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Abstract

As the most widely used technique, deep speaker embedding
learning has become predominant in speaker verification task
recently. This approach utilizes deep neural networks to ex-
tract fixed dimension embedding vectors which represent dif-
ferent speaker identities. Two network architectures such as
ResNet and ECAPA-TDNN have been commonly adopted in
prior studies and achieved the state-of-the-art performance. One
omnipresent part, feature fusion, plays an important role in
both of them. For example, shortcut connections are designed
to fuse the identity mapping of inputs and outputs of residual
blocks in ResNet. ECAPA-TDNN employs the multi-layer fea-
ture aggregation to integrate shallow feature maps with deep
ones. Traditional feature fusion is often implemented via sim-
ple operations, such as element-wise addition or concatena-
tion. In this paper, we propose a more effective feature fusion
scheme, namely Attentive Feature Fusion (AFF), to render dy-
namic weighted fusion of different features. It utilizes attention
modules to learn fusion weights based on the feature contents.
Additionally, two fusion strategies are designed: sequential fu-
sion and parallel fusion. Experiments on Voxceleb dataset show
that our proposed attentive feature fusion scheme can result in
up to 40% relative improvement over the baseline systems.
Index Terms: speaker verification, deep speaker embedding
learning, feature fusion

1. Introduction
Speaker verification (SV) is a task to verify a person’s claimed
identity based on their voice characteristics. Given two utter-
ances, a typical SV system can extract speaker embeddings and
automatically determine whether two utterances belong to the
same speaker or not. In general, two parts exist in a SV system.
One is an embedding extractor which is used to extract speaker
embedding from variable-length utterances. The other is simi-
larity scorer based on the extracted embeddings. Before the era
of deep learning, i-vector [1] along with probabilistic linear dis-
criminant analysis (PLDA) [2] is the most popular method in
the speaker verification field.

Recent years have witnessed the wide application of deep
embedding learning in this task and the state-of-the-art perfor-
mance has been obtained by DNN-based methods [3, 4, 5, 6,
7, 8, 9, 10, 11]. Deep learning-based systems typically con-
sist of three main components: a frame-level feature extractor,
a segment-level embedding aggregator and a speaker classifier
[5]. Given an utterance, the neural network firstly extracts high-
level feature representation. Then a pooling layer aggregates
the frame-level representation across the temporal dimension
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and projects the pooled vector into a low-dimensional speaker
embedding.

Mostly used network architectures in SV task include con-
volutional neural network such as ResNet [12] and time-delay
neural network such as ECAPA-TDNN [10]. Recently, many
efforts have been made in architectural improvements and opti-
mization procedures to further improve the performance. Apart
from network re-designs, in this paper, we focus on an om-
nipresent component of network architectures used in SV task,
i.e. the feature fusion, to further boost the representation power
of SV systems. Whether explicitly or implicitly, intentionally
or unintentionally, feature fusion is an indispensable part in
DNN-based SV systems. For instance, ResNet employs short-
cut connections to fuse the identity mapping features and resid-
ual learning features. In ECAPA-TDNN, a multi-layer feature
aggregation module is utilized to integrate shallow features with
deep ones. However, the current feature fusion schemes used in
SV systems such as element-wise addition or direct concate-
nation are fixed and non-learnable, which lacks the ability of
modeling dynamic interactions between features.

To deal with the limitations of the traditional feature fu-
sion described above, this paper introduces a novel and more
effective feature fusion scheme called Attentive Feature Fusion
(AFF) for speaker verification task. Compared to fixed and
non-learnable feature fusion schemes, attentive feature fusion
is designed to dynamically fuse different features, where atten-
tion modules are employed to learn fusion weights based on the
contents of features. Moreover, two different fusion strategies
are presented to model dynamic interactions between features,
including sequential fusion and parallel fusion. Experiments
conducted on Voxceleb [13, 14] demonstrate that our proposed
attentive feature fusion scheme can lead to significant improve-
ments over the baseline systems.

2. Related Work
Deep Speaker Embedding Learning: d-vector [3] is the first
attempt to investigate the use of deep neural networks (DNNs)
for a small footprint text-dependent speaker verification task.
Subsequently, four types of deep features are introduced and
used in a tandem fashion in [4]. Recently, time-delay neural
network (TDNN) and convolutional neural network (CNN) are
most-commonly used architectures. x-vector [6] is a famous
TDNN-based deep speaker embedding extractor, which pro-
vides solid performance in the SV field. Furthermore, ECAPA-
TDNN [10] makes several architectural modifications upon
vanilla x-vector and achieves the state-of-the-art performance.
In the meantime, [9] adopts ResNet as the speaker embedding
extractor in VoxSRC 2019, which also releases a strong baseline
on Voxceleb [13, 14].

