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Abstract
Speaker diarization in real-world acoustic environments is a
challenging task of increasing interest from both academia and
industry. Although it has been widely accepted that incorporat-
ing visual information benefits audio processing tasks such as
speech recognition, there is currently no fully released dataset
that can be used for benchmarking multi-modal speaker di-
arization performance in real-world environments. In this pa-
per, we release MSDWild∗, a benchmark dataset for multi-
modal speaker diarization in the wild. The dataset is col-
lected from public videos, covering rich real-world scenarios
and languages. All video clips are naturally shot videos with-
out over-editing such as lens switching. Audio and video are
both released. In particular, MSDWild has a large portion of the
naturally overlapped speech, forming an excellent testbed for
cocktail-party problem research. Furthermore, we also conduct
baseline experiments on the dataset using audio-only, visual-
only, and audio-visual speaker diarization.
Index Terms: speaker diarization, multi-modality, audio-visual

1. Introduction
Speaker diarization [1, 2] identifies the talkers and their talk-
ing duration, solving the problem of ‘who spoke when.’ In-
spired by multi-modal complementarity [3] and its success in
several audio-visual tasks [4, 5], multi-modal speaker diariza-
tion [6, 7, 8] takes advantage of both audio and visual modal-
ities, exploring multi-modal fusion and further improving the
performance.

However, existing multi-modal speaker diarization
datasets [7, 9, 10] are constrained in meetings, TV programs, or
movie sources, which are recorded cooperatively and contain a
mismatch to the in-the-wild scenario. In the scenario, people
are talking spontaneously with frequent switching and sudden
interrupting, leading to a naturally overlapped speech during
the talking. Besides, distances from the talking face to the
camera vary, resulting in various face resolutions and recording
distances. In addition, not all faces are front, and plenty of
them are side faces. Lastly, natural interference also exists,
including various noises and room reverberations.

† These authors contributed equally to this work.
‡ Yanmin Qian and Kai Yu are the corresponding authors.
∗ The dataset is available at https://x-lance.github.io/MSDWILD.

AMI AVA-AVD

MSDWild (Ours)

Figure 1: Several examples from AMI [7], AVA-AVD [12], and
our MSDWild methods. Compared with existing datasets from
constrained sources (e.g., AMI is from meetings, AVA-AVD is
from movies), our dataset contains daily casual conversation in
the wild, with at least two speakers talking in turn. The bottom
of our examples is the speaker diarization timeline; different
colors represent different speakers.

In this paper, our objective is to collect a multi-modal
speaker diarization dataset in those in-the-wild settings. To
achieve this, we build a collecting pipeline. Compared with
collecting pipeline [10], we have two major differences. First,
we use the keyword ‘VLog’ to gather informal talks rather than
‘panel debate’ or ‘discussion,’ which are often used in conjunc-
tion with formal talks. Second, to filter out videos with over two
speakers talking in turn, we do it manually without using any
pre-trained audio-visual algorithms (e.g., SyncNet [11]). We
think those algorithms may lead to dataset bias. Our dataset ex-
amples, compared with AMI [7] and AVA-AVD [12], are shown
in Figure 1.

Active speaker detection, which judges whether the au-
dio matches the face, is a significant sub-task for audio-visual
speaker diarization methods [13, 14, 10, 8, 12]. Most of those
methods train on a separate audio-visual dataset (e.g., Vox-
Celeb2 [4]), not directly on the audio-visual speaker diarization
dataset, which leads to a mismatch between the sub-task and the
final inference performance. Our dataset also provides videos
with cropped faces, labeled with speaking or not speaking, for
training audio-visual sub-task.
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Table 1: Comparison with existing audio-visual speaker diarization datasets. overlapped: The overlapped speech rate per video.
#speakers: The min/average/max speaker number per video. #SC: The average speaker changes times per minute. #noise: Whether
the videos contain the noise. #continuous: Whether video scenes are continuous without fast camera switching. Speakers in our dataset
frequently talk in turn, and the overlapped ratio is highest compared with other datasets.

