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Abstract
Embeddings extracted by deep neural networks have become
the state-of-the-art utterance representation in speaker verifica-
tion (SV). Despite the various network architectures that have
been investigated in previous works, how to design and scale
up networks to achieve a better trade-off on performance and
complexity in a principled manner has been rarely discussed
in the SV field. In this paper, we first systematically study
model scaling from the perspective of the depth and width of
networks and empirically discover that depth is more important
than the width of networks for speaker verification task. Based
on this observation, we design a new backbone constructed en-
tirely from standard convolutional network modules by signif-
icantly increasing the number of layers while maintaining the
network complexity following the depth-first rule and scale it up
to obtain a family of much deeper models dubbed DF-ResNets.
Comprehensive comparisons with other state-of-the-art systems
on the Voxceleb dataset demonstrate that DF-ResNets achieve
a much better trade-off than previous SV systems in terms of
performance and complexity.
Index Terms: speaker verification, model scaling, performance
and complexity

1. Introduction
Speaker verification aims to verify a person’s identity according
to his or her voice characteristics. In recent years, the thriving
of deep learning has led to roaring success in the SV field [1, 2].
To further improve the performance and robustness of SV sys-
tems, researchers have made great efforts in different aspects,
including network backbones [3, 4, 5, 6, 7, 8], pooling mecha-
nisms [9, 10, 11, 12] and loss functions [13, 14].

Concerning network backbones, diverse architectures have
proliferated, such as 1-D and 2-D convolution neural networks,
self-attention networks. However, most design choices in pre-
vious works are ad-hoc and heuristic. Whether a principled
method peculiar to the SV task exists to design architectures
with better performance-complexity trade-off has been rarely
discussed. For ResNet-based SV systems, people generally fol-
low the same scaling-up rules as [15]. [5] proposes two models,
ECAPA-TDNN (C=512) and ECAPA-TDNN (C=1024) by sim-
ply doubling the number of channels. Still, in terms of the depth
and width of a network, which dimension plays a more critical
role in the SV task is not well understood. We argue that the
current scaling-up rules used in DNN-based SV systems are not
optimal, there should be a more principled and exclusive way
to design and scale up networks so that better performance and
network complexity can be achieved for the SV task.
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Figure 1: Vox1-O EER vs. Model Size

In this paper, we first systematically study the effect of
depth and width on the performance of SV systems based on the
family of ResNets in [15]. The empirical results show that depth
is more important than the width of networks for speaker verifi-
cation task. Based on this observation, we propose a depth-first
rule and present a new baseline model by significantly deep-
ening ResNet while maintaining its complexity. Then a family
of much deeper models, namely DF-ResNets, is constructed by
fixing the width and increasing depth in a specific ratio. Figure 1
summarizes the Voxceleb performance where our proposed DF-
ResNets achieve the best trade-off on performance and model
size than previous SV systems including two strong baselines
(ResNet [4] and ECAPA-TDNN [5]).

2. Motivation
In this section, we systematically study the effect of depth and
width of ResNet on the SV system performance. Firstly, we de-
fine the depth of a network as the number of layers in a network,
while the width of a network refers to the number of channels
in feature maps. ResNet is one of the most popular architec-
tures used in the SV field [4, 16, 17, 18, 19, 20, 21, 22, 23, 24],
different variants of which have been explored. For example,
[4] reduces the number of channels in each stage to half of the
original ResNet [15] due to the memory limit. On the other
hand, [17] adopts a thin-ResNet trunk architecture where the
block number of four stages is decreased to [2, 3, 3, 3] and the
channel expansion ratio is reduced from 4 to 2. In addition, [16]
utilizes the standard ResNet in the experiments. These scaling-
up choices are ad-hoc and heuristic. How the depth and width of
ResNet affect SV systems’ performance is still not well under-
stood. In particular, it is not yet clear what role each dimension
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Table 1: The effect of depth and width of ResNet on the SV system performance. Equal error rate (EER) is reported on Voxceleb1.

