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ABSTRACT

Although great progress has been made on automatic speech recog-
nition (ASR) systems, children’s speech recognition still remains a
challenging task. General ASR systems for children’s speech suf-
fer from the lack of corpora and mismatch between children’s and
adults’ speech. Efforts have been made to reduce such mismatch by
applying normalization methods to generate modified adults’ speech
for ASR training. However, modified adults’ data can reflect the
characteristics of children’s speech to a very limited extent. In this
work, we adopt text-to-speech data augmentation to improve the per-
formance of children’s speech recognition system. We find that the
children’s TTS model generates speech with inconsistent quality due
to children’s substandard pronunciations of phonemes, and the ASR
system suffers when trained with these additional synthesized data.
To solve this problem, we propose data selection strategies on the
TTS augmented data, and the effectiveness of the synthesized data
can be substantially boosted for children’s ASR modeling. We show
that the speaker embedding similarity based data selection strategy
can obtain the best position: relative 14.0% and 14.7% CER reduc-
tion for child conversation and child reading test set respectively
compared to the baseline model trained on real data.

Index Terms— children’s speech recognition, data augmenta-
tion, text-to-speech, data selection

1. INTRODUCTION

The performance of automatic speech recognition (ASR) systems
has been improved significantly since the introduction of deep neu-
ral networks. Provided with large amounts of training data and ad-
vanced model structures, ASR models are now able to achieve hu-
man parity performance [1]. However, as far as we know, although
many efforts have been made, children’s speech recognition still re-
mains a challenging task.

One challenge of children’s speech recognition is the lack of
data since children’s corpora are difficult to collect. Moreover, chil-
dren’s physical and articulatory characteristics and expressions have
inherently high variability [2]. To overcome these difficulties, vo-
cal tract length normalization (VTLN) is proposed to reduce inter-
speaker acoustic variability [3]. Pitch and formant modification [4,
5] were applied to reduce the acoustic mismatch between children’s
and adults’ voice. However, the above approaches have not funda-
mentally solved the lack of data on children’s speech.

In recent years, text-to-speech (TTS) based data augmentation
for ASR has been widely applied and achieved good performance [6,
7]. However, the usage of synthesized speech generated by the TTS
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system trained on children’s speech data is problematic since chil-
dren’s speech involves substandard or unclear pronunciation. As a
result, the quality of synthesized speech is inconsistent under such
circumstances. In this work, we present data selection for Fast-
Speech2 [8] synthesized children’s speech. ASR model trained on
TTS data is compared with VTLN normalization and pitch modifi-
cation for children’s speech recognition. We propose data selection
approaches based on:

1. Character error rate (CER) of an ASR model trained on real
data.

2. Resynthesis with CER filtered reference speech.

3. Normalized frame-wise acoustic posterior of a GMM-HMM
model trained on real data.

4. Genuine score of a synthetic speech discrimination system
trained on real and synthetic data.

5. Speaker embedding’s cosine similarity of synthesized speech
with its reference speech.

We perform our experiments on the SLT2021 CSRC data set and
obtain the best result with speaker embedding similarity based selec-
tion: relative 14.7% and 14.0% CER reduction for child conversa-
tion and child reading test set respectively compared to the baseline
model trained with real data.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce the ASR and TTS system adopted in our ex-
periments. Then in Section 3, the proposed data selection methods
are illustrated. The detailed experimental results and analysis are de-
scribed in Section 4, and finally we conclude the paper in Section 5.

2. SYSTEM DESCRIPTION

2.1. Transformer-based E2E for ASR

Transformer is a sequence-to-sequence network constructed with an
encoder and a decoder network. The encoder network is a stack of
several transformer modules. Each transformer module consists of
a multi-head self-attention and several fully connected feed-forward
layers [9]. The encoder takes acoustic features as input and maps it
into high-level representation. For ASR tasks, usually, a front-end
CNN network is adopted to apply time-scale down-sampling [10].

The decoder network process the representation from the en-
coder with attention mechanism and outputs the predicted tokens
in an auto-regressive fashion. For each decoding step, the decoder
emits the posteriors of the next token given previous output tokens.