dataset source #videos duration speech% overlapped #speakers #SC noise continuous language
AMI [10] Meeting 170 100h 80.91% 13.57% 3 / 4 / 5 7.8 7 3 En
VoxConverse [10] TV show 448 63h50m 90.7% 3.6% 1 / 5.6 / 21 3.28 7 3 En
AVA-AVD [12] Movie 351 29h15m 45.95% 4.4% 2 / 7.7 / 24 9.6 3 7 Multi
MSDWild (Ours) Daily Conversation 3143 80h3m 91.29% 14.01% 2 / 2.7 / 10 11.8 3 3 Multi

Our contributions are three-fold. First, we release a multi-
modal speaker diarization dataset in the wild, MSDWild. This
dataset contains over 3000 video clips with 80 hours. Besides,
these datasets can be used for training and testing simultane-
ously. Second, extensive analyses are conducted, including de-
tailed dataset metrics and comparisons with existing datasets.
Third, we also conduct several audio-only, visual-only, and
audio-visual baseline methods on our dataset. For audio-visual
methods, we also investigate fusion strategies.

We hope that MSDWild can provide a real in-the-wild
testbed for the speaker diarization community. Besides, MS-
DWild is also suitable for exploring the ability of multi-modal
audio-visual fusion for speaker diarization, better solving the
problem of ‘who spoke when.’

2. Related works
Multi-modal speaker diarization dataset. There exist some
audio-visual datasets [7, 9, 12, 10] related with our proposed
dataset. The AMI meeting corpus [7] is an audio-visual meet-
ing recording dataset. The total length of the data set is 100
hours, and all audios are recorded in English by eight micro-
phone arrays. The AMI meeting corpus focuses on the meeting
scenario. VoxConverse [10] proposes a multi-modal speaker di-
arization dataset. The total length of VoxConverse is around 64
hours. VoxConverse first downloads videos from YouTube by
keywords(e.g., panel debate, discussion) and then uses an auto-
matic creation pipeline to filter required videos. We can not an-
alyze it further because VoxConverse does not release its visual
part (as of June 2022). AVA movie dataset [9] is an audio-visual
dataset, originally intent for active speaker detection. Based on
this dataset, AVA-AVD [12] forms a new speaker diarization
dataset by re-annotating the speaker diarization labels. Those
datasets are collected from constrained sources. Our dataset
focus on daily casual conversation, forming a complete in-the-
wild dataset. The comparsion is shown in Table 1.

Multi-modal speaker diarization. Multi-modal speaker
diarization tries to utilize visual information to improve audio-
only performance in the wild. Several methods [13, 14, 10, 8,
12] are investigating how to make fully use of visual modal-
ity. Multiple faces may exist simultaneously in real scenarios,
leading to a permutation between one audio and multiple faces.
Multi-modal speaker diarization requires some pre-processing
methods, such as face detection and face tracking, to crop fa-
cial motions from videos, solving the problem ‘who.’ Then
audio-visual relation or synchronization task is applied to the
videos with cropped faces, solving the problem ‘when.’ This
task tries to find the relation between audio and facial motions,
mainly lip motion. The theoretical basis derives from viseme-
phoneme mapping: a correlation exists between the minimal
pronouncing unit, phoneme, and the corresponding lip motion
unit, viseme. Multiple algorithms [11, 8, 15] are proposed to

find the relation. There are two typical multi-modal fusion ar-
chitectures: two-stream and fused. Two-stream methods [11, 8]
jointly train audio and visual by metric learning [16] (e.g., con-
trastive loss and triplet loss [17]). TalkNet [15], a classic fused
method, learns the audio-visual relation by the neural network.
We will test those two architectures on our dataset.

3. Data collection
Stage 1. Searching and downloading videos. To search
videos, we use ‘VLog’ keyword to search and download movies
from YouTube. Before downloading those videos, we further
check whether those videos have at least one scene with two
speakers talking. Videos with all visible talking faces are pre-
ferred. To improve the language diversity, we change the web-
site location or use Google Translate to translate those English
keywords into different languages such as Chinese, Thai, Ko-
rean, Japanese, German, Portuguese, and Arabic.