System Depth (# Layers) Width (# channels) # Params FLOPs Vox1-O Vox1-E Vox1-H

ResNet34 34 [32, 64, 128, 256] 6.63M 4.63G 0.96 1.01 1.86
ResNet34 [16] 34 [64, 128, 256, 512] 21.54M 18.46G 0.85 1.05 1.82
ResNet101 101 [32, 64, 128, 256] 15.89M 10.07G 0.62 0.80 1.48

might play in the SV task.
In experiments, we implement ResNet34 and ResNet101

for comparison. As Table 1 shows, when doubling the num-
ber of channels in ResNet34, the number of parameters and
FLOPs significantly increases by 3.2x and 3.9x, respectively.
However, the performance gains are very limited. On the other
hand, when fixing width and increasing the number of layers
from 34 to 101, we can obtain the relative improvements in
EER by 35.4%, 20.7%, 20.4% on Vox1-O, Vox1-E and Vox1-
H, respectively. Moreover, ResNet101 surprisingly achieves
much better performance than the standard ResNet34 with 26%
fewer parameters and 45% fewer FLOPs, which reveals that
more performance improvements can be achieved by deepen-
ing ResNet34 than widening it. These empirical results lead us
to the following observation:

Observation - Depth is more important than the width of
networks for speaker verification task.

3. Depth-First ResNets
Based on the above observation, we propose the depth-first de-
sign rule to deepen ResNet18 into DF-ResNet56 (Depth-First
ResNet56) while maintaining the model complexity. Subse-
quently, a new family of DF-ResNets is constructed by scaling
up DF-ResNet56 in a specific manner. Figure 2 schematically
depicts the process of converting ResNet18 to DF-ResNet56.
Table 2 presents the changes of parameter number, FLOPs and
performance throughout the roadmap from ResNet18 to DF-
ResNet56.

3.1. Depth-First Design Rule

As mentioned above, it is empirically observed that more per-
formance gains can be obtained by deepening ResNet than
widening it for the SV task. We assume that largely increas-
ing the depth of ResNet should result in performance improve-
ments. Therefore, we propose the depth-first design rule that
significantly deepens ResNet while maintaining the network
complexity. Note that deepening ResNet does not imply in-
creasing the number of layers directly. The key is maintain-
ing the complexity of a network while deepening it. In terms
of the complexity of a network, parameter numbers and FLOPs
are considered. We make several design choices to achieve this
goal. And by applying them to ResNet18, a new backbone DF-
ResNet56 is built. The trajectory is provided in the following
section.

3.2. A Roadmap from ResNet18 to DF-ResNet56

In this section, we present a roadmap going from ResNet18 to
DF-ResNet56 by adopting the proposed depth-first idea.

basicblock → bottleneckblock: Our starting point is a
ResNet18 which consists of 4 stages where each contains 2 ba-
sic blocks. Firstly, we replace the basic block with the bottle-
neck block, as shown in Figure 2 (A). The number of chan-
nels is set to [32, 64, 128, 256] for 4 stages, respectively. The
layer number of the resulting network is 26 ([2, 2, 2, 2]). Sur-

Table 2: The roadmap from ResNet18 to DF-ResNet56 and the
corresponding changes of parameter number, FLOPs and per-
formance.

System # Params FLOPs Vox1-O

ResNet18 4.11M 2.22G 1.48
basicblock → bottleneckblock 8.74M 2.93G 1.68
conv2d → depthwise conv2d 7.18M 1.75G 1.96

invert dimension 2.89M 1.94G 2.20
separate downsampling 3.14M 1.41G 1.65
increase layer number 4.49M 2.66G 0.96

prisingly, the performance worsens even though the parameter
number doubles and FLOPs are increased to 2.93G, as Table
2 presents. It indicates that the original bottleneck block in
ResNet is not computationally efficient, which urges the neces-
sity of re-designing it.

