lacks the ability to leverage the long-
span relationship of utterances and is computationally ineffi-
cient due to the highly overlapped sliding windows. To over-
come these drawbacks, we propose a novel training scheme
named Group-PIT, which allows direct training of the speech
separation models on the long-form speech with a low compu-
tational cost for label assignment. Two different speech separa-
tion approaches with Group-PIT are explored, including direct
long-span speech separation and short-span speech separation
with long-span tracking. Experiments on simulated meeting-
style data demonstrate the effectiveness of our proposed ap-
proaches, especially in dealing with a very long speech input.
Index Terms: Continuous speech separation, permutation in-
variant training, long-form speech, overlapped speech

1. Introduction
Speech processing for multi-talker conversational speech, such
as meeting recordings, is very challenging in the real world. It
differs from single-talker scenarios in two main aspects. Firstly,
it naturally contains overlapped speech from multiple speakers,
so a speech separation process is often required. Secondly, a
conversation can be of any length without any segmentation,
which poses a challenge to the long-form speech processing ca-
pability of the system. There have been increasing interests
in the conversational speech processing, including automatic
speech recognition (ASR) [1–3], speech separation [4–7], and
speaker diarization [8,9]. In this paper, we specifically focus on
the speech separation problem for long-form speech.

Continuous speech separation (CSS) [5] is a framework to
convert long-form unsegmented audio into N overlap-free au-
dio streams. In its representative instantiation with utterance-
level permutation invariant training (uPIT) [10–13], the input
speech is first segmented by using a sliding window with over-
laps, and speech separation is independently performed on each
segment to generate N separated signals. The separated sig-
nals in adjacent segments are then aligned via a stitching al-
gorithm. This approach has not only proven to be effective in
speech separation of simulated long-form signals [14, 15], but
also shown large improvement in ASR [16, 17] and speaker di-
arization [9] tasks in realistic conversation scenarios. However,
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there are some drawbacks in such a uPIT-CSS approach: (1) It
is computationally inefficient due to the large overlap between
adjacent windows, which is essential for better stitching perfor-
mance. (2) More importantly, the uPIT-CSS approach can only
model the short-span relationship of utterances, e.g. 1.6s in [4],
as it assumes at most N active speakers in each window where
N is typically 2. When a long window is used for local separa-
tion, the assumption is likely to be broken as > N speakers are
likely to be present within a window. Therefore, its performance
is limited due to the lack of access to a long-span context.

A recent study [18, 19] proposed a novel method tackling
the above problems in the CSS framework. The authors show
that the label assignment in long-form speech separation can be
regarded as a graph coloring problem, which leads to a gen-
eralized uPIT criterion named Graph-PIT. The computational
complexity in [18] scales exponentially with the number of ut-
terances in each segment, and was later reduced to be linear in
the number of utterances via dynamic programming [19].

In this paper, we aim to solve the long-span speech process-
ing approach without changing the PIT objective function. We
propose Group-PIT (gPIT in short), a simple training data con-
struction strategy to address this problem, to allow the separa-
tion network to directly process long-form speech in both train-
ing and inference stages. We show that by carefully designing
the data simulation procedure and arranging the long-form ref-
erence signal into utterance groups, the number of possible per-
mutations in each long-form audio (e.g. 60s) can be constrained
to N ! regardless of the number of active speakers and utter-
ances. This allows training of speech separation models directly
on long-form speech with the same training objective as uPIT,
except that it is used for utterance groups rather than individ-
ual utterances. We also explore different long-form speech pro-
cessing approaches with Group-PIT. Firstly, we show that the
straightforward extension of CSS to gPIT-CSS with long-span
separation can better process the long-form speech, which ben-
efits from the direct long-span modeling. Secondly, we explore
a two-stage gPIT-CSS approach with short-span separation and
long-span tracking. It combines the properties of the local- and
long-span processing, which is suitable for conditions where the
long-form training data is difficult to obtain or simulate, e.g., re-
alistic long-form conversation speech with spontaneous speaker
interactions. Our proposed methods are validated on simulated
meetings based on the WSJ corpus [20, 21].

2. Stitching-based uPIT-CSS
We suppose the long-form input speech mixture Y consists of
U utterances and in total C speakers. In the CSS framework, it
is assumed that at most N speakers are active at the same time
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Table 1: Average utterance-level SI-SNR (dB) of gPIT-CSS
based long-span separation models with different window sizes.

Model Ttr (s) Sliding window size (s)
4 16 32 60

Original partial mixture - ————— 2.84 —————
Baseline uPIT-CSS 4 7.72 2.21 1.90 -
+ Oracle permutation 4 13.71 6.60 3.85 -

gPIT-CSS with long-span
separation

4 9.02 2.70 2.40 2.31
16 0.94 13.92 7.08 6.46
32 1.04 13.47 14.10 12.26
60 1.84 11.61 13.01 14.58

+ Oracle permutation

4 11.93 8.59 5.59 3.66
16 8.55 15.64 11.18 8.19
32 8.84 15.87 16.12 13.67
60 8.42 15.00 15.38 15.25

Table 2: Average frame-wise accuracy (%) of gPIT-CSS based
long-span separation models with different window sizes.