Stage 2. Scene detecting. Post-editing, such as multi-
camera switching, video clip stitching, and abnormal speed
playback, is often combined with downloaded videos, resulting
in discontinuous video scenes. So we use PySceneDetect [18]
to split the video into separate clips. Each video clip is under
the same scene without a quick scene change. This stage aims to
avoid face tracking method failure and match the real scenario.

Stage 3. Manual filtering. After scene detecting, not ev-
ery scene in videos satisfies our requirements. There may still
be videos with no talking person, only one talking person, or
post-editing. We manually remove those videos and keep the
remaining videos satisfying the criteria that at least two speak-
ers talk. It is noted that we do not use any pre-trained methods
to assist filtering here.

Stage 4. Manual labeling using VIA Video Annotator.
VIA Video Annotator [19] is a manual annotation software for
videos, which has a video player and a timeline. We mark dif-
ferent timelines for different speakers and add temporal seg-
ments for each speech duration. The opening and closing of
the lips mark the beginning and end of a speech segment. Only
speech is labeled while other human sounds such as laughing
and singing are ignored. In addition, single words (e.g., ‘yes’ or
‘no’) and off-screen speeches are also be labeled.

Stage 5. Double checking. To reduce faults and improve
the quality of labels, one annotator checks another annotator’s
diarization. Verification criteria are followed by [10]. The
boundary differences between the labeled and the ground-truth
segments must be shorter than 0.1 seconds. With a pause time
over 0.25 seconds, segments should be split and considered as
separated ones.

Stage 6. Talking faces labeling. Apart from labeling
speaker diarization, we also crop out talking faces from raw
videos. Those videos can be used for audio-visual relation train-
ing. We first use a detecting method, S3FD [20], and IoU
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Figure 2: Comparison with VoxCeleb2 [4], a celebrity interview
dataset, talking face in our dataset has more casual head ges-
tures and has an extra not-speaking status. Those talking faces
are used to train an active speaker detection task, a sub-task for
multi-modal speaker diarization.

tracking to get all talking face videos. Then the annotators la-
bel videos into two groups: speaking and not-speaking. We
only filter videos over two seconds for efficiency because the
long period can generate the short. Finally, we get around 62
hours of speaking videos and 40 hours of not speaking videos.
Those talking face videos are pretty similar to videos in Vox-
Celeb2 [4] but have two differences. First, those cropped faces
are extracted from in-the-wild videos mentioned above. Those
videos contain more casual head gestures. Second, we have
not-speaking segments: lips are not moving. VoxCeleb2 only
has speaking segments. Examples are shown in Figure 2.

4. Dataset description
Our dataset, MSDWild, contains 3143 video clips with 84 la-
beled hours. Daily casual conversation occupies the majority of
our dataset. Compared with the formal conversation: news re-
port or debate, the daily casual conversation has three features:
frequently talking in turn, various head gestures, and various
background noises or room reverberations.

In multi-modal speaker diarization, we find that the algo-
rithm performances are extremely affected by the speaker num-
ber. So we separate videos with speaker numbers over than four
to form a many-talker set. The rest, with speaker numbers from
two to four, forms a few-talker set. Furthermore, we randomly
divide the few-talker set into two sets: a training set and a test-
ing set. Due to its limited size, the many-talker set is only used
for testing. Therefore, our dataset forms three sets: few-talker
training set, few-talker testing set, and many-talker testing set.

The number of video clips in those three sets is 2476, 490,
and 177. The corresponding labeled duration is 69.09, 10.58,
and 4.51 hours. However, the many-taker set’s average utter-
ance number and the overlapped speech ratio are significantly
greater than the few-talker set. The many-talker set has much
more speech alternations and overlapped speeches. The detailed
dataset metrics are listed in Table 2.