Attention Modules: Attention module has been exten-
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Figure 1: Illustration of MS-CAM.

sively adopted in a variety of deep learning tasks. In computer
vision, a series of attention modules have been put forward.
The squeeze-and-excitation (SE) module [15] simply squeezes
global spatial information into a channel descriptor to capture
channel-wise dependencies. Multi-scale channel attention mod-
ule (MS-CAM) [16] aggregates the local and global context in-
formation along the channel dimension. Coordinate attention
(CA) [17] encodes both channel relationships and long-range
dependencies with precise positional information. In this paper,
attention modules are utilized to learn fusion weights in our pro-
posed attentive feature fusion scheme.

3. Proposed Method
In this section, we present details of the proposed attentive fea-
ture fusion (AFF) scheme and its application in ResNet archi-
tecture.

3.1. Attention Modules

In our proposed attentive feature fusion scheme, attention mod-
ules are adopted to learn fusion weights based on the contents
of features. We study two different attention mechanisms for
ResNet architecture, namely MS-CAM [16] and CA [17], in
the experiments. Fig. 1 and Fig. 2 schematically depicts the
overview of them.

MS-CAM: As shown in Fig. 1, MS-CAM aggregates the
multi-scale context information along the channel dimension by
varying the spatial pooling size. Specifically, local and global
contexts are explored inside the attention module. For an in-
put feature X ∈ RC×F×T where C, F and T represent the
channel, frequency and time dimension respectively, the local
channel context L(X) ∈ RC×F×T is computed via a bottle-
neck structure as follows:

L(X) = B(Conv2(ReLU(B(Conv1(X))))) (1)

where Conv1 and Conv2 are point-wise convolution with out-
put channel sizes of C/r and C respectively. r is the channel
reduction ratio. B stands for BatchNorm. ReLU is the non-
linear function.

Similarly, the global channel context G(X) ∈ RC×F×T is
obtained by:

G(X) = B(Conv2(ReLU(B(Conv1(GAP(X)))))) (2)
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Figure 2: Illustration of CA.

where GAP is the global average pooling.
Given the local channel context L(X) and global channel

context G(X), the attention map S ∈ RC×F×T can be calcu-
lated by:

S = σ(L(X)⊕G(X)) (3)

where ⊕ denotes the broadcasting addition. σ is the sigmoid
function.

The attention map S is used as the fusion weights when
implementing attentive feature fusion in the following section.

CA: [17] firstly proposes CA in order to embed direction-
aware information, where channel attention is factorized into
two parallel one-dimensional feature encoding processes to ef-
fectively integrate spatial coordinate information into the gen-
erated attention maps. As Fig. 2 shows, given an input feature
X ∈ RC×F×T , two attention maps are separately generated
along the temporal and frequency directions respectively. For
the temporal attention map St ∈ RC×F×1, the calculation pro-
cess is presented below:

St = σ(Conv2(SiLU(B(Conv1(GAPt(X)))))) (4)

where GAPt is one-dimensional global average pooling along
the temporal dimension. SiLU [18] is the non-linear function.

Similarly, the frequency attention map Sf ∈ RC×1×T is
computed via:

Sf = σ(Conv2(SiLU(B(Conv1(GAPf(X)))))) (5)

where GAPf is one-dimensional global average pooling along
the frequency dimension.

The final attention map S ∈ RC×F×T is obtained by:

S = St ⊗ Sf (6)

where ⊗ represents the broadcasting multiplication.
Similar to MS-CAM, this final attention map S is also

adopted as the fusion weights in our proposed attentive feature
fusion scheme.

3.2. Attentive Feature Fusion

Inspired by [16], we design two different strategies for attentive
feature fusion (AFF): sequential AFF (S-AFF) and parallel AFF
(P-AFF). Fig. 3 is the overview of our proposed methods.

S-AFF: As Fig. 3 shows, given two feature maps X,Y ∈
RC×F×T , S-AFF firstly adds X and Y in an element-wise
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Figure 3: ResNet-based attentive feature fusion. We design two different strategies when implementing attentive feature fusion. Se-
quential: two features are added first. Then the resulting feature is fed into the attention module to generate fusion weights. Parallel:
feed two features into the attention module in parallel and generate fusion weights separately.

manner. Then MS-CAM or CA takes the resulting feature as
input and generates the attention map S as fusion weights. Sub-
sequently, the original X and Y are scaled by the attention map
S and the broadcasting subtraction of S respectively. Finally,
the element-wise addition of weighted features is the attentively
fused feature Z ∈ RC×F×T . S-AFF can be expressed as:

S = MS-CAM/CA(X+Y) (7)

Z = S⊗X+ (1⊖ S)⊗Y (8)

where MS-CAM/CA represents the attention module intro-
duced in Section 3.1. S is the attention map generated by MS-
CAM/CA. ⊖ is the broadcasting subtraction. ⊗ denotes the
element-wise multiplication.