Model Ttr (s) Sliding window size (s)
4 16 32 60

Baseline uPIT-CSS 4 87.54 66.44 63.64 -

gPIT-CSS with long-span
separation

4 77.87 63.12 62.71 61.99
16 56.65 94.22 77.65 77.00
32 53.46 94.21 94.66 91.92
60 53.53 90.43 93.40 97.45

5. Experimental Results
5.1. gPIT-CSS with long-span separation
As mentioned in Section 3.2, the proposed Group-PIT allows
training of speech separation models on much longer segments
than uPIT. Therefore, we first compared the performance of
direct long-span separation models trained with different win-
dow lengths Ttr. The best permutation of the meeting-level
separation output channels is first determined, and the oracle
utterance boundaries in each channel are then used to calcu-
late the utterance-level scale-invariant signal-to-noise ratio (SI-
SNR) [27]. The overlap between adjacent windows is set to 2s
by default, i.e. Th = Tf = 1s for all models.

Table 1 shows the separation performance on the over-
lapped evaluation data (partial). The performance of the
uPIT-CSS baseline (Ttr = 4s) is presented in the 2nd and 3rd
rows1, where we retrained the model from [14] by removing
RIRs and noise in data simulation. Albeit not fully compara-
ble due to different training data, the baseline performance can
still serve as an indicator of the relative performance of our pro-
posed method. It is shown that when evaluated with different
sliding window lengths, models trained with a longer window
tend to have better performance. This verifies our conjecture
that a longer context can benefit the separation of long-form au-
dios. In all conditions, the best performance is achieved when
the same window length is used for both training and evaluation.
In addition, we can observe that models trained with longer win-
dows tend to reach the performance with oracle permutations2,
which further demonstrates the effectiveness of the proposed
approach.

For the sequential evaluation data (seq.), since no over-
lap exists, the SI-SNRs of the separation outputs tend to be
very large (> 30dB), which is inappropriate to compare due to
the nonlinear scale in SI-SNR. Instead, we compare the frame-
wise accuracy of speaker assignment in each output channel
in Table 2. This is obtained by calculating the percentage of

1We cannot obtain the result for 60s-window because of the huge
memory cost with the baseline model.

2“oracle permutations” means using the reference signal to decide
the permutation of each window to stitch adjacent separated segments.

Table 3: Performance comparison of two different gPIT-CSS
approaches. “stitching” denotes the gPIT-CSS approach with
long-span separation, while “tracking” denotes the gPIT-CSS
approach with short-span separation and long-span tracking.

Model Approach Tracking acc. SI-SNR (dB)

Original partial mixture no processing - 2.84

gPIT-CSS (Ttr = 2s)
+ stitching - 4.36
+ tracking 91.81% 9.21
+ oracle tracking 100% 17.16

gPIT-CSS (Ttr = 4s)
+ stitching - 7.50
+ tracking 90.81% 8.22
+ oracle tracking 100% 17.20

speaker turns in the best frame-wise permutation based on the
final meeting-level separation output. It can be seen that mod-
els trained with longer windows also show higher frame-wise
accuracies on the sequential mixture, which further shows the
benefit of the proposed approach.
5.2. gPIT-CSS with short-span separation and long-span tracking
In this section, we evaluate the gPIT-CSS approach with short-
span separation and long-span tracking. In contrast with the
relatively large window length and overlap length used in Sec-
tion 3.2, we only use a short sliding window (2s and 4s) with
a 2-frame overlap for short-span separation. The tracking net-
work is trained and evaluated using a 24s sliding window. The
overlap between adjacent tracking windows is 12s and 2s for
training and evaluation, respectively. Table 3 shows the per-
formance of tracking-based models trained with different win-
dow lengths. Although the frame-wise tracking accuracy is not
low, the overall SI-SNR performance is not as good as the direct
long-span separation approaches with the best stitching window
configuration in Table 1, which suggests this approach is more
sensitive to frame-wise tracking errors. However, such com-
parison is unfair because much longer overlap sizes are used to
achieve good performance in Table 1, leading to higher com-
putational overhead. If we reduce the overlap size to only 2
frames, as shown in Table 3, the performance of the long-span
speech separation (denoted as “stitching” in Table 3) is severely
degraded. On the other hand, the tracking-based approach can
significantly improve the final separation result while enjoying
a much lower computational cost3. It is especially helpful when
a shorter separation window is used, as more improvement is
achieved with Ttr = 2s over Ttr = 4s.

6. Conclusion
In this paper, we explored the long-span speech separation ap-
proaches in the meeting scenario. A novel training scheme
called Group-PIT was proposed to cope with the permutation
problem in long-form speech. We showed that Group-PIT-
based speech separation models can be trained directly on the
arranged long-form speech with the same computational com-
plexity as in uPIT. Moreover, we explored two different Group-
PIT-based speech separation approaches for long-span speech
processing, and their effectiveness was validated on the simu-
lated data based on the WSJ corpus.
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