5. Experiments
5.1. Evaluation metrics

We report two metrics: DER(Diarization Error Rate) and
JER(Jaccard Error Rate). DER is the summary of missed speech
(MS) time, false alarm (FA) time, and speaker error (SE) time
to the reference time. We also calculate errors in overlapped
speech part (OVL). JER, initially proposed by DIHARD [21],

Table 2: MSDWild dataset metrics. #speakers: The
min/average/max speaker number per video. #videos: Video
numbers. labeled (h): The total labeled duration in hours. #ut-
ters: The average utterance number per video. overlap (%):
The average overlapped speech per video. speech (%): The
average speech occupation. Our dataset is divided into three
parts: few-talker train, few-talker val and many-talker val set.

Few-talkerTrain Few-talker V al Many-talkerV al

#speakers 2 / 2.54 / 4 2 / 2.61 / 4 5 / 5.86 / 10
#videos 2476 490 177
labeled (h) 69.09 10.58 4.51
#utters 36.1 30.28 43.32
overlap (%) 13.42 15.74 19.52
speech (%) 91.48 91.71 87.27

is the average of each speaker’s MS and FA rate. Compared
with DER, JER is more strict when some speakers dominate
the conversation. A 0.25-second forgiving collar is used for all
metrics, and overlapped speeches are taken into account.

5.2. Audio-only method

We run Pyannote [22], a publicly available open-source toolkit1

for speaker diarization, on our dataset. Pyannote uses a standard
audio-only pipeline that includes an SincNet-based [23] model
for voice activity detection, ECAPA-TDNN [24] for embedding
extraction, and agglomerative clustering for speaker clustering.

5.3. Visual-based pipeline

Visual-only and audio-visual share the same pipeline [13, 14,
8]: face detection, face tracking, and active speaker detection.
We adopt S3FD [20] as the face detection method. In the face
tracking stage, we use IoU tracking for faces in adjacent video
frames and use Arcface [25] to cluster different tracks when
they belong to the same speaker. Because those videos exist au-
dio not belonging to the talking faces, we need active speaker
detection methods to capture the correspondence between audio
and lip motion. An example is shown in Figure 3. We investi-
gate three methods: visual-only, two-stream audio-visual, and
fused audio-visual. Before illustrating those methods in detail,
we first describe the experiment setup.

5.3.1. Experiment setup

Visual representation. The inputs of our visual encoder are
videos with cropped faces. First, we transform the RGB image
to gray-scale in order to save the computation, and the frame
rate of the video is converted to 25 Hz. So the input formula-
tion is (Tv,Wv, Hv), representing video frame time, width, and
height. Both Wv and Hv use 112 here. Followed by [15], we
also use 3D Conv and ResNet-18 to encode each frame into a
512-dimensional embedding. Finally, TCN [26] is followed to
capture the inter-frame relation.

Audio representation. The sample rate of our audios is
16k Hz. We first convert audios into MFCC (Mel Frequency
Cepstral Coefficient) features, with the window length: 25 ms,
the window step: 10 ms, and the number of cepstrum: 13. Then
SENet [27] is followed to encode audio features.

Data augmentation. The visual data augmentation uses
random horizontal flip, random cropping, random rotation, and
random sampling low resolution: 32× 32, 64× 64, or 96× 96.

1https://github.com/pyannote/pyannote-audio
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Figure 3: Audio-visual Speaker Diarization Pipeline. Best
view in color. First, the face detection and face clustering stage
are to identify the speaker, solving the problem ‘who.’ Then,
audio-visual active speaker detection is to figure out the speak-
ing period of each talking face, solving the problem ‘when.’
Waveform in green color represents the speaking period of ID 0
in this example.

The audio data uses MUSAN [28] and room reverberation [29]
for data augmentation.

Training and sampling strategy. We use Adam [30] to
optimize our network for training with a learning rate of 0.0001
and weight decay of 0.95. The training epoch is 30. For sam-
pling strategy, same as TalkSet [15] format, we use a similar
format to generate sync pairs and asynchronous pairs. However,
we have two differences. One is that audio segmentation is from
our dataset, not from VoxCeleb2 [4]. The other is adding addi-
tional not-speaking videos, lips not moving, from our dataset.
All methods are trained on those training samples except for the
visual-only method, which lacks audio modality and only uses
synced pairs for training.