P-AFF: Similarly, for two feature maps X,Y ∈ RC×F×T ,
P-AFF firstly feeds them into MS-CAM or CA in parallel and
computes the attention map SX and SY separately. Then the
resulting attention maps are used to weight the original X and
Y. The calculation process is as follows:

SX = MS-CAM/CA(X) (9)

SY = MS-CAM/CA(Y) (10)

Z = SX ⊗X⊗ (1⊖ SY) + (1⊖ SX)⊗Y ⊗ SY (11)

where SX and SY are the generated attention maps based on
the contents of X and Y respectively.

3.3. Application in ResNet

To validate the proposed attentive feature fusion scheme, we
apply it to ResNet, which is a commonly-used architecture in
SV task. The original feature fusion method in ResNet is the
element-wise addition between the identity mapping feature and
the residual feature. As shown in Fig. 3, alternatively, we ap-
ply AFF to ResNet by simply replacing the original addition
with the proposed AFF in every residual block. In addition, it is
worth mentioning that our proposed AFF module is very light-
weight and efficient. The performance can be significantly im-
proved over the baseline systems with only a slight increase in
parameter.

4. Experimental Setup
4.1. Dataset and Data Augmentation

Our experiments are conducted on Voxceleb1&2 [13, 14] to
evaluate the proposed methods, where the development set of

Voxceleb2 is adopted as training data and the whole Voxceleb1
is used as the testing data. Specifically, performance is evalu-
ated on three official trial lists: Vox1-O, Vox1-E and Vox1-H.
Plus, three data augmentation techniques are utilized to improve
the robustness of systems.

• Online Data Augmentation [19]: Extra data samples are
generated by adding noise or reverberation from MU-
SAN dataset [20] and RIR dataset [21] to original train-
ing utterances in an online manner.

• SpecAugment [22]: We add frequency and time-steps
masking to the input acoustic features.

• Speed Perturb [23]: We use sox to speed up or down each
utterance by 0.9 or 1.1 times. Finally, the training data
has 1,092,009×3 = 3,276,027 utterances from 5,994×3 =
17,982 speakers.

4.2. Training Details

We use 80-dimensional filter bank with 25ms windows and
10ms shift as the input acoustic features. All systems are trained
on 200-frame chunks which are randomly cropped from train-
ing utterances. In addition, AAM-softmax [24] with a margin
of 0.2 and a scale of 32 is adopted as the loss function. The
stochastic gradient descent (SGD) with momentum of 0.9 and
weight decay of 1e-4 is employed as optimizer to train mod-
els. The training epoch number is 165 with the learning rate
exponentially decreasing from 0.1 to 1e-5.

4.3. Evaluation Metrics

During testing, we use cosine distance as the scoring criterion.
Subsequently, all the scores are normalized using adaptive score
normalization (AS-Norm) [25, 26] where the size of the im-
poster cohort is set to 600. Performance is measured in terms
of the equal error rate (EER) and the minimum detection cost
function (MinDCF) with the settings of Ptarget = 0.01 and
CFA = CMiss = 1.

5. Results and Analysis
The results of the baseline systems and our proposed attentive
feature fusion (AFF) systems are listed in Table 1. We adopt
ResNet18 and ResNet34 as the baselines individually. Two dif-
ferent fusion strategies (S-AFF and P-AFF) are implemented
based on MS-CAM and CA respectively. It can be obviously
observed that our proposed AFF module can significantly im-
prove the performance over the baselines with only a slight in-
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Table 1: Results comparison of different systems on the Voxceleb1 dataset in terms of EER and MinDCF.

Architecture Fusion Strategy # Params Voxceleb-O Voxceleb-E Voxceleb-H

EER(%) MinDCF EER(%) MinDCF EER(%) MinDCF

ResNet18 — 4.11M 1.48 0.1737 1.52 0.1751 2.72 0.2444

+S-AFF(MS-CAM) Sequential +0.18M 1.29 0.1520 1.36 0.1613 2.49 0.2370
+S-AFF(CA) +0.13M 0.93 0.0942 1.05 0.1211 1.94 0.1871

+P-AFF(MS-CAM) Parallel +0.36M 1.19 0.1444 1.29 0.1543 2.37 0.2275
+P-AFF(CA) +0.26M 0.86 0.0894 0.99 0.1138 1.82 0.1796