The transformer model is trained with the joint CTC-attention
framework to improve robustness and achieve fast convergence [11,
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Fig. 1: The proposed data selection procedure for augmented TTS data, utterances are filtered according to their scores: (i): Synthe-
sized utterances obtain CER scores from an ASR model trained on real data. (ii): CER scores of synthesized utterances are grouped by their
reference utterances and each reference utterance obtains an averaged score of its synthesized utterances. Top N references are further fed into
TTS synthesizer to generate K synthesized utterances. (iii): A GMM-HMM acoustic model is adopted to calculate the frame-wise posteriors
for each utterance. The posteriors are normalized by the number of voiced frames to give a score to each utterance. (iv): A synthetic speech
discrimination model is applied to give each synthesized utterance a genuine score. (v): A synthesized utterance is given a score by the cosine
similarity of its i-vector with the i-vector of its reference as shown in Figure 2. For all the above methods, synthesized utterances with top K
scores are used for training. (Here K=300hrs and N=1hr)

12]. Denote Lctc and Ls2s as the CTC and S2S objective loss, the
loss function of joint CTC-attention network is defined as:

Ljca = λLctc + (1− λ)Ls2s (1)

A tunable coefficient λ ∈ [0, 1] is applied to control the contribution
of each loss. Joint CTC/attention decoding [13] is adopted to predict
the output sequence, where S2S scores together with CTC prefix
scores are combined to make the decision.

We combine Chinese characters and English BPE subwords for
the modeling units [14] as final units. SpecAugment [15] is applied
for all data throughout our experiments.

2.2. FastSpeech 2 for TTS

We follow the Transformer based TTS model in [8]. The feed-
forward Transformer (FFT) block, a stack of self-attention and 1D-
convolution, is adopted in Fastspeech 2. Some variance information
is introduced to ease the one-to-many mapping problem. Besides
speech mel-spectrogram, the model is trained and predicts the au-
dio’s duration, pitch, and energy.

In this work, some modifications are conducted for data augmen-
tation. In order to generate speech from children, either in training
or inference, we take the ground-truth of pitch and energy extracted
from user-specified templates as input into the hidden sequence to
predict the target speech. As is shown on the left in Figure 1, the
FFT based encoder transforms the phoneme sequence into the hid-
den sequence. A variance adaptor then adds variance information
(such as pitch) into the sequence. After that, the decoder predicts the
mel-spectrograms. The output mel-spectrograms are reconstructed
by Griffin-lim [16] for rapid turn around.

3. TTS DATA SELECTION

Children have substandard pronunciation for some phonemes, and
a phoneme spoken by different children speakers might sound very
different. Under such circumstances, it is hard to train a TTS model
that generates speech with consistent quality, and the ASR model

might suffer when trained with these unfiltered TTS data. Therefore,
we propose data selection strategies to select high-quality speech
that is beneficial for ASR model training.

3.1. Character Error Rate Selection
A straightforward idea is to select data based on character error rate
(CER) measured by a baseline ASR model trained on real speech.
Utterances with lower CER imply they are not severely distorted and
are valid utterances for the ASR model. The CER criterion can help
filter out synthesized speech with very low quality which are harmful
to ASR training.

However, since these utterances are already well recognized by
the baseline ASR model, the improvement of training on CER fil-
tered utterances might be limited.

3.2. Normalized Frame-wise Acoustic Posterior
Traditional GMM-HMM acoustic models can model speech char-
acteristics well. The posteriors of GMM-HMM model alignments
directly represent how likely the synthesized speech matches its tran-
script. We calculate a score based on alignments of the GMM-HMM
model: the frame-wise posteriors are normalized by the length of
voiced speech of an utterance. Posteriors of silence (”sil”) and non-
speech noise (”spn”) frames are ignored in the calculation.

scoregmm =

∑N
i=1 logP (Oi|Wi)

N − k ,Wi /∈ {sil, spn} (2)

where N is the total number of frames of an utterance, k is the num-
ber of silence, and non-speech noise, P (Oi|Wi) is the probability of
observation (acoustic feature) conditioned on phoneme sequence.

3.3. Reference Speech Selection and Re-synthesize
A FastSpeech2 model generates speech from a child speech tem-
plate and a given phoneme sequence. Through CER selection, we
find that synthesized speech with lower CER tends to be synthesized
from the same references. That is, the trained TTS system is more
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Fig. 2: Speaker embedding similarity-based data selection
pipeline: Utterances in the right box with the same color are syn-
thesized by the reference with corresponding color in the left box.
The cosine similarity between the i-vector of a synthesized utterance
and its reference is calculated as its score. The structure of the TTS
synthesizer is illustrated in Figure 1.

adept at synthesizing valid speech from specific references. Thus we
further use these selected references to synthesize speech with more
transcripts and use them for training without further filtering.

By synthesizing with filtered references, low-quality or invalid
synthesized speech that might be harmful to ASR training are ex-
pected to be mostly avoided. However, since all utterances are gen-
erated from the same group of selected references, the variety of
synthesized speech might be limited.