conv2d → depthwise conv2d: In the original bottleneck
block of ResNet, the standard 3x3 2-dimensional convolution
operator is adopted. In order to reduce the parameter num-
ber, we attempt to substitute the standard 3x3 convolution with
depthwise convolution [25] (Figure 2 (B)), which is a special
case of grouped convolution where the number of groups equals
the number of channels. From Table 2, we can see that this
change reduces the parameter number to 7.18M and FLOPs to
1.75G, resulting in further performance degradation to 1.96.

invert dimension: Although 1.6x reduction in FLOPs is
achieved from previous step, the parameter number is still large
(7.18M). Inspired by the inverted bottleneck design in [26], we
firstly create an inverted bottleneck block by moving up 1x1
convolution with 128 channels to the first place and moving
down 1x1 convolution with 32 channels to the third place (Fig-
ure 2 (B) to (C)). In addition, the channel number of depthwise
convolution is increased from 32 to 128. This is a crucial step
that significantly reduces the parameter number to 2.89M at a
slight cost of FLOPs. The performance temporarily reaches the
highest point 2.20.

separate downsampling: In the original ResNet, the spa-
tial downsampling is achieved by using 3×3 convolution with
stride 2 and 1×1 convolution with stride 2 at the shortcut con-
nection in the residual block at the start of each stage (Figure
2 (A)). Inspired by [27], we utilize a separate downsampling
layer which consists of a 3×3 convolution layer with stride 2
and padding 1 followed by a batchnorm (Figure 2 (D)). This
separate layer is placed after each stage except for the last one
to achieve the same spatial resolution downsampling as the orig-
inal ResNet, as depicted in Table 3. This modification can sig-
nificantly improve EER from 2.20 to 1.65 with a slight increase
in parameter and a great decrease in FLOPs.

increase layer number: After the above changes, we re-
duce the parameter number from 4.11M (ResNet18) to 3.14M
and FLOPs from 2.22G to 1.41G. It is ready to increase the
number of layers. Different from the original stage compute
ratio in ResNet, we follow the principle proposed in [27] and
adjust the number of blocks in each stage from [2, 2, 2, 2] in
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Figure 2: A-D: The roadmap from ResNet18 to DF-ResNet56. A: The bottleneck block in the original ResNet. B: Replace the standard
convolution with depthwise convolution. C: Swap the position of 1x1 convolution with 32 channels and 1x1 convolution with 128
channels. Meanwhile, increase the channel number of depthwise convolution from 32 to 128. D: Separate downsampling layer from
the residual block. separate d.s. stands for separate downsampling.

Table 3: Detailed architecture and complexity comparison of
our proposed DF-ResNet56 and ResNet18. Separate d.s. refers
to the separate downsampling layer. GSP represents global sta-
tistical pooling.

Stage ResNet18 DF-ResNet56

conv1 3× 3, 32, stride 1 3× 3, 32, stride 1

res2
[
3× 3, 32
3× 3, 32

]
× 2



1× 1, 128
d3× 3, 128
1× 1, 32


× 3

separate d.s. — 3× 3, 64, stride 2

res3
[
3× 3, 64
3× 3, 64

]
× 2



1× 1, 256
d3× 3, 256
1× 1, 64


× 3

separate d.s. — 3× 3, 128, stride 2

res4
[
3× 3, 128
3× 3, 128

]
× 2



1× 1, 512
d3× 3, 512
1× 1, 128


× 9

separate d.s. — 3× 3, 256, stride 2

res5
[
3× 3, 256
3× 3, 256

]
× 2



1× 1, 1024
d3× 3, 1024
1× 1, 256


× 3

pooling GSP GSP

FC (5120, 256) (5120, 256)

# params 4.11× 106 4.49× 106

FLOPs 2.22× 109 2.66× 109

ResNet18 to [3, 3, 9, 3]. This step significantly improves from
1.65 to 0.96, exceeding the original ResNet18 by a large margin
under similarly-sized parameters and FLOPs. This brings us to
the final model, namely DF-ResNet56.