ResNet34 — 6.63M 0.96 0.0885 1.01 0.1206 1.86 0.1769

+S-AFF(MS-CAM) Sequential +0.33M 0.79 0.0823 0.89 0.1099 1.71 0.1652
+S-AFF(CA) +0.24M 0.65 0.0605 0.82 0.1006 1.59 0.1538

+P-AFF(MS-CAM) Parallel +0.66M 0.75 0.0814 0.84 0.1076 1.68 0.1641
+P-AFF(CA) +0.48M 0.62 0.0599 0.79 0.1001 1.57 0.1531

crease in parameter. In particular, ResNet34-P-AFF(CA) sys-
tem achieves a new state-of-the-art performance on Voxceleb1,
which demonstrates the superiority of the proposed attentive
feature fusion scheme over traditional ones.

5.1. Sequential Attentive Feature Fusion

For sequential attentive feature fusion (S-AFF), we examine the
effect of different attention modules based on MS-CAM and CA
respectively. Notably, both MS-CAM and CA are light-weight,
which merely increase the parameter slightly. And CA based
S-AFF can achieve much better performance than MS-CAM
based S-AFF, and meawhile has fewer parameters. Specifi-
cally, for CA based S-AFF, the relative improvements in EER
by 37.2%, 30.9%, 28.7% and in MinDCF by 46.8%, 31.9%,
23.5% are obtained with ResNet18 system in the three official
trial lists. Similarly, ResNet34-S-AFF(CA) decreases the EERs
to 0.65%, 0.82% and 1.59% on Vox1-O, Vox1-E and Vox1-
H respectively. We attribute the effectiveness of CA based S-
AFF to the fact that CA has the ability of encoding coordinate-
aware information along frequency and time dimension sepa-
rately. Some evidences [27, 28] have shown that it is crucial for
speaker verification to model the frequency and time domain of
a spectrogram separately instead of treating them equally.

5.2. Parallel Attentive Feature Fusion

Also, MS-CAM and CA are implemented for parallel attentive
feature fusion (P-AFF). The increase in the parameter size of
P-AFF is twice as much as that of S-AFF. Meanwhile, P-AFF
leads to better performance than S-AFF. Likewise, CA based
P-AFF outperforms MS-CAM based P-AFF by a large margin
which can result in the relative improvements in EER by 41.9%,
34.9%, 33.1% and in MinDCF by 48.6%, 35.1%, 26.6% over
ResNet18. Additionally, ResNet34-P-AFF(CA) achieves a new
state-of-the-art result on Voxceleb1, namely 0.62%, 0.79% and
1.57% EER on the three official trial lists.

5.3. Comparison with Other Systems

In this section, we present a comprehensive comparison be-
tween the proposed method and four different types of sys-
tems from recent works [9, 10, 27, 29, 30, 31, 32] on Vox-
Celeb1. According to the embedding extractor architecture,
other systems are divided into ResNet-based, TDNN-based,
Transformer-based and MLP-based. As Table 2 shows, our best

Table 2: Comparison with other systems on Voxceleb1.

System Vox1-O Vox1-E Vox1-H

ResNet-based
ResNet34 [9] 1.46 1.55 2.76
ResNet34-ft-CBAM [27] 1.08 1.43 2.67
ResNet34-DTCF [29] 0.79 1.13 2.09

TDNN-based
ECAPA(C=512) [10] 1.01 1.24 2.32
ECAPA(C=1024) [10] 0.87 1.12 2.12

Transformer-based
SAEP [30] 2.91 2.87 4.75
GCSA [31] 1.96 2.07 3.65

MLP-based
MLP-SVNet [32] 1.36 1.46 2.49

ResNet34-P-AFF(CA) 0.62 0.79 1.57

system ResNet34-P-AFF(CA), i.e. ResNet with the proposed
parallel attentive feature fusion, outperforms all listed methods
by a large margin, especially on Vox1-E and Vox1-H, which
reveals that the proposed attentive feature fusion scheme is ef-
fective and powerful.

6. Conclusions
In this paper, we introduce a novel attentive feature fu-
sion (AFF) scheme to replace the conventional feature fusion
method for DNN-based speaker verification. Two different fu-
sion strategies are elaborately designed, including sequential
AFF (S-AFF) and parallel AFF (P-AFF), where we utilize MS-
CAM and CA attention module to learn fusion weights. Com-
pared to the conventional feature fusion, the proposed AFF
is dynamic and learnable. Experiments on Voxceleb dataset
demonstrate the efficiency and superiority of our proposed
method, which can lead to significant improvements over the
baselines consistently with only a slight increase in parameter.
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