3.4. Synthetic Speech Discrimination Genuine Score
The advancement of speech synthesis technologies means well-
trained synthetic speech can be almost perceptually indistinguish-
able from real speech. A TTS speech discriminator (usually with a
binary output) is trained to detect whether an utterance is recorded
from a human (genuine) or is synthesized by computers (synthetic).
A synthesized utterance having a higher genuine score from the
discriminator means it more successfully deceives the discriminator.
Utterances with higher genuine score have higher similarity with
natural utterances from the perspective of the neural discriminator
and are filtered from synthesized data for ASR training.

3.5. Speaker Embedding Similarity
The synthesized utterance by a FastSpeech2 model is expected to
have characteristics of their reference, and such similarity can be
measured by speaker embedding.

Here, we adopt i-vector[17] as the speaker embedding and mea-
sure the score of a synthesized speech by its i-vector’s cosine similar-
ity with its reference. A higher similarity can imply the synthesized
utterance is of higher quality .

scoreivec =
< i, iref >

‖i‖ · ‖iref‖
(3)

where i means i-vector embedding of the utterance.

3.5.1. Illustration of i-vector based selection

As is shown in Fig. 3, all audio samples are transformed into em-
bedding based on statistics pooling along time. The figure shows
the effectiveness of our i-vector based data selection method: most
of TTS utterances that are very different from children speech are

discarded by our selector (green dots on the left). Although some
synthesized utterances that are similar to children speech are also
discarded, the selected high-quality utterances are still very helpful
for training ASR model.

20 10 0 10 20 30

20

10

0

10

20
Adult
Child
TTS select
TTS discard

Fig. 3: Distribution of audio samples with t-SNE. 100 utterances
are sampled from both adult speech and children speech, respec-
tively. Then 200 utterances are sampled from synthesized data.
Adult utterances are plotted in blue, yellow ones are real child
speech. Red dots are selected data, and green ones are discarded
ones.

4. EXPERIMENTS

4.1. Dataset

Our experiments are performed on the children’s speech dataset from
SLT2021 CSRC (children speech recognition challenge), which con-
tains adult reading set, child reading set, and child conversation set.
The language of all three sets is mandarin. And all speech data are
in 16kHz, 16bit, and single-channel format.

Both our dev set and test set contain 1500 utterances from child
reading and child conversation sets respectively. The training set is
all data excluding the dev and test set, and is referred to as ‘REAL’
in our experiments.

Table 1: Details of CSRC Dataset

Part Duration # Utt. # Spk. Ages
Adult Reading 341.4h 243,056 1,999 18-60
Child Reading 28.6h 29,837 927 7-11

Child Conversation 29.5h 30,525 54 4-11

4.2. Experiment Setup

4.2.1. ASR Setup

The input of the model is an 80-dimensional log Mel-filterbank with
25ms window length computed every 10ms and pitch feature of 3
dimensions. The spec-augment [15] is conducted on speech features.
We adopt 20 layers of encoder and 6 layers of the decoder with 2048
hidden units. Each layer is a Transformer block with 8 heads of 64
dimension self-attention layer. Dropout is set to 0.1 for each block
and position-wise feedforward. For multitask learning(MTL), the
weight for CTC and attention is set to 0.3 and 0.7. The modeling
units are 3669 Chinese characters units and 100 English BPE units.

4.2.2. TTS Setup

The text-to-speech system is Transformer implemented on ESP-
Net [18]. The encoder contains 6 feed-forward Transformer blocks.
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Each block has 2 heads with 384-dimensional attention hidden
sizes and phoneme embedding. The decoder has 6 feed-forward
Transformer blocks, which has the same hyper-parameters as the
encoder. For TTS target, 320D Mel-filterbank with 16000 sampling
frequency, 1024 FFT points, 800 points for window length, and
200 points shift is extracted. Three-dimensional pitch feature is
computed with a window size of 50ms with 12.5ms shift, and 16000
sampling frequency by Kaldi [19].

4.2.3. Synthesized speech discriminator setup

We adopt the Light CNN architecture as the discriminator, which
was the best system in the ASVspoof 2017 Challenge [20]. It also
performed well in the ASVspoof 2019 Challenge in both replay and
synthetic speech discrimination sub-tasks [21, 22]. The detailed
model structure is the same as that of our previous work [23].

The front-end feature is the 257-dimensional log power spec-
trogram, which is extracted by computing 512-point Short-Time
Fourier Transform (STFT) every 10 ms with a window size of 25
ms. We adopt the cross-entropy loss criterion as well as the SGD
optimizer with a learning rate of 0.001 and a momentum of 0.9.