Summary: Throughout the above roadmap, we success-
fully deepen ResNet18 into DF-ResNet56 while maintaining
the network complexity. The comparison of detailed structure
and network complexity is presented in Table 3. It is noteworthy
that we do not invent any new operators during this process. By
merely adopting the standard convolutional modules discussed
in previous literature, our DF-ResNet56 outperforms ResNet18
by a significant margin (35% relative improvement) under sim-

ilar complexity. Next, we will scale up our DF-ResNet56 by
further increasing depth in a specific ratio and obtaining a new
family of much deeper models.

3.3. Construct A Family of DF-ResNets

In this part, we construct different DF-ResNet variants which
align with ResNet18/34/101. The variants only differ in the
layer number. During the scaling up process, the channel num-
ber C is fixed while the number of blocks B in each stage is
increased gradually. Finally, we obtain the corresponding DF-
ResNet56/110/179/233, a much deeper model family. The con-
figurations are summarized below:

• DF-ResNet56: C=[32, 64, 128, 256], B=[3, 3, 9, 3]

• DF-ResNet110: C=[32, 64, 128, 256], B=[3, 3, 27, 3]

• DF-ResNet179: C=[32, 64, 128, 256], B=[3, 8, 45, 3]

• DF-ResNet233: C=[32, 64, 128, 256], B=[3, 8, 63, 3]

4. Experimental Setup
4.1. Dataset

Our experiments are conducted on Voxceleb1&2 [28, 29]
datasets. Voxceleb2 development set used for training, which
contains 1,092,009 utterances from 5994 speakers. The whole
Voxceleb1 is used for testing. In addition, three data augmen-
tation techniques are utilized: online data augmentation [30]
with MUSAN [31] and RIR dataset [32], specaugment [33] and
speed perturb [34] with 0.9 and 1.1 times speed changes to tre-
ble the number of speakers.

4.2. Implementation Details

The input features are 80-dimensional Fbank. The frame length
is 25ms and the frame shift is 10ms. We randomly crop a 200-
frame chunk from one utterance for training. Cosine similarity
with (AS-Norm) [35, 36] is used for scoring. Performance is
reported on EER and MinDCF with the settings of Ptarget =
0.01 and CFA = CMiss = 1. All systems are trained using
the AdamW [37] optimizer with a weight decay of 0.05. AAM-
softmax [14] with a margin of 0.2 and a scale of 32 is used as
the loss function. We present a comprehensive comparison with
previous works by re-implementing popular models in SV:
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Table 4: EER and MinDCF results of previous systems and our proposed DF-ResNets on the Voxceleb1 dataset.

System Architecture # Params FLOPs Voxceleb-O Voxceleb-E Voxceleb-H

EER(%) MinDCF EER(%) MinDCF EER(%) MinDCF

ResNet18
ResNet

4.11M 2.22G 1.48 0.1737 1.52 0.1751 2.72 0.2444
ResNet34 6.63M 4.63G 0.96 0.0885 1.01 0.1206 1.86 0.1769

ResNet101 15.89M 10.07G 0.62 0.0633 0.80 0.0880 1.48 0.1431

ECAPA(C=512) TDNN 6.39M 1.05G 0.97 0.1358 1.22 0.1410 2.31 0.2187
ECAPA(C=1024) 14.85M 2.67G 0.81 0.1464 1.01 0.1155 2.04 0.2101

SAEP Transformer 20.54M 5.92G 2.91 0.3486 2.87 0.3289 4.75 0.4459
GCSA 47.25M 13.47G 1.96 0.2654 2.07 0.2373 3.65 0.3687

MLP-SVNet MLP 15.20M 4.47G 1.36 0.1461 1.46 0.1552 2.49 0.2287

DF-ResNet56
ResNet
(ours)

4.49M 2.66G 0.96 0.1025 1.09 0.1219 1.99 0.1841
DF-ResNet110 6.98M 5.15G 0.75 0.0700 0.88 0.1002 1.64 0.1563
DF-ResNet179 9.84M 8.64G 0.62 0.0611 0.80 0.0899 1.51 0.1483
DF-ResNet233 12.33M 11.17G 0.58 0.0442 0.76 0.0831 1.44 0.1464

• ResNets: according to [4], we re-implement ResNet18,
34 and 101.