5.3.2. Implementation of visual-based pipeline

Visual-only method. We solely employ visual representation
to train a binary classification network for each video frame in
the visual-only method: zero for labeling not-speaking and one
for labeling speaking. The binary cross-entropy loss is used to
optimize this network.

Two-stream audio-visual method. Two-stream [11, 8]
uses a parallel feature extraction network for individual modal-
ities. Two-stream processes segment-level input and outputs an
embedding for the whole segment. Longer input duration will
lead to a coarse boundary, and shorter input causes lower accu-
racy. So there exists a trade-off in choosing the segment dura-
tion. The segment duration, used in our experiment, is 0.4 and 1
second (for Ta and Tv). Contrastive loss is utilized to optimize
this network during training, and L2 distance is employed as the
similarity metric.

Fused audio-visual method. The fused architecture [15]
implicitly models the relation between multi-modalities by
training a weighted network. We use concatenation to fuse
multi-modalities here. The input length of the fused model
differs from the two-stream model in that it is trained and as-
sessed at the frame level. The fused model classifies the talking
state for each video frame, but the segment-level model only
produces one outcome. As a result, the fused technique has
a better time resolution and can better model inter-frame rela-

tions. Same as the visual-only method, the cross-entropy loss
is also utilized here to optimize this network. During inference,
video frames with a probability over 0.5 are regarded as speak-
ing while others are not speaking.

Table 3: The baseline results of audio-only, visual-only, and
audio-visual methods on the few-talker val set.

Method MS FA SE OVL DER JER
Audio-only [22] 5.5 3.16 13.3 5.05 21.96 61.0
Visual-only 9.13 12.47 1.71 3.12 23.32 41.22
Audio-visual(Two-stream) [11, 8] 8.49 14.3 1.8 3.66 24.59 44.71
Audio-visual(Fused) [15] 7.27 4.0 0.93 3.26 12.2 35.01

Table 4: The baseline results of audio-only, visual-only, and
audio-visual methods on the many-talker val set.

Method MS FA SE OVL DER JER
Audio-only [22] 12.64 5.54 24.97 12.34 43.15 84.28
Visual-only 11.72 34.54 7.45 8.09 53.71 62.71
Audio-visual(Two-stream) [11, 8] 14.6 31.08 6.91 7.9 52.6 63.7
Audio-visual(Fused) [15] 14.2 7.45 4.2 6.59 25.86 54.79

5.4. Result and analysis

Table 3 and Table 4 show the final result. First, the overall DER
and JER show that our dataset is challenging, especially in the
many-talker condition. Second, the two-stream audio-visual
methods perform even worse compared with the audio-only
method. The fused audio-visual method improves 9.76% and
17.29% absolutely in the few-talker and many-talker val set, re-
spectively. Besides, audio-visual methods can improve speaker
diarization performance in speaker error (SE) rate and error rate
in overlapped speech part (OVL), especially in many-talker con-
dition. However, they perform poorly in missed speech (MS)
and false alarm (FA). Those show potential in audio-visual
methods, and more efficient methods remain to be explored.
Third, compared with audio-only methods, methods with vi-
sual modality, including visual-only and audio-visual ones, im-
prove greatly in JER, which shows that visual modality can bet-
ter solve the speaker diarization in the wild. This is because
there is a high variance in the speaker time in the wild, and the
JER metric can capture the variance.

6. Conclusion
In this paper, we propose MSDWild: a novel multi-modal
speaker diarization dataset in the wild. The dataset contains
spontaneously daily conversations on ‘unconstrained’ condi-
tions. We also test several baseline methods for speaker diariza-
tion. However, there exist multi-modal methods to be explored,
and experiments reveal that there is still potential for improve-
ment, particularly in the multi-talker situation.
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