4.3. Evaluation Results
4.3.1. Comparison with existing approaches

VTLN and prosody modification normalization approaches are com-
pared with ASR model trained on additional TTS unfiltered data
(REAL 400hrs + TTS 300hrs). We follow the prosody modification
method in [4]. The tool SoX implemented based on WSOLA [24] is
adopted to modify the audio signal’s tempo while keeping the orig-
inal pitch and spectral unchanged. The factor λ is set to 1.1 to tune
up the prosody of adults’ utterances. For VTLN, the linear-VTLN
model in Kaldi [19] is trained, starting from an existing system based
on LDA+MLLT GMM-HMM. Then the VTLN warping factors are
computed for each speaker. After that, the Mel-filterbank feature is
re-generated with the VTLN warping factors for normalization.

The results show that additional TTS unfiltered data leads to
slight degradation on child conversation set and inferior improve-
ment on child reading set compared with other two approaches.

Table 2: Results (CER%) compared with existing approaches

Traing Data Conversation Reading
REAL (baseline) 27.16 8.05
VTLN 26.04 7.46
Prosody modi. 25.33 7.56
REAL + TTS unfiltered 27.34 7.86

4.3.2. Comparison among proposed data selectors

Table 3: Results (CER%) of data selection methods

Training Data (REAL +) Conversation
( dev / test )

Reading
( dev / test )

TTS random 26.14 / 27.34 7.63 / 7.86
CER 23.41 / 24.48 7.03 / 7.32
GMM posterior 23.56 / 24.36 6.79 / 6.97
Reference resynthesis 24.92 / 25.71 6.54 / 6.99
Synthetic discrimination 23.21 / 24.42 7.03 / 7.33
I-VECTOR similarity 22.62 / 23.35 6.26 / 6.87

+ Prosody modi. & VTLN 22.57 / 23.24 6.10 / 6.67

For all experiments in Table 3, 1500 hours of synthesized data is first
generated by the TTS model. Then each selection method is con-
ducted to filter data. The comparison among data selection methods
is performed on 20% (about 300hrs) filtered utterances, which per-
forms the best on our dev set in Table 4. For unfiltered condition,
data is also randomly selected 20% for a fair comparison. All pro-
posed data selection methods achieve a lower CER than real data and
unfiltered data.

Re-synthesizing with filtered references performs the worst on
child conversation set among our proposed methods. This can be
ascribed to two reasons: (i) The re-synthesized speech has not been
filtered with any selectors, and contains invalid or severely distorted
utterances. (ii) All re-synthesized speech corresponds to the same
group of references (1hr), limiting the variety of synthesized data.

Synthetic speech discrimination based selection performs the
worst on child reading set among our proposed methods. The fil-
tered utterances might contains long silence frames that cannot pro-
vide enough information to be detected as synthetic by our discrim-
ination model.

The i-vector similarity based selection performs the best on both
test sets. The similarity between a synthesized utterance and its ref-
erence can effectively measure its quality. High similarity implies
that the utterance reflects the speaker’s characteristics of its reference
well and can be considered as valid training data for ASR model.

4.3.3. Effect of data selection threshold

Table 4 shows how the amount of TTS selected data affects ASR
performance. Training with scarce synthesized speech (5%) brings
limited improvement, while an overly loose threshold (40%) might
introduce distorted data that is harmful to ASR model training.

Table 4: Effect of amount of data selected (CER%). Experiments
in this table is performed on REAL data + i-vector similarity selected
data (from 1500hrs TTS speech) with different thresholds.

Training Data (REAL +) Conversation
( dev / test )

Reading
( dev / test )

5% (75hrs) 23.51 / 24.30 6.96 / 7.27
10% (150hrs) 23.20 / 24.26 6.72 / 7.07
20% (300hrs) 22.62 / 23.35 6.26 / 6.87
40% (600hrs) 23.39 / 24.28 6.87 / 7.24

5. CONCLUSIONS

This paper presented data selection of text-to-speech data augmenta-
tion for children speech recognition. Experiments show that appro-
priate data selection methods for augmented TTS data can signifi-
cantly improve the performance of the ASR system. Data selection
with speaker embedding (i-vector) similarity based selection method
obtains the best position, with 14.0% and 14.7% relative improve-
ment over the baseline on child conversation and child reading test
set, respectively. Furthermore, by applying TTS data augmentation
together with prosody modification and VTLN, we observe 14.4%
and 17.1% relative improvement over the baseline.
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