• ECAPA-TDNNs: following [5], ECAPA (C=512) and
ECAPA (C=1024) are built.

• Transformers: plus, transformer-based model SAEP [6]
and GCSA [7] are employed.

• MLP: also, a pure MLP model from [8] is included.

5. Results and Analysis
In this section, we first report the performance of the proposed
DF-ResNet family on Voxceleb. Then, a comprehensive com-
parison of ResNet, ECAPA, Transformer, MLP and DF-ResNet
is presented in terms of performance and model complexity.

5.1. Voxceleb Results for DF-ResNets

From Table 4, we can see that DF-ResNet56 can achieve the
relative improvements in EER by 35.1%, 28.3%, 26.8% over
ResNet18 system on Vox1-O, Vox1-E, Vox1-H respectively un-
der similar complexity, which reveals that the proposed depth-
first rule and the corresponding design choices described in sec-
tion 3.2 is effective. Consistent with our empirical observation
in section 2, it can be concluded that with deeper models comes
better performance for the SV task, under similarly-sized pa-
rameters and FLOPs. Compared with the original basic blocks
in ResNet18, our designed computation block is more efficient
and superior, making it possible to increase the number of lay-
ers without swelling up networks. Additionally, DF-ResNets
enjoy a trend of continuous performance improvements with the
increase in the number of blocks in each stage, demonstrating
the scalability and simplicity of our proposed architecture. In
particular, our DF-ResNet233 achieves better performance than
ResNet101 with 23% fewer parameters. These gains come from
both better computation block and better scaling-up method.

5.2. Analysis of Performance and Complexity

As shown in Figure 1, DF-ResNet achieves the best EER-
parameter trade-off among previous SV systems, including two
strong baselines (ResNet [4] and ECAPA-TDNN [5]). We
can see that DF-ResNet significantly outperforms ResNet and
ECAPA-TDNN of similar complexity across the board. For ex-
ample, DF-ResNet56 obtains 35% relative improvement over

ResNet18. Compared with ResNet34 and ECAPA (C=512),
DF-ResNet110 is also much better with a similar parameter
size. Our DF-ResNet179 achieves approximately the same
performance as ResNet110 with 38% fewer parameters. For
transformer-based and MLP-based SV systems, they have much
poorer performance in terms of EER-parameter trade-off. The
above results demonstrate the superiority of our DF-ResNet
over other architectures. As for FLOPs, it can be clearly ob-
served that DF-ResNet exhibits a more favorable performance
than ResNet in both low and high FLPOs regimes. Specif-
ically, DF-ResNet56 achieves similar EER with 43% fewer
FLOPs compared to ResNet34. In the high FLPOs regime, DF-
ResNet179 contains 14% fewer FLOPs than ResNet101 while
exhibiting the same EER performance. These results illustrate
that our DF-ResNets achieve a much better trade-off on perfor-
mance and network complexity than previous SV systems.

6. Conclusions

Although various models have been investigated in the SV field
recently, rare works pay attention to the question: is there a prin-
cipled method to design and scale up DNN-based SV systems
that can achieve better performance and network complexity?
In fact, this is an important problem for SV applications in real
life. In this paper, we first study the effect of depth and width
on the performance for the SV task and empirically observe that
depth is more important than width. Based on this observation,
we design a new baseline model according to the depth-first
rule and construct a family of much deeper networks dubbed
DF-ResNets. Experiments on the Voxceleb dataset show that
our DF-ResNets can achieve a more favorable trade-off on per-
formance and network complexity than previous SV systems.
We hope this work can shed light on the direction towards ar-
chitectural designs with better performance and complexity for
the SV task.
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